Sequential Scheelite Mineralization of Quartz–Scheelite Veins at the Sangdong W-Deposit: Microtextural and Geochemical Approach
Abstract
:1. Introduction
2. Geological Settings
2.1. Regional Geology
2.2. Deposit Geology
3. Analytical Methods
3.1. Sample Preparation
3.2. SEM-BSE-CL Image Observation
3.3. EPMA-WDX Point Analysis
3.4. LA-ICP-MS Point Analysis
4. Results
4.1. Paragenesis of the Deposit
4.1.1. Quartz–Scheelite ± Fluorite ± Apatite (Stage I)
4.1.2. Scheelite–Chlorite–Fluorite ± Calcite ± Quartz (Stage II)
4.1.3. Quartz–Scheelite–Ferro-Actinolite ± Pyrrhotite ± Bismuthinite ± Chlorite ± Biotite ± Fluorite ± Apatite ± Native Bismuth (Stage III)
4.1.4. Quartz–Stilbite–Chlorite–Scheelite ± Fluorite ± Apatite ± Pyrite ± Sphalerite ± Bismuthinite (Stage IV)
4.2. Scheelite Microtexture
4.3. Major and Trace Element Composition of Scheelite
4.4. Major Element Composition of Associated Chlorite
5. Discussion
5.1. Textural Evidence for Sequential Scheelite Mineralization
5.1.1. Cathodoluminescence Characteristics of Scheelite
5.1.2. Prograde Textures of Sangdong Scheelite
5.1.3. Retrograde Textures of Sangdong Scheelite
5.2. Fluid Evolution and Trace Element Behavior
5.2.1. Scheelite Mineral Chemistry
5.2.2. Rare Earth Element Characteristics
5.2.3. Eu Anomalies and Fractional Crystallization
5.3. Scheelite Mineralization Model of Sangdong W-Deposit
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, H.J. Report on Sangdong Tungsten Min in Korea; Korea Enginnering Co. Ltc: Seoul, Korea, 2001. [Google Scholar]
- John, Y.W. Geology and origin of Sangdong tungsten mine, Republic of Korea. Econ. Geol. 1963, 58, 1285–1300. [Google Scholar]
- Seo, J.H.; Yoo, B.C.; Villa, I.M.; Lee, J.H.; Lee, T.H.; Kim, C.S.; Moon, K.J. Magmatic-hydrothermal processes in Sangdong W-Mo deposit, Korea: Study of fluid inclusions and 39Ar–40Ar geochronology. Ore Geol. Rev. 2017, 91, 316–334. [Google Scholar] [CrossRef]
- Newberry, R.; Einaudi, M. Tectonic and geochemical setting of tungsten skarn mineralization in the Cordillera. Ariz. Geol. Soc. Dig. 1981, 14, 99–111. [Google Scholar]
- Newberry, R.; Swanson, S. Scheelite skarn granitoids: An evaluation of the roles of magmatic source and process. Ore Geol. Rev. 1986, 1, 57–81. [Google Scholar] [CrossRef]
- Kwak, T.; Abeysinghe, P. Rare earth and uranium minerals present as daughter crystals in fluid inclusions, Mary Kathleen U-REE skarn, Queensland, Australia. Mineral. Mag. 1987, 51, 665–670. [Google Scholar] [CrossRef]
- Hsu, L. Effects of oxygen and sulfur fugacities on the scheelite-tungstenite and powellite-molybdenite stability relations. Econ. Geol. 1977, 72, 664–670. [Google Scholar] [CrossRef]
- Ghaderi, M.; Palin, J.; Campbell, I.; Sylvester, P. Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Econ. Geol. 1999, 94, 423–437. [Google Scholar] [CrossRef]
- Brugger, J.; Lahaye, Y.; Costa, S.; Lambert, D.; Bateman, R. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contrib. Mineral. Petrol. 2000, 139, 251–264. [Google Scholar] [CrossRef]
- Sun, K.; Chen, B.; Deng, J. Ore genesis of the Zhuxi supergiant W-Cu skarn polymetallic deposit, South China: Evidence from scheelite geochemistry. Ore Geol. Rev. 2019, 107, 14–29. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, M.; Williams-Jones, A.; Zhao, Z. Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China. Chem. Geol. 2018, 477, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Mao, J.; Ireland, T.R.; Zhao, Z.; Yao, F.; Yang, Y.; Sun, W. Comparative geochemical study of scheelite from the Shizhuyuan and Xianglushan tungsten skarn deposits, South China: Implications for scheelite mineralization. Ore Geol. Rev. 2019, 109, 448–464. [Google Scholar] [CrossRef]
- Choi, W.; Park, C.; Song, Y. Multistage W-mineralization and magmatic-hydrothermal fluid evolution: Microtextural and geochemical footprints in scheelite from the Weondong W-skarn deposit, South Korea. Ore Geol. Rev. 2020, 116, 103219. [Google Scholar] [CrossRef]
- Pak, S.; Choi, S.; Choi, S. Systematic mineralogy and chemistry of gold-silver vein deposits in the Taebaeksan district, Korea: Distal relatives of a porphyry system. Mineral. Mag. 2004, 68, 467–487. [Google Scholar] [CrossRef]
- Park, C.; Choi, W.; Kim, H.; Park, M.; Kang, I.; Lee, H.; Song, Y. Oscillatory zoning in skarn garnet: Implications for tungsten ore exploration. Ore Geol. Rev. 2017, 89, 1006–1018. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, O.J.; Nakai, N.; Lee, H.J. Stable isotope studies of the Sangdong tungsten ore deposits, South Korea. Min. Geol. 1988, 38, 473–487. [Google Scholar]
- Park, H.-I.; Chang, H.W.; Jin, M.S. K-Ar ages of mineral deposits in the Taebaeg Mountain district. Econ. Environ. Geol. 1988, 21, 57–67. [Google Scholar]
- Choi, S.; Pak, S. The Origin and Evolution of the Mesozoic Ore-forming Fluids in South Korea: Their Genetic Implications. Econ. Environ. Geol. 2007, 40, 517–535. [Google Scholar]
- Chang, H.; Lee, M.; Park, H.; Kim, J.; Chi, J. Study of the Taebaeksan mineralized Area. Kosef Report. 1990, 173–264. [Google Scholar]
- Chang, K.; Woo, B.; Lee, J.; Park, S.; Yao, A. Cretaceous and Early Cenozoic Stratigraphy and History of Eastern Kyŏngsang Basin, S. Korea. J. Geol. Soc. Korea 1990, 26, 471–487. [Google Scholar]
- Jin, M.; Kim, S.; Seo, H.; Kim, S. K-Ar Fission Track Dating for Granites and Volcanic Rocks in the Southeastern Part of Korean Peninsula; Korea Institute of Energy and Resources: Daejeon, Korea, 1989. [Google Scholar]
- Kim, O. Metallogenic epochs and provinces of South Korea. J. Geol. Soc. Korea 1971, 7, 37–59. [Google Scholar]
- Shelton, K.L.; So, C.-S.; Chang, J.-S. Gold-rich mesothermal vein deposits of the Republic of Korea; geochemical studies of the Jungwon gold area. Econ. Geol. 1988, 83, 1221–1237. [Google Scholar] [CrossRef]
- Cluzel, D.; Jolivet, L.; Cadet, J. Early middle Paleozoic intraplate orogeny in the Ogcheon belt (South Korea): A new insight on the Paleozoic buildup of East Asia. Tectonics 1991, 10, 1130–1151. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Ryu, I.; Pak, S.; Wee, S.; Kim, C.; Park, M. Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geol. Rev. 2005, 26, 115–135. [Google Scholar] [CrossRef]
- Cho, D.; Kwon, S. Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of the crustal thickness. J. Geol. Soc. Korea 1994, 30, 41–61. [Google Scholar]
- Hong, S.; Cho, D. Late Mesozoic-Cenozoic Tectonic Evolution of Korea (3); KR-03-01; KIGAM: Daejeon, Korea, 2003; pp. 455–526. [Google Scholar]
- Moon, K.J. The Genesis of the Sangdong Tungsten Deposit, the Republic of Korea. Ph.D. Thesis, University of Tasmania, Hobart, Australia, 1983; p. 153, Unpublished. [Google Scholar]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Hwang, D.; Lee, J. Ore genesis of the Wondong polymetallic mineral deposits in the Taebaegsan metallogenic province. Econ. Environ. Geol. 1998, 31, 375–388. [Google Scholar]
- Kim, K.H. Petrology and Petrochemistry of Sangdong Granite. Master’s Thesis, Kyungbuk National University, Daegu, Korea, 1986; p. 80, Unpublished. [Google Scholar]
- Klepper, M.R. The Sangdong tungsten deposit, Southern Korea. Econ. Geol. 1947, 42, 465–477. [Google Scholar] [CrossRef]
- Moon, K.J. Comparison study of geochemistry of the Sangdong skarn orebody in a large scale and small scale. Econ. Environ. Geol. 1986, 19, 113–119. [Google Scholar]
- Moon, K.J. REE patterns at the Sangdong tungsten skarn ore deposit. South Korea. J. Geol. Soc. Korea. 1989, 25, 205–215. [Google Scholar]
- Pearce, N.; Perkins, W.; Westgate, J.; Gorton, M.; Jackson, S.; Neal, C.; Chenery, S. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newsl. 1997, 21, 115–144. [Google Scholar] [CrossRef]
- Meinert, L. Skarns and skarn deposits. Geosci. Can. 1992, 19, 145–162. [Google Scholar]
- Hayes, J.B. Polytypism of chlorite in sedimentary rocks. Clays Clay Miner. 1970, 18, 285–306. [Google Scholar] [CrossRef]
- Kranidiotis, P.; MacLean, W. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol. 1987, 82, 1898–1911. [Google Scholar] [CrossRef]
- Cathelineau, M. Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner. 1988, 23, 471–485. [Google Scholar] [CrossRef]
- Jowett, E. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. In Proceedings of the GAC/MAC/SEG Joint Annual Meeting, Toronto, ON, Canada, 27–29 May 1991. Program with Abstracts 16. [Google Scholar]
- Vidal, O.; Parra, T.; Vieillard, P. Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation. Am. Mineral. 2005, 90, 347–358. [Google Scholar] [CrossRef]
- Bourdelle, F.; Parra, T.; Chopin, C.; Beyssac, O. A new chlorite geothermometer for diagenetic to low-grade metamorphic conditions. Contrib. Mineral. Petrol. 2013, 165, 723–735. [Google Scholar] [CrossRef]
- Kim, H.; Park, C.; Park, M.-H.; Song, Y. Diagenetic study on the Neogene sedimentary basin as paleoenvironmental proxy data for an offshore CO2 storage project in Pohang Basin, South Korea. Mar. Geol. 2019, 416, 105977. [Google Scholar] [CrossRef]
- Xu, J.; Ciobanu, C.L.; Cook, N.J.; Slattery, A. Crystals from the Powellite-Scheelite series at the nanoscale: A case study from the Zhibula Cu Skarn, Gangdese Belt, Tibet. Minerals 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Uspensky, E.; Brugger, J.; Graeser, S. REE geochemistry systematics of scheelite from the Alps using luminescence spectroscopy: From global regularities to local control. Schweiz. Mineral. Und Petrogr. Mitt. 1998, 78, 31–54. [Google Scholar]
- Grasser, R.; Scharmann, A. Luminescent sites in CaWO4 and CaWO4: Pb crystals. J. Lumin. 1976, 12, 473–478. [Google Scholar] [CrossRef]
- Tyson, R.M.; Hemphill, W.R.; Theisen, A.F. Effect of the W: Mo ratio on the shift of excitation and emission spectra in the scheelite-powellite series. Am. Mineral. 1988, 73, 1145–1154. [Google Scholar]
- Yardley, B.; Rochelle, C.; Barnicoat, A.; Lloyd, G. Oscillatory zoning in metamorphic minerals: An indicator of infiltration metasomatism. Mineral. Mag. 1991, 55, 357–365. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.; Galli, P. Origin of the scheelite-powellite series of minerals. Econ. Geol. 1973, 68, 681–696. [Google Scholar] [CrossRef]
- Shore, M.; Fowler, A. Oscillatory zoning in minerals; a common phenomenon. Can. Mineral. 1996, 34, 1111–1126. [Google Scholar]
- L’Heureux, I. Oscillatory zoning in crystal growth: A constitutional undercooling mechanism. Phys. Rev. E 1993, 48, 4460. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, M.J. Petrography to Petrogenesis; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Einaudi, M. Skarn deposits. Econ. Geol. 1981, 75, 317–391. [Google Scholar]
- Krauskopf, K. Tungsten Deposits of Madera, Fresno, and Tulare Counties, California, 35; California Division of Mines: Sacramento, CA, USA, 1953.
- Bateman, P.; Wright, L. Economic Geology of the Bishop Tungsten District, California; California Division of Mines: Sacramento, CA, USA, 1956.
- Dick, L.; Hodgson, C. The MacTung W-Cu (Zn) contact metasomatic and related deposits of the northeastern Canadian Cordillera. Econ. Geol. 1982, 77, 845–867. [Google Scholar] [CrossRef]
- Gibert, F.; Moine, B.; Schott, J.; Dandurand, J. Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France. Contrib. Mineral. Petrol. 1992, 112, 371–384. [Google Scholar] [CrossRef]
- Wood, S.; Samson, I. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and m NaCl. Econ. Geol. 2020, 95, 143–182. [Google Scholar] [CrossRef] [Green Version]
- Bobos, I.; Noronha, F.; Mateus, A. Fe-, Fe, Mn-and Fe, Mg-chlorite: A genetic linkage to W, (Cu, Mo) mineralization in the magmatic-hydrothermal system at Borralha, northern Portugal. Mineral. Mag. 2018, 82, S259–S279. [Google Scholar] [CrossRef] [Green Version]
- Cottrant, J. Cristallochimie et Géochimie des Terres Rares Dans la Scheelite. Application à Quelques Gisements Français. Ph.D. Thesis, University of Paris-VI, Paris, France, 1981. [Google Scholar]
- Brugger, J.; Giere, R.; Grobeéty, B.; Uspensky, E. Scheelite-powellite and paraniite-(Y) from the Fe-Mn deposit at Fianel, Eastern Swiss Alps. Am. Mineral. 1998, 83, 1100–1110. [Google Scholar] [CrossRef]
- Burt, D. Compositional and phase relations among rare earth element minerals. Rev. Mineral. 1989, 21, 260–307. [Google Scholar]
- Nassau, K.; Loiacono, G. Calcium tungstate-III: Trivalent rare earth substitution. J. Phys. Chem. Solids 1963, 24, 1503–1510. [Google Scholar] [CrossRef]
- Hall, D.L.; Cohen, L.H.; Schiffman, P. Hydrothermal alteration associated with the iron hat iron skarn deposit, eastern Mojave Desert, San Bernardino County, California. Econ. Geol. 1988, 83, 568–587. [Google Scholar] [CrossRef]
- Utada, M. Zeolites in hydrothermally altered rocks. Rev. Mineral. Geochem. 2001, 45, 305–322. [Google Scholar] [CrossRef]
- Michard, A. Rare earth element systematics in hydrothermal fluids. Geochim. Cosmochim. Acta 1989, 53, 745–750. [Google Scholar] [CrossRef]
- Audetat, A.; Gunther, D.; Heinrich, C. Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole Granite, Australia. Econ. Geol. 2000, 95, 1563–1581. [Google Scholar] [CrossRef] [Green Version]
- Brice, J. Some thermodynamic aspects of the growth of strained crystals. J. Cryst. Growth 1975, 28, 249–253. [Google Scholar] [CrossRef]
- Blundy, J.; Wood, B. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 1994, 372, 452. [Google Scholar] [CrossRef]
- Banks, D.; Yardley, B.; Campbell, A.; Jarvis, K. REE composition of an aqueous magmatic fluid: A fluid inclusion study from the Capitan Pluton, New Mexico, USA. Chem. Geol. 1994, 113, 259–272. [Google Scholar] [CrossRef]
- Reed, M.; Candela, P.; Piccoli, P. The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800 °C and 200 MPa. Contrib. Mineral. Petrol 2000, 140, 251–262. [Google Scholar] [CrossRef]
- Seo, J.H.; Yoo, B.C.; Yang, Y.S.; Lee, J.H.; Jang, J.H.; Shin, D.B. Scheelite geochemistry of the Sangdong W-Mo deposit and W prospects in the southern Taebaeksan metallo-genic region, Korea. Geosci. J. 2020, 24. [Google Scholar] [CrossRef]
- Robb, L. Introduction to Ore-Forming Processes; Blackwell publishing: Hoboken, NJ, USA, 2004. [Google Scholar]
- Sverjensky, D. Europium redox equilibria in aqueous solution. Earth Planet. Sci. Lett. 1984, 67, 70–78. [Google Scholar] [CrossRef]
- Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Raith, J.G.; Riemer, N.; Meisel, T. Boron metasomatism and behaviour of rare earth elements during formation of tourmaline rocks in the eastern Arunta Inlier, central Australia. Contrib. Mineral. Petrol. 2004, 147, 91–109. [Google Scholar] [CrossRef]
- Pettke, T.; Audétat, A.; Schaltegger, U.; Heinrich, C.A. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): Part II: Evolving zircon and thorite trace element chemistry. Chem. Geol. 2005, 220, 191–213. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Yu, J.-M.; Lu, J.-J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: Implication for migmatitic-hydrothermal fluid evolution and ore genesis. Chem. Geol. 2004, 209, 193–213. [Google Scholar] [CrossRef]
- Raimbault, L.; Baumer, A.; Dubru, M.; Benkerrou, C.; Croze, V.; Zahm, A. REE fractionation between scheelite and apatite in hydrothermal conditions. Am. Mineral. 1993, 78, 1275–1285. [Google Scholar]
- Zaw, K.; Singoyi, B. Formation of Magnetite-Scheelite Skarn Mineralization at Kara, Northwestern Tasmania: Evidence from Mineral Chemistry and Stable Isotopes. Econ. Geol. 2000, 95, 1215–1230. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Farrow, C.E. Geology, geochemistry, and mineralogy of the Worthington offset dike: A genetic model for offset dike mineralization in the Sudbury Igneous Complex. Econ. Geol. 2002, 97, 1419–1446. [Google Scholar] [CrossRef]
- Lightfoot, P.; Zotov, I. Geology and geochemistry of the Sudbury Igneous Complex, Ontario, Canada: Origin of nickel sulfide mineralization associated with an impact-generated melt sheet. Geol. Ore Depos. 2005, 47, 349. [Google Scholar]
Stage | Stage I (n = 145) ** | Stage II (n = 50) | Stage III (n = 20) | Stage IV (n = 50) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Average | Max | Min | Average | Max | Min | Average | Max | Min | Average | |
Oxide composition (wt%) | ||||||||||||
CaO | 21.38 | 20.68 | 20.97 | 21.56 | 20.45 | 21.08 | 21.11 | 21.21 | 20.83 | 19.81 | 19.67 | 19.72 |
MoO3 | 2.26 | 0.00 | 0.79 | 0.36 | 0.06 | 0.20 | 0.22 | 0.00 | 0.13 | 0.17 | 0.00 | 0.04 |
WO3 | 76.61 | 79.09 | 78.06 | 77.36 | 79.53 | 78.50 | 78.75 | 79.13 | 79.03 | 80.28 | 80.29 | 80.03 |
Na2O | 0.03 | 0.05 | 0.06 | 0.00 | 0.00 | 0.03 | 0.05 | 0.00 | 0.03 | 0.00 | 0.04 | 0.02 |
Total | 100.27 | 99.82 | 99.87 | 99.28 | 100.04 | 99.82 | 100.13 | 100.34 | 100.03 | 100.26 | 100.00 | 99.81 |
Number of ions based on 4 oxygen | ||||||||||||
Ca | 1.07 | 1.06 | 1.07 | 1.10 | 1.05 | 1.08 | 1.07 | 1.08 | 1.06 | 1.01 | 1.01 | 1.01 |
Mo | 0.04 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
W | 0.93 | 0.98 | 0.96 | 0.96 | 0.98 | 0.97 | 0.97 | 0.97 | 0.98 | 0.99 | 1.00 | 0.99 |
Na | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
O | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Scheelite endmember mole fraction | ||||||||||||
Sch | 0.93 | 0.98 | 0.96 | 0.96 | 0.98 | 0.97 | 0.97 | 0.97 | 0.98 | 0.99 | 1.00 | 0.99 |
Po | 0.04 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Stage | Stage I (n = 32) | Stage II (n = 20) | Stage III (n = 20) | Stage IV (n = 5) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Average | Max | Min | Average | Max | Min | Average | Max | Min | Average | |
Na23 | 269.77 | 74.52 | 149.06 | 426.77 | 20.53 | 132.17 | 173.26 | 24.22 | 80.88 | 18,389.78 | 13,489.79 | 15,191.17 |
Ti48 | 94.84 | 61.68 | 71.40 | 106.10 | 60.06 | 83.95 | 70.14 | 58.71 | 65.59 | 90.39 | 68.86 | 78.35 |
Fe57 | 544.50 | 30.97 | 75.34 | 117.18 | bdl | 62.76 | 279.86 | bdl | 51.91 | 200.80 | 131.78 | 150.11 |
Rb85 | 5.15 | bdl | 0.28 | 0.46 | bdl | 0.09 | bdl | bdl | bdl | 5.32 | 3.82 | 4.27 |
Sr88 | 90.64 | 30.67 | 54.82 | 108.24 | 28.34 | 55.31 | 38.71 | 30.12 | 33.76 | 76.55 | 57.47 | 64.77 |
Y89 | 867.41 | 242.98 | 542.39 | 380.87 | 115.94 | 229.56 | 1192.47 | 613.31 | 901.63 | 691.14 | 472.45 | 562.81 |
Zr90 | 0.09 | bdl | 0.00 | bdl | bdl | 0.00 | bdl | bdl | bdl | 32.20 | 19.75 | 25.06 |
Nb93 | 479.81 | 59.53 | 234.94 | 353.79 | 10.14 | 148.67 | 183.63 | 64.17 | 114.82 | 184.77 | 14.11 | 51.57 |
Mo95 | 19,663.54 | 133.00 | 6783.24 | 47,891.12 | 459.96 | 21,199.52 | 811.75 | 219.83 | 567.98 | 179.17 | 134.40 | 160.22 |
La139 | 167.00 | 13.40 | 81.57 | 49.49 | 1.60 | 26.60 | 100.88 | 25.15 | 48.80 | 191.25 | 94.92 | 138.14 |
Ce140 | 746.60 | 63.34 | 331.46 | 222.58 | 15.85 | 123.80 | 429.51 | 117.98 | 225.44 | 506.03 | 304.07 | 411.87 |
Pr141 | 107.18 | 17.73 | 51.19 | 38.77 | 5.72 | 23.05 | 81.21 | 24.53 | 43.83 | 54.06 | 39.43 | 45.00 |
Nd146 | 566.83 | 122.40 | 272.31 | 248.20 | 59.27 | 152.95 | 516.36 | 147.75 | 280.20 | 154.89 | 102.42 | 129.55 |
Sm147 | 138.86 | 55.95 | 84.03 | 81.48 | 25.41 | 50.06 | 176.44 | 59.50 | 106.58 | 46.21 | 19.25 | 31.52 |
Eu153 | 19.14 | 5.00 | 9.02 | 16.19 | 4.05 | 8.42 | 10.01 | 4.68 | 7.10 | 42.54 | 20.35 | 27.48 |
Gd157 | 214.47 | 48.23 | 107.20 | 96.72 | 31.55 | 60.75 | 226.92 | 94.41 | 155.50 | 59.83 | 25.29 | 36.39 |
Tb159 | 41.17 | 8.10 | 18.77 | 17.20 | 4.50 | 9.47 | 37.70 | 16.44 | 27.59 | 13.46 | 4.77 | 8.05 |
Dy163 | 282.27 | 52.30 | 126.34 | 100.30 | 33.88 | 57.92 | 284.89 | 123.41 | 197.60 | 97.64 | 45.68 | 64.79 |
Ho165 | 59.13 | 9.93 | 25.59 | 19.26 | 5.90 | 11.02 | 54.28 | 23.29 | 39.27 | 25.81 | 9.70 | 16.11 |
Er166 | 128.51 | 23.08 | 62.30 | 49.51 | 13.13 | 26.80 | 145.61 | 66.19 | 106.67 | 79.74 | 35.06 | 54.75 |
Tm169 | 12.87 | 2.62 | 7.16 | 5.80 | 1.32 | 3.09 | 16.46 | 7.34 | 12.05 | 15.57 | 8.33 | 11.21 |
Yb172 | 58.05 | 12.44 | 38.04 | 28.15 | 5.53 | 15.07 | 83.80 | 36.41 | 60.24 | 112.20 | 72.68 | 84.55 |
Lu175 | 6.10 | 1.22 | 4.08 | 3.65 | 0.67 | 1.80 | 9.96 | 4.18 | 6.89 | 16.71 | 9.23 | 11.69 |
Hf178 | 0.42 | 0.08 | 0.20 | 0.20 | bdl | 0.08 | 0.40 | 0.20 | 0.30 | 0.86 | 0.64 | 0.74 |
Ta181 | 8.69 | 0.80 | 2.60 | 2.75 | 0.08 | 0.90 | 2.19 | 1.13 | 1.63 | 1.85 | 0.16 | 0.58 |
Pb208 | 3.76 | 1.33 | 2.42 | 3.06 | 1.41 | 2.18 | 2.37 | 1.45 | 1.78 | 4.27 | 2.71 | 3.44 |
Bi209 | 2.18 | bdl | 0.14 | 0.46 | 0.06 | 0.23 | 0.10 | 0.02 | 0.05 | 0.18 | 0.09 | 0.13 |
Th232 | 2.82 | 0.89 | 1.79 | 2.94 | 1.11 | 1.59 | 1.51 | 0.84 | 1.07 | 2.70 | 1.46 | 1.94 |
U238 | 1.69 | 0.07 | 0.42 | 0.56 | 0.04 | 0.20 | 0.18 | 0.06 | 0.11 | 0.89 | 0.31 | 0.58 |
Stage | Stage II (n =31) | Stage III (n = 26) | Stage IV (n =40) | ||||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Average | Max | Min | Average | Max | Min | Average | |
Oxide composition (wt%) | |||||||||
SiO2 | 26.45 | 30.25 | 27.77 | 24.04 | 27.38 | 25.81 | 24.85 | 27.17 | 25.87 |
TiO2 | 0.03 | 0.12 | 0.17 | 0.05 | 0.05 | 0.08 | 0.01 | 0.14 | 0.05 |
Al2O3 | 17.68 | 15.76 | 17.20 | 17.42 | 17.44 | 17.44 | 19.54 | 18.97 | 19.20 |
FeO | 26.26 | 26.24 | 26.65 | 34.07 | 31.43 | 33.18 | 26.95 | 26.98 | 27.09 |
MnO | 0.59 | 0.61 | 0.60 | 1.23 | 0.90 | 1.09 | 1.03 | 0.97 | 0.99 |
MgO | 16.04 | 14.92 | 15.24 | 7.28 | 9.35 | 7.96 | 13.42 | 13.03 | 13.34 |
CaO | 0.01 | 1.17 | 0.27 | 0.02 | 0.05 | 0.06 | 0.01 | 0.11 | 0.02 |
Na2O | 0.03 | 0.02 | 0.03 | 0.00 | 0.03 | 0.03 | 0.02 | 0.01 | 0.01 |
K2O | 0.01 | 0.01 | 0.01 | 0.00 | 0.03 | 0.01 | 0.01 | 0.00 | 0.00 |
Total | 87.08 | 89.09 | 87.95 | 84.13 | 86.65 | 85.65 | 85.83 | 87.37 | 86.59 |
Number of ions based on 28 oxygen | |||||||||
Si | 5.67 | 6.30 | 5.89 | 5.64 | 6.05 | 5.87 | 5.45 | 5.81 | 5.61 |
AlT ** | 2.33 | 1.70 | 2.11 | 2.36 | 1.95 | 2.13 | 2.55 | 2.19 | 2.39 |
Total (T) | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
AlO ** | 2.14 | 2.16 | 2.19 | 2.45 | 2.59 | 2.54 | 2.50 | 2.58 | 2.51 |
Ti | 0.00 | 0.02 | 0.03 | 0.01 | 0.01 | 0.01 | 0.00 | 0.02 | 0.01 |
Fe2+ | 4.71 | 4.57 | 4.73 | 6.68 | 5.81 | 6.31 | 4.94 | 4.82 | 4.91 |
Mn | 0.11 | 0.11 | 0.11 | 0.24 | 0.17 | 0.21 | 0.19 | 0.18 | 0.18 |
Mg | 5.13 | 4.63 | 4.82 | 2.55 | 3.08 | 2.70 | 4.39 | 4.15 | 4.31 |
Ca | 0.00 | 0.26 | 0.06 | 0.01 | 0.01 | 0.01 | 0.00 | 0.03 | 0.01 |
Na | 0.01 | 0.01 | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
K | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Geothermometry calculation | |||||||||
Fe/(Fe + Mg) | 0.48 | 0.50 | 0.50 | 0.72 | 0.65 | 0.70 | 0.53 | 0.54 | 0.53 |
Al4c | 1.50 | 1.20 | 1.40 | 1.69 | 1.43 | 1.56 | 1.65 | 1.47 | 1.57 |
T (°C) | 177.01 | 145.10 | 166.70 | 196.91 | 169.91 | 183.21 | 192.56 | 174.12 | 184.37 |
Characteristics | Late Prograde Stage | Retrograde Stage | ||
---|---|---|---|---|
Stage I | Stage II | Stage III | Stage IV | |
Orebody Type (Location) | Quartz vein (Hanging wall) | Scheelite vein (Hanging wall) | Quartz vein (Middle, main) | Quartz–Stilbite vein (Footwall) |
Mineral assemblage associated with scheelite | Quartz, Fluorite, Apatite | Fluorite, Chlorite, Calcite, Apatite, Quartz | Quartz, Chlorite, Pyrrhotite, Fluorite, Apatite, Native Bismuth, Bismuthinite | Quartz, Chlorite, Biotite, Fluorite, Apatite, Pyrite, Sphalerite, Bismuthinite, Stilbite |
Secondary minerals | Quartz, Biotite, Muscovite, K-feldspar, Ca-plagioclase | Ferro-actinolite, Chlorite, Calcite, Ca-plagioclase, Stilbite | Ferro-actinolite, Biotite, Quartz, K-feldspar | Quartz, Biotite, Muscovite, K-feldspar, Pyrite |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, W.; Park, C.; Song, Y.; Park, C.; Kim, H.; Lee, C. Sequential Scheelite Mineralization of Quartz–Scheelite Veins at the Sangdong W-Deposit: Microtextural and Geochemical Approach. Minerals 2020, 10, 678. https://doi.org/10.3390/min10080678
Choi W, Park C, Song Y, Park C, Kim H, Lee C. Sequential Scheelite Mineralization of Quartz–Scheelite Veins at the Sangdong W-Deposit: Microtextural and Geochemical Approach. Minerals. 2020; 10(8):678. https://doi.org/10.3390/min10080678
Chicago/Turabian StyleChoi, Woohyun, Changyun Park, Yungoo Song, Chaewon Park, Ha Kim, and Chulgyoo Lee. 2020. "Sequential Scheelite Mineralization of Quartz–Scheelite Veins at the Sangdong W-Deposit: Microtextural and Geochemical Approach" Minerals 10, no. 8: 678. https://doi.org/10.3390/min10080678
APA StyleChoi, W., Park, C., Song, Y., Park, C., Kim, H., & Lee, C. (2020). Sequential Scheelite Mineralization of Quartz–Scheelite Veins at the Sangdong W-Deposit: Microtextural and Geochemical Approach. Minerals, 10(8), 678. https://doi.org/10.3390/min10080678