Mineralogical Characteristics of Early Permian Paragonite-Bearing Coal (No. 3) in the Jinyuan Mine, Tengxian Coalfield, Shandong Province, Eastern China
Abstract
:1. Introduction
2. Geological Setting
3. Sample Collection and Analytical Methods
4. Results and Discussion
4.1. Coal Quality and Chemistry
4.2. Mineralogy
4.2.1. Minerals in the Jinyuan Coals
- Type A is comprised of the samples JY-3-1c and JY-3-9c, with relatively high ash yields, quartz, pyrite, and sulfate minerals (i.e., jarosite and coquimbite), while carbonate minerals (i.e., calcite, ankerite, and siderite) were not detected by XRD. The sample JY-3-1c is located in the uppermost coal section, where the JY-3-9c sample is close to the bottom of the seam.
- Type B consists of the samples of JY-3-2c, JY-3-3c, JY-3-4c, JY-3-5c, JY-3-6c, JY-3-8c, and JY-3-10c, with low contents of ash yield and quartz, however, various contents of carbonate minerals (calcite, ankerite, and siderite) occurred in this Type. Pyrite and sulfate minerals (jarosite and coquimbite) were rare in these coal samples. In addition, these samples mainly occurred in the middle part of the coal seam.
- Only sample JY-3-7c belongs to Type C, which contains a high proportion of calcite (54%) and ankerite (or dolomite, 34%), and, to a lesser extent, kaolinite (11.4%).
4.2.2. Modes of Mineral Occurrence
4.3. Discussion: Origin of Minerals in the Jinyuan Coals
4.3.1. Detrital Input
4.3.2. Multi-Stage Hydrothermal Activities
4.3.3. Seawater Influence
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thurber, M.C.; Morse, R.K. The Global Coal Market: Supplying Major Fuel for Emerging Economies; Cambridge University Press: Cambridge, UK, 2015; p. 702. [Google Scholar]
- World Coal Association. 2019. Available online: https://www.worldcoal.org/coal (accessed on 6 January 2019).
- BP Statistical Review of World Energy. BP Statistical Review of World Energy; BP Statistical Review of World Energy: London, UK, 2019; Available online: http://www.bp.com/statisticalreview (accessed on 5 August 2020).
- Dai, S.; Finkelman, R.B. Coal geology in China: An overview. Int. Geol. Rev. 2018, 60, 531–534. [Google Scholar] [CrossRef] [Green Version]
- Finkelman, R.B. Trace and minor elements in coal. In Organic Geochemistry; Engel, M.H., Macko, S.A., Eds.; Springer: Boston, MA, USA, 1993; pp. 593–607. [Google Scholar]
- Saxby, J.D. Minerals in coal. In Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis; Springer: Berlin, Germany, 2000; pp. 314–328. [Google Scholar]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Ren, D.; Zhao, F.; Wang, Y.; Yang, S. Distributions of minor and trace elements in Chinese coals. Int. J. Coal Geol. 1999, 40, 109–118. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Dai, S.; Bechtel, A.; Eble, C.F.; Flores, R.M.; French, D.; Graham, I.T.; Hood, M.M.; Hower, J.C.; Korasidis, V.A.; Moore, T.A.; et al. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 2020, 219, 103383. [Google Scholar] [CrossRef]
- Finkelman, R.B. Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Process. Technol. 1994, 39, 21–34. [Google Scholar] [CrossRef]
- Clemens, A.H.; Deely, J.M.; Gong, D.; Moore, T.A.; Shearer, J.C. Trace element partitioning behavior during coal combustion–the influence of events occurring during the deposition stage. Fuel 2000, 79, 1781–1784. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Chou, C.-L. Geological factors affecting the abundance, distribution, and speciation of sulfur in coals. In Geology of Fossil Fuels-Coal, Proceedings of the 30th International Geological Congress; Yang, Q., Ed.; VSP: Utrecht, The Netherlands, 1997; Volume 18, pp. 47–57. [Google Scholar]
- Zheng, B.; Ding, Z.; Huang, R.; Zhu, J.; Yu, X.; Wang, A.; Zhou, D.; Mao, D.; Su, H. Issues of health and disease relating to coal use in southwest China. Int. J. Coal Geol. 1999, 40, 119–132. [Google Scholar] [CrossRef]
- Ding, Z.; Zheng, B.; Long, J.; Belkin, H.E.; Finkelman, R.; Chen, C.; Zhou, D.; Zhou, Y. Geological and geochemical characteristics of high arsenic coals from endemic arsenosis areas in southwestern Guizhou Province, China. Appl. Geochem. 2001, 16, 1353–1360. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L. Health impacts of coal and coal use: Possible solutions. Int. J. Coal Geol. 2002, 50, 425–443. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Ma, S. The cause of endemic fluorosis in western Guizhou Province, Southwest China. Fuel 2004, 83, 2095–2098. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Tang, Y.; Yue, M.; Hao, L. Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int. J. Coal Geol. 2005, 61, 119–137. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Tian, L. The health impacts of coal use in China. Int. Geol. Rev. 2017, 60, 579–589. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Finkelman, R.B.; French, D.; Graham, I.T.; Yang, Y.; Li, J.; Yang, P. Leaching behavior of trace elements from fly ashes of five Chinese coal power plants. Int. J. Coal Geol. 2020, 219, 103381. [Google Scholar] [CrossRef]
- Li, W. Workflows of identification of the coalfield tectonic types. Coal Geol. China 1998, 10, 4–9. [Google Scholar]
- Li, X.; Li, S.; Suo, Y.; Somerville, I.D.; Huang, F.; Liu, X.; Wang, P.; Han, Z.; Jin, L. Early Cretaceous diabases, lamprophyres and andesites-dacites in western Shandong, North China Craton: Implications for local delamination and Paleo-Pacific slab rollback. J. Asian Earth Sci. 2018, 160, 426–444. [Google Scholar] [CrossRef]
- Xue, Q. Depositional architectures and coal-forming features of shallow-water delta system in the Tengnan coal mine district, Shandong Province. J. China Univ. Mingin Technol. 1995, 24, 43–51, (In Chinese with English abstract). [Google Scholar]
- Han, M.; Wei, J. Deltaic depositional system and coal-accumulation in Juye Coalfield. Acta Sedimentol. Sin. 2001, 19, 381–385, (In Chinese with English abstract). [Google Scholar]
- Wang, Y. Carboniferous-Permian pyroclastic rocks in Jining, Juye and Tengxian coalfields. Coal Geol. Explor. 1990, 4, 9–12. (In Chinese) [Google Scholar]
- Tang, D.; Bie, L.; Mi, J.; Pan, W. Magma intrusion feature and its influence to coal seam in Tengnan mining field. J. Min. Saf. Eng. 2003, 20, 109–111. (In Chinese) [Google Scholar]
- Zeng, R.; Zhuang, X.; Yang, S. Quality of the coals from middle area of coal-bearing district of western Shandong. Coal Geol China 2000, 12, 10–15. [Google Scholar]
- Liu, G.; Zheng, L.; Gao, L.; Zhang, H.; Peng, Z. The characterization of coal quality from the Jining coalfield. Energy 2005, 30, 1903–1914. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, L.; Zhang, Y.; Qi, C.; Chen, Y.; Peng, Z. Distribution and mode of occurrence of As, Hg and Se and sulfur in coal Seam 3 of the Shanxi Formation, Yanzhou coalfield, China. Int. J. Coal Geol. 2007, 71, 371–385. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Jiang, Y.; Chen, Z. Mineralogical and Geochemical Characteristics of the Early Permian Upper No. 3 Coal from Southwestern Shandong, China. Minerals 2016, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Ren, D. Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng-Handan Coalfield, Hebei, China. Energy Fuels 2007, 21, 1663–1673. [Google Scholar] [CrossRef]
- Dai, S.; Zou, J.; Jiang, Y.; Ward, C.R.; Wang, X.; Li, T.; Xue, W.; Liu, S.; Tian, H.; Sun, X.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol. 2012, 94, 250–270. [Google Scholar] [CrossRef]
- Li, K.; Rimmer, S.M.; Presswood, S.M.; Liu, Q. Raman spectroscopy of intruded coals from the Illinois Basin: Correlationwith rank and estimated alteration temperature. Int. J. Coal Geol. 2020, 219, 103369. [Google Scholar] [CrossRef]
- Sanders, M.M.; Rimmer, S.M. Revisiting the thermally metamorphosed coals of the Transantarctic Mountains, Antarctica. Int. J. Coal Geol. 2020, 228, 103550. [Google Scholar] [CrossRef]
- Zhu, Y. The Biotic Types and Stratigraphic Subdivision of Late Paleozoic Age in Tengxian Coalfield of Shandong-on Carboniferous-Permian Boundary. Master’s Thesis, Shandong University of Science and Technology, Shandong, China, 2006. (In Chinese). [Google Scholar]
- Coal Analysis Laboratory of China Coal Research Institute. Chinese Standard Method GB/T 482-2008, Sampling of Coal Seams; National Coal Standardization Technical Committee: Beijing, China, 2008. [Google Scholar]
- ASTM International. Test Method for Ash in the Analysis Sample of Coal and Coke; ASTM D3174-11; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM D3173-11; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM D3175-11; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM International. Test Method for Gross Calorific Value of Coal and Coke; ASTM D5865-13; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- ASTM International. Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke; ASTM D3177-02; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- ASTM International. Test Method for Microscopical Determination of the Vitrinite Reflectance of Coal; ASTM D2798-20; ASTM International: West Conshohocken, PA, USA, 2020. [Google Scholar]
- Taylor, J.C. Computer programs for standard less quantitative analysis of minerals using the full powder diffraction profile. Powder Diffr. 1991, 6, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Ward, C.R.; Taylor, J.C.; Matulis, C.; Dale, L. Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction. Int. J. Coal Geol. 2001, 46, 67–82. [Google Scholar] [CrossRef]
- Ruan, C.-D.; Ward, C.R. Quantitative X-ray powder diffraction analysis of clay minerals in Australian coals using Rietveld methods. Appl. Clay Sci. 2002, 21, 227–240. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T.; Dai, S.; Yang, C.; Xie, P.; Zhang, S. Origin of a kaolinite-NH 4 -illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China. Int. J. Coal Geol. 2018, 185, 61–78. [Google Scholar] [CrossRef]
- Spiro, B.F.; Liu, J.; Dai, S.; Zeng, R.; Large, D.; French, D. Marine derived 87Sr/86Sr in coal, a new key to geochronology and palaeoenvironment: Elucidation of the India-Eurasia and China-Indochina collisions in Yunnan, China. Int. J. Coal Geol. 2019, 215, 103304. [Google Scholar] [CrossRef]
- Liu, J.; Song, H.; Dai, S.; Nechaev, V.P.; Graham, I.T.; French, D.; Nechaeva, E.V. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geol. Rev. 2019, 115, 103190. [Google Scholar] [CrossRef]
- Liu, J.; Nechaev, V.P.; Dai, S.; Song, H.; Nechaeva, E.V.; Jiang, Y.; Graham, I.T.; French, D.; Yang, P.; Hower, J.C. Evidence for multiple sources for inorganic components in the Tucheng coal deposit, western Guizhou, China and the lack of critical-elements. Int. J. Coal Geol. 2020, 223, 103468. [Google Scholar] [CrossRef]
- Coal Analysis Laboratory of China Coal Research Institute. Chinese Standard Method GB/T 15224.1-2010, Classification for Quality of Coal. Part 1: Ash; Standardization Administration of China: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- ASTM International. Standard Classification of Coals by Rank; ASTM D388-12; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Permana, A.K.; Ward, C.R.; Li, Z.; Gurba, L.W. Distribution and origin of minerals in high-rank coals of the South Walker Creek area, Bowen Basin, Australia. Int. J. Coal Geol. 2013, 116, 185–207. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogical composition of Late Permian coal seams in the Songzao Coalfield, southwestern China. Int. J. Coal Geol. 2013, 208–226. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Zhang, W.; Wang, J.; Zhou, Y.; Song, X.; Li, T.; Li, X.; Liu, H.; Zhao, L. Occurrence and origins of minerals in mixed-layer illite/smectite-rich coals of the Late Permian age from the Changxing Mine, eastern Yunnan, China. Int. J. Coal Geol. 2012, 102, 26–34. [Google Scholar] [CrossRef]
- Dai, S.; Chou, C.-L.; Yue, M.; Luo, K.; Ren, D. Mineralogy and geochemistry of a Late Permian coal in the Dafang Coalfield, Guizhou, China: Influence from siliceous and iron-rich calcic hydrothermal fluids. Int. J. Coal Geol. 2005, 61, 241–258. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Tang, Y.; Shao, L.; Li, S. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2002, 51, 237–250. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2014, 50, 159–186. [Google Scholar] [CrossRef]
- Dai, S.; Yang, J.; Ward, C.R.; Hower, J.C.; Liu, H.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uraniumdeposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Karayigit, A.I.; Bircan, C.; Oskay, R.G.; Türkmen, I.; Querol, X. The geology, mineralogy, petrography, and geochemistry of the Miocene Dursunbey coal within fluvio-lacustrine deposits, Balıkesir (Western Turkey). Int. J. Coal Geol. 2020, 228, 103548. [Google Scholar] [CrossRef]
- Susilawati, R.; Ward, C.R. Metamorphism of mineral matter in coal from the Bukit Asam deposit, south Sumatra, Indonesia. Int. J. Coal Geol. 2006, 68, 171–195. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.; Wang, X.; Li, X.; Zhao, L.; Kang, H.; et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 2013, 109, 77–100. [Google Scholar] [CrossRef]
- Rao, C.P.; Gluskoter, H.J. Occurrence and Distribution of Minerals in Illinois Coals. Ill. State Geol. Surv. Circ. 2015, 144–145, 23–47. [Google Scholar]
- Dai, S.; Wang, X.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.; Huang, W.; Li, T.; Li, X.; Liu, H.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90, 72–99. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; Xie, P.; Jiang, Y.; Hood, M.M.; O’Keefe, J.M.; Song, H. Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: A comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit. Ore Geol. Rev. 2015, 71, 318–349. [Google Scholar] [CrossRef]
- Yan, X.; Dai, S.; Graham, I.T.; French, D.; Hower, J.C. Mineralogy and geochemistry of the Palaeogene low-rank coal from the Baise Coalfield, Guangxi Province, China. Int. J. Coal Geol. 2019, 214, 103282. [Google Scholar] [CrossRef]
- Frazer, F.W.; Belcher, C.B. Quantitative determination of the mineral matter content of coal by a radio-frequency oxidation technique. Fuel 1973, 52, 41–46. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogy of the volcanic-influenced Great Northern coal seam in the Sydney Basin, Australia. Int. J. Coal Geol. 2012, 94, 94–110. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Dai, S.; Guo, W.; Nechaev, V.; French, D.; Ward, C.R.; Spiro, B.F.; Finkelman, R.B. Modes of occurrence and origin of mineral matter in the Palaeogene coal (No. 19-2) from the Hunchun Coalfield, Jilin Province, China. Int. J. Coal Geol. 2018, 189, 94–110. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T. Mineralogy and major-element geochemistry of the lower Permian Greta Seam, Sydney Basin, Australia. Aust. J. Earth Sci. 2013, 61, 375–394. [Google Scholar] [CrossRef]
- Frey, M. The step from diagenesis to metamorphism in politic rocks during Alpine orogenesis. Sedimentology 1970, 15, 261–279. [Google Scholar] [CrossRef]
- Weaver, C.E.; Broekstra, B.E. illite-mica. In Shale–Slate Metamorphism in the Southern Appalachians; Weaver, C.E., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 67–97. [Google Scholar]
- Daniels, E.J.; Altaner, S.P. Inorganic nitrogen in anthracite from eastern Pennsylvania, USA. Int. J. Coal Geol. 1993, 22, 21–35. [Google Scholar] [CrossRef]
- Liu, Q.; Zheng, Q. Nitrogen in Coal Seam and Nitrogen-Bearing Clay Mineral; Science Press: Beijing, China, 2016; p. 134. (In Chinese) [Google Scholar]
- Dai, S.; Ji, D.; Ward, C.R.; French, D.; Hower, J.C.; Yan, X.; Wei, Q. Mississippian anthracites in Guangxi Province, southern China: Petrological, mineralogical, and rare earth element evidence for high-temperature solutions. Int. J. Coal Geol. 2018, 197, 84–114. [Google Scholar] [CrossRef]
- Dai, S.; Tian, L.; Chou, C.-L.; Zhou, Y.; Zhang, M.; Zhao, L.; Wang, J.; Yang, Z.; Cao, H.; Ren, D. Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite. Int. J. Coal Geol. 2008, 76, 318–327. [Google Scholar] [CrossRef]
- Wang, P.; Ji, D.; Yang, Y.; Zhao, L. Mineralogical compositions of the Late Permian coal from the Yueliangtian mine, western Guizhou, China: A comparative study with coals from eastern Yunnan and with an emphasis on the origin of minerals. Fuel 2016, 181, 859–869. [Google Scholar] [CrossRef]
- Xie, P.; Song, H.; Wei, J.; Li, Q. Mineralogical characteristics of Late Permian coals from the Yueliangtian Coal Mine, Guizhou, Southwestern China. Minerals 2016, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Chou, C.-L. Occurrence and origin of minerals in a chamosite-bearing coal of Late Permian age, Zhaotong, Yunnan, China. Am. Miner. 2007, 92, 1253–1261. [Google Scholar] [CrossRef]
- Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O’Keefe, J.M.K.; Tatu, C.A.; Buia, G. Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petroşani basin (southern Carpathian Mountains), Romania. Int. J. Coal Geol. 2010, 82, 68–80. [Google Scholar] [CrossRef]
- Ward, C.R. Minerals in bituminous coals of the Sydney Basin (Australia) and the Illinois Basin (U.S.A.). Int. J. Coal Geol. 1989, 13, 455–479. [Google Scholar] [CrossRef]
- Querol, X.; Whateley, M.K.G.; Fernandez-Turiel, J.L.; Tuncali, E. Geological controls on the mineralogy of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 1997, 33, 255–271. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Bostick, N.H.; Dulong, F.T.; Senftle, F.E.; Thorpe, A.N. Influence of an igneous intrusion on the inorganic geochemistry of a bituminous coal from Pitkin County, Colorado. Int. J. Coal Geol. 1998, 36, 223–241. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Ren, D. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, F.; Zhang, S.; Zhang, N.; Ma, J.; Ge, L. Sedimentary Environments and Coal Accumulation of Late Paleozoic Coal Formation in Northern China; Press of China University of Geosciences: Beijing, China, 1993; p. 190. (In Chinese) [Google Scholar]
Sample | Mad | Ad | Vdaf | Qgr,d (MJ/kg) | TSd | Ro,ran |
---|---|---|---|---|---|---|
JY-3-1c | 1.59 | 17.56 | 38.40 | 28.64 | 1.35 | 0.763 |
JY-3-2c | 1.56 | 3.24 | 37.92 | 33.23 | 0.31 | 0.754 |
JY-3-3c | 1.74 | 3.46 | 35.40 | 32.56 | 0.25 | 0.750 |
JY-3-4c | 1.61 | 4.67 | 38.31 | 33.22 | 0.19 | 0.743 |
JY-3-5c | 1.63 | 8.54 | 36.89 | 31.28 | 0.19 | 0.747 |
JY-3-6c | 1.64 | 3.35 | 34.09 | 33.14 | 0.02 | 0.760 |
JY-3-7c | 1.34 | 14.75 | 41.93 | 26.30 | 0.15 | 0.768 |
JY-3-8c | 1.47 | 4.75 | 33.32 | 32.23 | 0.20 | 0.759 |
JY-3-9c | 1.39 | 29.08 | 47.71 | 23.78 | 1.04 | 0.764 |
JY-3-10c | 1.48 | 24.06 | 45.55 | 33.27 | 0.70 | 0.762 |
JY-3-Wa | 1.54 | 11.35 | 38.95 | 30.76 | 0.44 | 0.757 |
Sample | Kao | Illite | Qua | Cal | Ank | Plag | K-Feld | Sid | Py | Jaro | Coqu | Rut | Ana | Bass |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JY-3-R | 26.4 | 8.1 | 36.8 | 10.2 | 10.7 | 6.4 | 1.4 | |||||||
JY-3-1c | 42.7 | 17.3 | 21.5 | 0.5 | 5.3 | 11 | 1.4 | 0.3 | ||||||
JY-3-2c | 41.9 | 10 | 1.2 | 28.4 | 15.5 | 1.7 | 1.3 | |||||||
JY-3-3c | 64.4 | 9.5 | 1.5 | 1.7 | 7.5 | 5 | 0.4 | 0.9 | 9 | |||||
JY-3-4c | 66 | 8.5 | 2.2 | 3.6 | 9.4 | 6.2 | 1 | 1.3 | 1.9 | |||||
JY-3-5c | 61.6 | 7.3 | 3 | 2.6 | 18.6 | 2.9 | 0.1 | 0.6 | 2.5 | |||||
JY-3-6c | 72.4 | 11.5 | 12.9 | 3.2 | ||||||||||
JY-3-7c | 11.4 | 54 | 34 | 0.6 | ||||||||||
JY-3-8c | 87.9 | 2.6 | 1.5 | 4.4 | 1.1 | 0.7 | 1.9 | |||||||
JY-3-9c | 53 | 14.8 | 19.8 | 1.9 | 9.8 | 0.8 | ||||||||
JY-3-10c | 59 | 9 | 0.5 | 3.6 | 8.1 | 14.4 | 0.7 | 0.8 | 3.9 | |||||
JY-3-Wa | 56.03 | 8.79 | 5.23 | 7.84 | 10.75 | 5.16 | 0.89 | 2.08 | 0.22 | 0.36 | 0.49 | 2.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Li, J.; Wang, Z.; Zhang, K.; Gao, Z.; Ma, J.; Zhao, C. Mineralogical Characteristics of Early Permian Paragonite-Bearing Coal (No. 3) in the Jinyuan Mine, Tengxian Coalfield, Shandong Province, Eastern China. Minerals 2020, 10, 714. https://doi.org/10.3390/min10080714
Guo W, Li J, Wang Z, Zhang K, Gao Z, Ma J, Zhao C. Mineralogical Characteristics of Early Permian Paragonite-Bearing Coal (No. 3) in the Jinyuan Mine, Tengxian Coalfield, Shandong Province, Eastern China. Minerals. 2020; 10(8):714. https://doi.org/10.3390/min10080714
Chicago/Turabian StyleGuo, Wenmu, Jinxiao Li, Zhenzhen Wang, Ke Zhang, Zheng Gao, Jialiang Ma, and Cunliang Zhao. 2020. "Mineralogical Characteristics of Early Permian Paragonite-Bearing Coal (No. 3) in the Jinyuan Mine, Tengxian Coalfield, Shandong Province, Eastern China" Minerals 10, no. 8: 714. https://doi.org/10.3390/min10080714
APA StyleGuo, W., Li, J., Wang, Z., Zhang, K., Gao, Z., Ma, J., & Zhao, C. (2020). Mineralogical Characteristics of Early Permian Paragonite-Bearing Coal (No. 3) in the Jinyuan Mine, Tengxian Coalfield, Shandong Province, Eastern China. Minerals, 10(8), 714. https://doi.org/10.3390/min10080714