Role of the Down-Bending Plate as a Detrital Source in Convergent Systems Revealed by U–Pb Dating of Zircon Grains: Insights from the Southern Andes and Western Italian Alps
Abstract
:1. Introduction
2. Materials and Methods
3. Geological Framework and Results of the Southern Andes and Western Italian Alps Case Studies
3.1. The Case of the Retro-Arc Basin of Southern Andes between 34° and 40° S Latitude (Neuquén Basin, Argentina)
3.1.1. Geological Setting and Stratigraphy
3.1.2. The Detrital Record from Detrital Zircon U–Pb Dating, Sandstone Petrography, and Thermochronological Proxies
3.1.3. Discussion on the Drainage Evolution and Related Provenance Changes in the Neuquén Basin
3.2. The Case of the Western Ligurian Flysch (NW Italy) during Impending Collision
3.2.1. Geological Setting and Stratigraphy
3.2.2. The Detrital Record from Sandstone Petrography and U–Pb Dating of Detrital Zircon Grains
3.2.3. Discussion on the Erosion of the Passive Continental Margin during Oceanic Closure
4. Overall Conclusions
- In the back-arc Andean region, a transition from an extensional to a contractional setting is recorded during late Albian–early Cenomanian time (Figure 6A) by detrital provenance, possibly linked to an overall plate reorganization that caused the decrease of subduction dip. The resulting flexure of the down-bending continental block in the back-arc Andean region triggered the erosion of the South American foreland craton, providing most of the detrital material to the majority of Upper Cretaceous continental successions accommodated in the back-arc Neuquén Basin during its contractional evolution.
- In such a back-arc contractional setting, the scarceness of syndepositional volcanic zircon crystals, combined with the contrasting exhumation rate of the source rocks revealed by double apatite dating, provide clues for discriminating sediments coming from the Cordillera volcanic arc/orogenic belt from sediments staged from the continental foreland.
- In the Ligurian transect of the Western Alps (Figure 6B), an intra-oceanic subduction was supposed due to the overall lack of terrigenous material arriving in the basin during most of the Cretaceous. In such a context, the Late Cretaceous arrival of voluminous sand-size terrigenous detritus remains enigmatic.
- Coupled U–Pb dating of clastic zircon grains and sandstone petrography support the European continental margin placed on the subducting plate as the source of that material, and its arrival close to the subduction zone is thought to announce the impending collision. Within this transient phase, decreasing sandstone maturity through time is thought to record the arrival of the flexural bulge on the passive continental margin, starting from a shelf region and then moving toward the hinterland. This passage first triggered the reworking of mature quartz-rich shelf sands, and afterwards it caused basement erosion and deposition in the subduction zone of basement-sourced arkoses.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeCelles, P.G.; Giles, K.A. Foreland basin systems. Basin Res. 1996, 8, 105–123. [Google Scholar] [CrossRef]
- Garzanti, E. The Himalayan Foreland Basin from collision onset to the present: A sedimentary–petrology perspective. Geol. Soc. Lond. Spec. Publ. 2019, 483. [Google Scholar] [CrossRef]
- Dahlen, F.A. Critical taper model of fold-and-thrust belts and accretionary wedges. Ann. Rev. Earth Planet. Sci. 1990, 18, 55–90. [Google Scholar] [CrossRef]
- Malevieille, J. Impact of erosion, sedimentation, and structural heritage on the structure and kinematics of orogenic wedges: Analog model and case studies. GSA Today 2010, 20. [Google Scholar] [CrossRef]
- Pereira, M.F.; Chichorro, M.; Johnston, S.T.; Gutiérrez-Alonso, G.; Silva, J.B.; Linnemann, U.; Hofmann, M.; Drost, K. The missing Rheic Ocean magmatic arcs: Provenance analysis of Late Paleozoic sedimentary clastic rocks of SW Iberia. Gondwana Res. 2012, 22, 882–891. [Google Scholar] [CrossRef]
- Pereira, M.F.; Gutíerrez-Alonso, G.; Murphy, J.B.; Drost, K.; Gama, C.; Silva, J.B. Birth and demise of the Rheic Ocean magmatic arc(s): Combined U-Pb and Hf isotope analyses in detrital zircon from SW Iberia siliciclastic strata. Lithos 2017, 278–281, 383–399. [Google Scholar] [CrossRef]
- Pereira, M.F.; Gama, C.; Dias da Silva, Í.; Fuenlabrada, J.M.; Silva, J.B.; Medina, J. Isotope geochemistry evidence for Laurussian-type sources of South-Portuguese Zone Carboniferous turbidites (Variscan orogeny). In Pannotia to Pangea: Neoproterozoic and Paleozoic Orogenic Cycles in the Circum-North Atlantic Region; Murphy, J.B., Ed.; Geological Society of London, Special Publication: London, UK, 2020. [Google Scholar] [CrossRef]
- Malusà, M.; Fitzgerald, P.G. The geologic interpretation of the detrital thermochronology record within a stratigraphic framework, with examples from the European Alps, Taiwan and the Himalayas. Earth Sci. Rev. 2020, 201. [Google Scholar] [CrossRef]
- Zuffa, G.G. Optical analyses of arenites: Influence of methodology on compositional results. In Provenance of Arenites; Series C; NATO Advanced Studies Institutes, Mathematical and Physical Sciences: Dordrecht, The Netherlands; Boston, MA, USA, 1985; pp. 333–361. [Google Scholar]
- Di Giulio, A.; Ceriani, A.; Ghia, E.; Zucca, F. Composition of modern stream sands derived from sedimentary source rocks in a temperate climate (northern Apennines, Italy). Sediment. Geol. 2003, 158, 145–161. [Google Scholar] [CrossRef]
- Garzanti, E. The Maturity Myth In Sedimentology and Provenance Analysis. J. Sediment. Res. 2017, 87, 353–365. [Google Scholar] [CrossRef]
- Di Giulio, A.; Ronchi, A.; Sanfilippo, A.; Tiepolo, M.; Pimentel, M.; Ramos, V.A. Detrital zircon provenance from the Neuquén Basin (south-central Andes): Cretaceous geodynamic evolution and sedimentary response in a retroarc-foreland basin. Geology 2012, 40, 559–562. [Google Scholar] [CrossRef]
- Horton, B.K. Sedimentary record of Andean mountain building. Earth Sci. Rev. 2018, 178, 270–309. [Google Scholar] [CrossRef]
- Di Giulio, A.; Ronchi, A.; Sanfilippo, A.; Balgord, E.A.; Carrapa, B.; Ramos, V.A. Cretaceous evolution of the Andean margin between 36 °S and 40 °S latitude through a multiproxy provenence analysis of Neuquen Basin strata (Argentina). Basin Res. 2017, 29, 284–304. [Google Scholar] [CrossRef] [Green Version]
- Fennell, L.M.; Iannelli, S.B.; Encinas, A.; Naipauer, M.; Valencia, V.; Folguera, A. Alternating contraction and extension in the Southern Central Andes (35° S–37° S). Am. J. Sci. 2020, 319, 381–429. [Google Scholar] [CrossRef]
- Di Giulio, A. The evolution of Western Ligurian Flysch Units and the role of mud diapirism in ancient accretionary prisms (Maritime Alps, Northwestern Italy). Geol. Rundsch. 1992, 81, 655–668. [Google Scholar] [CrossRef]
- Mueller, P.; Langone, A.; Patacci, M.; Di Giulio, A. Detrital signatures of impending collision: The deep-water record of the Upper Cretaceous Bordighera Sandstone and its basal complex (Ligurian Alps, Italy). Sediment. Geol. 2018, 377, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.; Langone, A.; Patacci, M.; Di Giulio, A. Towards a Southern European Tethyan Palaeomargin provenance signature: Sandstone detrital modes and detrital zircon U–Pb age distribution of the Upper Cretaceous-Paleocene Monte Bignone Sandstones (Ligurian Alps, NW Italy). Int. J. Earth Sci. 2019, 109, 201–220. [Google Scholar] [CrossRef]
- Burov, E.B.; Diament, M. The effective elastic thickness (te) of the continental lithosphere: What does it really mean? J. Geophys. Res. 1995, 100, 3905–3927. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Castellanos, D. Interplay between lithospheric flexure and river transport in foreland basins. Basin Res. 2002, 14, 89–104. [Google Scholar] [CrossRef]
- Hay, D.C.; Dempster, T.J. Zircon alteration, formatin and preservation in sandstones. Sedimentology 2009, 56, 2175–2191. [Google Scholar] [CrossRef]
- Kohn, B.; Chung, L.; Gleadow, A. Fission-Track Analysis: Field Collection, Sample Preparation and Data Acquisition. In Fission-Track Thermochronology and its Application to Geology; Malusà, M.G., Fitzgerald, P.G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 25–48. [Google Scholar] [CrossRef]
- Matteini, M.; Junges, S.L.; Dantas, E.L.; Pimentel, M.M.; Bühn, B. In situ zircon U–Pb and Lu–Hf isotope systematic on magmatic rocks: Insights on the crustal evolution of the proterozoic Goiás Magmatic Arc, Brasília belt, Central Brazil. Gondwana Res. 2010, 17, 1–12. [Google Scholar] [CrossRef]
- Tiepolo, M. In situ Pb geochronology of zircons with laser ablation-inductively coupled plasma-sector field mass spectrometry. Chem. Geol. 2003, 199, 159–177. [Google Scholar] [CrossRef]
- Gazzi, P. Sulla determinazione microscopica della composizione mineralogical delle rocce, in particolare delle arenarie e delle sabbie. Mineral. Petrogr. Acta 1966, 12, 61–68. [Google Scholar]
- Dickinson, W.R. Interpeting detrital modes of graywackes and arkoses. J. Sed. Petrol. 1970, 40, 695–707. [Google Scholar] [CrossRef]
- Ingersoll, R.V.; Bullard, T.F.; Ford, R.D.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method. J. Sediment. Petrol. 1984, 54, 103–116. [Google Scholar] [CrossRef]
- Cibin, U.; Di Giulio, A.; Martelli, L. Oligocene-Early Miocene evolution of the Northern Apennines (northwestern Italy) traced through provenance of piggy-back basin fill successions. In Tracing Tectonic Deformation Using the Sedimentary Record; McCann, T., Saintot, A., Eds.; The Geologoical Society: London, UK, 2003; Volume 208, pp. 269–287. [Google Scholar]
- Dickinson, W.R. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites; Zuffa, G.G., Ed.; NATO Advanced Studies Institutes, Mathematical and Physical Sciences: Dordrecht, The Netherlands; Boston, MA, USA, 1985; pp. 165–189. [Google Scholar]
- Gleadow, A.J.W.; Fitzgerald, P.G. Uplift history and structure of the Transantarctic Mountains: New evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet. Sci. Lett. 1987, 82, 1–14. [Google Scholar] [CrossRef]
- Gallagher, K.; Brown, R.; Johnson, C. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci. 1998, 26, 519–572. [Google Scholar] [CrossRef]
- Green, P.F.; Duddy, I.R.; Gleadow, A.J.W.; Tingate, P.R.; Laslett, G.M. Fission-track annealing in apatite: Track length measurements and the form of the Arrhenius plot. Nucl. Tracks Radiat. Meas. 1985, 10, 323–328. [Google Scholar] [CrossRef]
- Brandon, M.T. Decomposition of mixed grain age distributions using Binomfit. Track 2002, 24, 13–18. [Google Scholar]
- Galbraith, R.F.; Green, P.F. Estimating the component ages in a finite mixture. Nucl. Tracks Radiat. Meas. 1990, 17, 197–206. [Google Scholar] [CrossRef]
- Vermeesch, P. On the visualisation of detrital age distributions. Chem. Geol. 2012, 312–313, 190–194. [Google Scholar] [CrossRef]
- Carrapa, B.; DeCelles, P.G.; Reiners, P.; Gerhels, G. Apatite triple dating and white mica 40Ar/39Ar thermochronology of syn-tectonic detritus in the Central Andes: A multi-phase tectono-thermal history. Geology 2009, 37, 407–410. [Google Scholar] [CrossRef]
- Chamberlain, K.R.; Bowring, S.A. Apatite-feldspar U–Pb thermochronometer: A reliable, mid-range (450 °C), diffusion-controlled system. Chem. Geol. 2000, 172, 173–200. [Google Scholar] [CrossRef]
- Schoene, B.; Bowring, S.A. Determining accurate temperature-time paths from U–Pb thermochronology: An example from the Kaapvaal craton, southern Africa. Geochim. Cosmochim. Acta 2007, 71, 165–185. [Google Scholar] [CrossRef]
- Chew, D.M.; Donelick, R.A. Apatite Fission Track And U–Pb Dating by La–Icp–Ms; Mineralogical Association of Canada Short Course: St. John’s, NL, Canada, 2012; Volume 42, pp. 219–247. [Google Scholar]
- Chew, D.M.; Sylvester, P.J.; Tubrett, M.N. U–Pb And Th-Pb dating of Apatite By LA–ICP–MS. Chem. Geol. 2011, 280, 200–216. [Google Scholar] [CrossRef]
- Gehrels, G.E.; Valencia, V.; Pullen, A. Detrital zircon geochronology by Laser-Ablation Multicollector ICPMS at the Arizona LaserChron Center. In Geochronology: Emerging Opportunities, Paleontology Society Short Course: Paleontology Society Papers; Loszewski, T., Huff, W., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 11, p. 10. [Google Scholar]
- Gehrels, G.E.; Valencia, V.A.; Joaquin, R. Enhanced precision, accuracy, and efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasmamass spectrometry. Geochem. Geophys. Geosyst. 2008, 9, 1–13. [Google Scholar] [CrossRef]
- Gehrels, G.E. Detrital Zircon U-Pb Geochronology Applied to Tectonics. Annu. Rev. Earth Planet. Sci. 2014, 42, 127–149. [Google Scholar] [CrossRef]
- Thomson, S.N.; Gehrels, G.E.; Ruiz, J.; Buchwaldt, R. Routine low–damage apatite U–Pb dating using laser ablation–multicollector–ICPMS. Geochem. Geophys. Geosyst. 2012, 13. [Google Scholar] [CrossRef]
- Ramos, V.A.; Kay, S.M. Evolution of the Andean margin: A tectonic and magmatic view from the Andes to the Neuquén Basin (35°S–39° S lat). In Overview on the Tectonic Evolution of the Southern Central Andes of Mendoza and Neuquén (35° S–39° S Latitude); Special Paper n. 40; Kay, S.M., Ramos, V.A., Eds.; The Geological Society of America: Boulder, CO, USA, 2006; pp. 1–17. [Google Scholar]
- Ramos, V.A. The tectonic regime along the Andes: Present settings as a key for the Mesozoic regimes. Geol. J. 2010, 45, 2–25. [Google Scholar] [CrossRef]
- Tunik, M.; Folguera, A.; Naipauer, M.; Pimentel, M.; Ramos, V.A. Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophysics 2010, 489, 258–273. [Google Scholar] [CrossRef]
- Balgord, E.A.; Carrapa, B. Basin evolution of upper Cretaceous-lower cenozoic strata in the Malargüe fold-and-thrust belt: Northern Neuquén Basin, Argentina. Basin Res. 2016, 28, 183–206. [Google Scholar] [CrossRef]
- Naipauer, M.; Ramos, V.A. Changes in Source Areas at Neuquén Basin: Mesozoic Evolution and Tectonic setting based on U-Pb ages on zircons. In Growth of the Southern Andes; Folguera, A., Naipauer, M., Sagripanti, L., Ghiglione, M.C., Orts, D.L., Giambiagi, L., Eds.; Springer: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. Detrital zircon record and tectonic setting. Geology 2012, 40, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Fennell, L.M.; Folguera, A.; Naipauer, M. Cretaceous deformation of the southern Central Andes: Synorogenic growth strata in the NeuquénGroup (35° S 30–37° S). Basin Res. 2017, 29 (Suppl. 1), 51–72. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Carrapa, B.; Gehrels, G.E. Detrital zircon UePb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina. Geology 2007, 35, 323–326. [Google Scholar] [CrossRef]
- Martin-Gombojav, N.; Winkler, W. Recycling of Proterozoic crust in the Andean Amazon foreland of Ecuador: Implications for orogenic development of the northern Andes. Terra Nova 2008, 20, 22–31. [Google Scholar] [CrossRef]
- Sagripanti, L.; Bottesi, G.; Naipauer, M.; Folguera, A.; Ramos, V.A. U/Pb ages on detrital zircons in the southern central Andea Neogene foreland (36e37S): Constraints on Andean exhumation. J. S. Am. Earth Sci. 2011, 32, 555–566. [Google Scholar] [CrossRef]
- Naipauer, M.; Tapia, F.; Mescua, J.; Farías, M.; Pimentel, M.M.; Ramos, V.A. Detrital and volcanic zircon U-Pb ages from southern Mendoza (Argentina): An insight on the source regions in the northern part of the Neuquén Basin. J. South Am. Earth Sci. 2015, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Encinas, A.; Folguera, A.; Riffo, R.; Molina, P.; Fernández Paz, L.; Litvak, V.D.; Colwyn, D.A.; Valencia, V.A.; Carrasco, M. Cenozoic basin evolution of the Central Patagonian Andes: Evidence from geochronology, stratigraphy, and geochemistry. Geosci. Front. 2019, 10, 1139–1165. [Google Scholar] [CrossRef]
- Borghi, P.; Fennell, L.; Omil, R.G.; Naipauer, M.; Acevedo, E.; Folguera, A. The Neuquén group: The reconstruction of a Late Cretaceous foreland basin in the southern Central Andes (35–37° S). Tectonophysics 2019, 767, 228177. [Google Scholar] [CrossRef]
- Lanteaume, M. Considérations paléogéographiques sur la patrie supposée des nappes de flysch a Helminthoides des Alpes et des Apennins. Bull. Soc. Géol. France 1962, 7, 627–643. [Google Scholar] [CrossRef]
- Vanossi, M.; Cortesogno, L.; Galbiati, B.; Messiga, B.; Piccardo, G.; Vannucci, R. Geologia delle Alpi liguri: Dati, problemi, ipotesi. Mem. Soc. Geol. Ital. 1986, 28, 5–75. [Google Scholar]
- Di Giulio, A. Eo-Alpine geodynamics: An integrated approach. Boll. Soc. Geol. It. 1996, 115, 649–671. [Google Scholar]
- Seno, S.; Dallagiovanna, G.; Vanossi, M. Pre-Piedmont and Piedmont-Ligurian nappes in the central sector of the Ligurian Alps: A possible pathway for their superposition on to the inner Briançonnais units. Boll. Soc. Geol. Ital. 2005, 124, 455–464. [Google Scholar]
- Maino, M.; Casini, L.; Ceriani, A.; Decarlis, A.; Di Giulio, A.; Seno, S.; Setti, M.; Stuart, F. Dating shallow thrusts with zircon (U-Th)/He thermochronometry—The shear heating connection. Geology 2015, 43, 495–498. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.; Maino, M.; Seno, S. Progressive Deformation Patterns from an Accretionary Prism (Helminthoid Flysch, Ligurian Alps, Italy). Geosciences 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Gasinski, A.; Slaczka, A.; Winkler, W. Tectono-sedimentary evolution of the Upper Prealpine nappe (Switzerland and France): Nappe formation by Late Cretaceous-Paleogene accretion. Geodin. Acta 1997, 10, 137–157. [Google Scholar] [CrossRef]
- Galbiati, B. L’Unità di Borghetto d’Arroscia-Alassio. Mem. Soc. Geol. It. 1984, 28, 181–210. [Google Scholar]
- Basu, A. Reading provenance from detrital quartz. In Provenance of Arenites; Zuffa, G.G., Ed.; Springer: Dordrecht, The Netherlands, 1985; pp. 231–247. [Google Scholar]
- Mueller, P.; Patacci, M.; Di Giulio, A. Hybrid event beds in the proximal to distal extensive lobe domain of the coarse-grained and sand-rich Bordighera turbidite system (NW Italy). Mar. Pet. Geol. 2017, 86, 908–931. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Suczek, C. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull. 1979, 63, 2164–2182. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Beard, L.S.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, F.A.; Ryberg, P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geol. Soc. Am. Bull. 1983, 94, 222–235. [Google Scholar] [CrossRef]
- Palomares, M.; Arribas, J. Modern stream sands from compound crystalline sources: Composition and sand generation index. Geol. Soc. Am. Spec. Pap. 1993, 284, 313–322. [Google Scholar] [CrossRef]
- Datta, B. Provenance, tectonics and palaeoclimate of Proterozoic Chandarpur sandstones, Chattisgarh Basin: A petrographic view. J. Earth Sci. 2005, 114, 227–245. [Google Scholar] [CrossRef] [Green Version]
- Ballèvre, M.; Manzotti, P.; Dal Piaz, G.V. Pre-Alpine (Variscan) inheritance: A key for the location of the future Valaisan Basin (Western Alps). Tectonics 2018, 37, 786–817. [Google Scholar] [CrossRef] [Green Version]
- Linnemann, U.; Pereira, F.; Jeffries, T.E.; Drost, K.; Gerdes, A. The Cadomian Orogeny and the opening of the Rheic Ocean: The diachrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 2008, 461, 21–43. [Google Scholar] [CrossRef]
- Casini, L.; Cuccuru, S.; Maino, M.; Oggiano, G.; Tiepolo, M. Emplacement of the Arzachena Pluton (Corsica–Sardinia Batholith) and the geodynamics of incoming Pangaea. Tectonophysics 2012, 544–545, 31–49. [Google Scholar] [CrossRef]
- Fornelli, A.; Micheletti, F.; Piccarreta, G. Late-Proterozoic to Paleozoic history of the peri-Gondwana Calabria–Peloritani Terrane inferred from a review of zircon chronology. Springerplus 2016, 5, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzotti, P.; Ballèvre, M.; Poijol, M. Detrital zircon geochronology in the Dora–Maira and Zone Houillère: A record of sediment travel paths in the Carboniferous. Terra Nova 2016, 28, 279–288. [Google Scholar] [CrossRef]
- Haas, I.; Eichinger, S.; Haller, D.; Fritz, H.; Nievoll, J.; Mandl, M.; Hippler, D.; Hauzenberger, C. Gondwana fragments in the Eastern Alps: A travel story from U/Pb zircon data. Gondwana Res. 2020, 77, 204–222. [Google Scholar] [CrossRef]
- Von Raumer, J.F.; Stampfli, G.M.; Bussy, F. Gondwana-derived microcontinents—The constituents of the Variscan and Alpine collisional orogens. Tectonophysics 2003, 365, 7–22. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Giulio, A.; Amadori, C.; Mueller, P.; Langone, A. Role of the Down-Bending Plate as a Detrital Source in Convergent Systems Revealed by U–Pb Dating of Zircon Grains: Insights from the Southern Andes and Western Italian Alps. Minerals 2020, 10, 632. https://doi.org/10.3390/min10070632
Di Giulio A, Amadori C, Mueller P, Langone A. Role of the Down-Bending Plate as a Detrital Source in Convergent Systems Revealed by U–Pb Dating of Zircon Grains: Insights from the Southern Andes and Western Italian Alps. Minerals. 2020; 10(7):632. https://doi.org/10.3390/min10070632
Chicago/Turabian StyleDi Giulio, Andrea, Chiara Amadori, Pierre Mueller, and Antonio Langone. 2020. "Role of the Down-Bending Plate as a Detrital Source in Convergent Systems Revealed by U–Pb Dating of Zircon Grains: Insights from the Southern Andes and Western Italian Alps" Minerals 10, no. 7: 632. https://doi.org/10.3390/min10070632
APA StyleDi Giulio, A., Amadori, C., Mueller, P., & Langone, A. (2020). Role of the Down-Bending Plate as a Detrital Source in Convergent Systems Revealed by U–Pb Dating of Zircon Grains: Insights from the Southern Andes and Western Italian Alps. Minerals, 10(7), 632. https://doi.org/10.3390/min10070632