Uranium and Thorium Resources of Estonia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Uranium and Thorium in Black Shales
3.1.1. Estonian Black Shale—Graptolite Argillite
3.1.2. Estonian Graptolite Argillite Resources
3.2. Uranium and Thorium in Cambro-Ordovician Shelly Phosphorites
3.3. Secondary Uranium and Thorium Resources
3.3.1. Graptolite Argillite Overburden Dumps in Maardu
3.3.2. The Radioactive Waste Depository in Sillamäe, Northeastern Estonia
4. Discussion
4.1. Metals in Graptolite Argillite
4.2. Metals in Phosphorite
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Reserve Type | Reserves of P2O5 (Mt) | Element Ratios | Resources of Minor Components, Mt | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Deposit | Proven | Probable | Inferred P2O5 (Mt) | Sum of reserves and inferred resource P2O5 (Mt) | Average concentration of P2O5 | F/P2O5 | Sr/P2O5 | TR2O3/P2O5 | Y2O3/P2O5 | U/P2O5 | F | Sr | TR2O3 | Y2O3 | U |
Toolse | 27.3 | - | - | - | - | ||||||||||
Toolse | - | 14.2 | 41.5 | 10.4 | 0.093 | 0.0138 | 0.007 | 0.00178 | 0.0002 | 3.86 | 0.573 | 0.29 | 0.074 | 0.0083 | |
Aseri | 22.4 | - | - | - | - | - | - | - | - | - | |||||
Aseri | - | 4.5 | 26.9 | 8.7 | 0.093 | 0.0138 | 0.007 | 0.00178 | 0.0002 | 2.502 | 0.371 | 0.188 | 0.048 | 0.0053 | |
Southern Maardu | - | - | 137 | 137 | 8.7 | 0.081 | 0.0138 | 0.007 | 0.00178 | 0.0002 | 11.097 | 1.891 | 0.959 | 0.244 | 0.0274 |
Rakvere, including: | - | - | - | 675 | - | - | - | - | - | - | 68.946 | 9.295 | 3.408 | 0.846 | 0.1343 |
(a) Rägavere | 188.1 | - | - | 188.1 | 9.4 | 0.093 | 0.0138 | 0.007 | 0.00178 | 0.0002 | 17.493 | 2.596 | 1.317 | 0.335 | 0.0376 |
(b) Western locality | - | - | 69.8 | 69.8 | 7.9 | 0.093 | 0.0138 | 0.007 | 0.00178 | 0.0002 | 6.491 | 0.963 | 0.489 | 0.124 | 0.014 |
(c) Assamalla | - | - | 185.7 | 185.7 | 9.6 | 0.087 | 0.0111 | 0.0031 | 0.00075 | 0.00016 | 16.156 | 2.061 | 0.576 | 0.139 | 0.0297 |
(d) South-Eastern locality | - | - | 143 | 143 | 8.5 | 0.087 | 0.0111 | 0.0031 | 0.00075 | 0.00016 | 12.441 | 1.587 | 0.443 | 0.107 | 0.0229 |
(e) Kabala, including: | 188.1 | - | - | 188.1 | 12.3 | 0.087 | 0.0111 | 0.0031 | 0.00075 | 0.00016 | 16.265 | 2.088 | 0.583 | 0.141 | 0.0301 |
Western Kabala | 113 | - | - | 113 | 14 | 0.087 | 0.0111 | 0.031 | 0.00075 | 0.00016 | 9.831 | 1.254 | 0.35 | 0.085 | 0.0181 |
Total | - | - | - | 675 | - | - | - | - | - | - | 86.405 | 12.127 | 4.845 | 1.212 | 0.1753 |
References
- Veski, R.; Palu, V. Investigation of Dictyonema Oil Shale and Its Natural and Artificial Transformation Products by a Vankrevelenogram. Oil Shale 2003, 20, 265–281. [Google Scholar]
- Hade, S.; Soesoo, A. Estonian graptolite argillites revisited: A future resource? Oil Shale 2014, 31, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Estonian Land Board Drill-Cores. Geoportal. Available online: https://geoportaal.maaamet.ee/eng/Maps-and-Data/Geological-Data/Drill-cores-p355.html (accessed on 29 June 2020).
- Detkovski, S.; Pukkonen, E.; Rühko, V.; Petersell, V. Exploratory Assessment of Metallogeny and Study of the Material Composition of Phosphorites and Covering Deposits of Estonia during 1985–1987; EGF4262; Geological Survey of Estonia: Tallinn, Estonia, 1987; p. 208. (In Russian) [Google Scholar]
- Petersell, V.; Güsson, J.; Larionov, A.; Reiman, I. Geological and Economic Assessment and Technological Studies of Phosphate Rock as a Complex Mineral Raw Material; EGF3584; Geological Survey of Estonia: Tallinn, Estonia, 1979; p. 132. (In Russian) [Google Scholar]
- Petersell, V.; Detkovski, S. Geological-Economic Evaluation and Technological Study of the Complex Processing of Phosphorite Raw Material; EGF3876; Geological Survey of Estonia: Tallinn, Estonia, 1981; p. 149. (In Russian) [Google Scholar]
- Beljankina, N.; Serdobova, L.; Burkov, V.; Bystrjakova, V. The study of the Material Composition and Metal Content of Estonian Phosphorites and Overburden Deposits with the Aim of Their Long-Term Assessment as Complex Raw Materials; EGF4224; Institute of Mineralogy, Geochemistry and Crystallochemistry of Rare Elements (IMGRE): Moscow, Russia, 1986; p. 104. (In Russian) [Google Scholar]
- Ehdwall, H.; Sundblad, B.; Nosov, V.; Mustonen, R. Content and Environmental Impact from the Waste Depository in Sillamäe; Swedish Inst. of Radiation Protection: Stockholm, The Swedish, 1994; p. 42. [Google Scholar]
- International Atomic Energy Agency. Geological Classification of Uranium Deposits and Description of Selected Examples; International Atomic Energy Agency (IAEA): Vienna, Austria, 2018; p. 430. [Google Scholar]
- Amstutz, G.C.; Park, W.C. The paragenetic position of sulfides in the diagenetic crystallization sequence. Soc. Min. Geol. Jpn. (Spec. Issue) 1971, 3, 280–282. [Google Scholar]
- Vulimiri, M.R.; Cheney, E.S. Stratiform mineralization and origin of some of the vein deposits, Bunker Hill mine, Coeur d’Alene district, Idaho. In Proceedings of the Symposium on Mineral Deposits of the Pacific Northwest, Corvallis, USA, 20–21 March 1980; pp. 248–260. [Google Scholar]
- Schieber, J. The origin and economic potential of sandstone-hosted disseminated Pb-Zn mineralization in pyritic shale horizons of the Mid-Proterozoic Newland Formation, Montana, USA. Miner. Depos. 1991, 26, 290–297. [Google Scholar] [CrossRef]
- Hofmann, B. Erzmineralien in paläozoischen, mesozoischen und tertiären Sedimenten der Nordschweiz und Südwestdeutschlands. Schweiz. Miner. Petrogr. Mitt. 1989, 69, 345–357. [Google Scholar]
- Grauch, R.I.; Murowchick, J.B.; Coveney, R.M., Jr.; Nanshengnou, C. Extreme concentration of Mo, Ni, PGE and Au in anoxic marine basins China and Canada. In Proceedings of the 25 years Society for Geology Applied to Mineral Deposits, Anniversary Meeting, Nancy, France, 30 August–3 September 1991; pp. 531–534. [Google Scholar]
- Lukkaroinen, J. Financial Review 2019; Terrafame Ltd.: Sotkamo, Finland, 2020. [Google Scholar]
- Andersson, A.; Dahlman, B.; Gee, D.G.; Snäll, S. The Scandinavian Alum Shales; Sveriges Geologiska Undersökning: Uppsala, The Swedish, 1985. [Google Scholar]
- Henningsmoen, G. Cambro-Silurian deposits of the Oslo region. Geol. Nor. 1960, 208, 130–150. [Google Scholar]
- Poulsen, V. Early Cambrian Distacodontid Conodonts from Bornholm; Munksgaard: Copenhagen, Denmark, 1966; p. 19. [Google Scholar]
- Männil, R. Evolution of the Baltic Basin during the Ordovician; Valgus: Tallinn, Estonia, 1966; Volume 201. [Google Scholar]
- Chajduk, E.; Bartosiewicz, I.; Pyszynska, M.; Chwastowska, J.; Polkowska-Motrenko, H. Determination of uranium and selected elements in Polish dictyonema shales and sandstones by ICP-MS. J. Radioanal. Nucl. Chem. 2013, 295, 1913–1919. [Google Scholar] [CrossRef]
- Baturin, G.N.; Ilyin, A.V. Comparative geochemistry of shell phosphorites and dictyonema shales of the Baltic. Geochem. Int. 2013, 51, 23–32. [Google Scholar] [CrossRef]
- Pukkonen, E.; Rammo, M. Distribution of molybdenum and uranium in the Tremadoc Graptolite Argillite (Dictyonema Shale) of north-western Estonia. Bull. Geol. Surv. Est. 1992, 2, 3–15. [Google Scholar]
- Voolma, M.; Soesoo, A.; Hade, S.; Hints, R.; Kallaste, T. Geochemical heterogeneity of Estonian graptolite argillite. Oil Shale 2013, 30, 377–401. [Google Scholar] [CrossRef] [Green Version]
- Soesoo, A.; Hade, S. Black shale of Estonia: Moving towards a Fennoscandian-Baltoscandian database. Proc. Karelian Res. Cent. Russ. Acad. Sci. 2014, 1, 103–114. [Google Scholar]
- Loog, A.; Petersell, V. The distribution of microelements in Tremadoc graptolitic argillite of Estonia. Acta Comment. Univ. Tartu. 1994, 972, 57–75. [Google Scholar]
- Puritch, E.; Rodgers, K.; Sutcliffe, R.; Orava, D.; Salari, D.; Lawrence, R.; Nodwell, M.; Armstrong, T.; Burga, D.; Brown, F. Updated Technical Report, Resource Estimate and Preliminary Economic Assessment on the Viken MMS Project, Sweden Latitude 63° 4′ 35″ N, Longitude 14° 16′ 48″ E; P & E Mining Consultants Inc.: Brampton, ON, Canada, 2014. [Google Scholar]
- Lindgreen, H.; Drits, V.A.; Sakharov, B.A.; Salyn, A.L.; Wrang, P.; Dainyak, L.G. Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area. Am. Miner. 2000, 85, 1223–1238. [Google Scholar] [CrossRef]
- Sundblad, K.; Gee, D.G. Occurrence of a uraniferous-vanadiniferous graphitic phyllite in the Köli Nappes of the Stekenjokk area, central Swedish Caledonides. Geol. Föreningen I Stockh. Förhandlingar 1984, 106, 269–274. [Google Scholar] [CrossRef]
- Erdtmann, B.-D. On the anisograptid affiliation of ‘Dictyonema’ flabelliforme (Eichwald 1840) and its nomenclatural consequences. Geol. Soc. Lond. Spec. Publ. 1986, 20, 21–25. [Google Scholar] [CrossRef]
- Petersell, V. Dictyonema argillite. In Geology and Mineral Resources of Estonia; Raukas, A., Teedumäe, A., Eds.; Estonian Academy Publishers: Tallinn, Estonia, 1997; pp. 313–326. ISBN 9985-50-185-3. [Google Scholar]
- Soesoo, A.; Puura, V.; Kirs, J.; Petersell, V.; Niin, M.; All, T. Outlines of the Precambrian basement of Estonia. Proc. Est. Acad. Sci. Geol. 2004, 53, 149–164. [Google Scholar]
- Lippmaa, E.; Maremae, E. Uranium production from the local Dictyonema shale in North-East Estonia. Oil Shale 2000, 17, 387–394. [Google Scholar]
- Petersell, V.; Mineyev, D.; Loog, A. On the mineralogy and geochemistry of the North-Estonian obolus sandstones and dictyonema shales. Acta Comment. Univ. Tartu. 1981, 561, 30–49. [Google Scholar]
- Rammo, M.; Morozov, O.; Vaher, R.; Uusmaa, A.; Dantshenko, V.; Radik, E.; Morozova, L.; Beljajev, B.; Popova, S.; Kirikova, M.; et al. Phosphorite Exploration in the South-West from Maardu (O-34-XII, O-35-I, VII) y. 1986–1989; EGF4359; Geological Survey of Estonia: Kohtla-Järve, Estonia, 1989; p. 254. (In Russian) [Google Scholar]
- Kattai, V.; Lokk, U. Historical review of the kukersite oil shale exploration in Estonia. Oil Shale 1998, 15, 102–110. [Google Scholar]
- Kivimägi, E. Study of the Complex Utilization of Toolse Deposit; EGF3355; Governance Office of the Council of Ministers of ESSR, Keila Exploration Party: Tallinn, Estonia, 1975; p. 111. (In Russian) [Google Scholar]
- Pukkonen, E.; Buchardt, B. The Dictyonema Shale of Estonia, Final reports III, Pre-Westphalian Source Rocks in Northern Europe; University of Copenhagen: Copenhagen, Denmark, 1994; p. 37. [Google Scholar]
- Vind, J.; Bauert, H. Geochemical Characterisation of the Tremadocian Black Shale in North-Western Estonia, EGF9330; Geological Survey of Estonia: Rakvere, Estonia, 2020; p. 91. [Google Scholar]
- Chernoff, C.B.; Orris, G.J. World Phosphate Mines, Deposits, and Occurrences; U.S. Geological Survey: Menlo Park, CA, USA, 2002. [Google Scholar]
- Puura, V. Geology and Mineral Resources of the Rakvere Phosphorite-bearing Area. In Academy of Sciences of the Estonian SSR; Tallinn Valgus Publishers: Tallinn, Estonia, 1987. [Google Scholar]
- Bauert, H.; Soesoo, A. Shelly phosphate rocks of Estonia. In Proceedings of the Strategic Raw Materials of Estonia, Rakvere, Estonia, 16–17 October 2015; Bauert, H., Soesoo, A., Hade, S., Eds.; p. 60. [Google Scholar]
- Raudsep, R.; Räägel, V. Mineral. wealth of Estonia [Eesti maapõuerikkusi]; Geological Survey of Estonia: Tallinn, Estonia, 1993. [Google Scholar]
- Decree, S. Annex 1 EU PHOSPH New mineralogical and geochemical data on samples from phosphate deposits/occurrences (WP 4 “Critical Raw Materials in phosphate deposits and associated black shales”); GeoERA. FRAME—Forecasting and assessing Europe’s strategic raw materials needs. 2020; (Unpublished report). [Google Scholar]
- Soesoo, A.; Kirsimäe, K. Estonian Paleozoic shelly phosphorites: A continent-scale resource for phosphorus and potential for rare earth elements. In Proceedings of the EGU2020-6062, Vienna, Austria, 3–8 May 2020; p. D1539. [Google Scholar]
- Jüriado, K.; Raukas, A.; Petersell, V. Alum shales causing radon risks on the example of Maardu area, North-Estonia. Oil Shale 2012, 29, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Soesoo, A.; Hade, S. Metalliferous organic-rich shales of Baltoscandia—A future resource or environmental/ecological problem. Archiv Euro Eco 2012, 2, 11–14. [Google Scholar]
- Heinsalu, A. Sediment Stratigraphy and Chemistry of Lake Maardu, Northern Estonia. PACT 1996, 51, 163–173. [Google Scholar]
- Maremäe, E.; Tankler, H.; Putnik, H. Historical Survey of Nuclear Non-Proliferation in Estonia,1946–1995; Estonian Radiation Protection Centre: Tallinn, Estonia, 2003; p. 93. [Google Scholar]
- Schovsbo, N.H. Uranium enrichment shorewards in black shales: A case study from the Scandinavian Alum Shale. GFF 2002, 124, 107–115. [Google Scholar] [CrossRef]
- Algeo, T.J.; Maynard, J.B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem. Geol. 2004, 206, 289–318. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Yang, J.-H.; Ling, H.-F.; Chen, Y.-Q.; Feng, H.-Z.; Zhao, K.-D.; Ni, P. Extreme enrichment of polymetallic Ni–Mo–PGE–Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 217–228. [Google Scholar] [CrossRef]
- Loog, A.; Petersell, V. Authigenic siliceous minerals in the Tremadoc graptolitic argillite of Estonia. Proc. Est. Acad. Sci. Geol. 1995, 44, 26–32. [Google Scholar]
- Coveney, R.M.; Glascock, M.D. A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. Appl. Geochem. 1989, 4, 347–367. [Google Scholar] [CrossRef]
- Johnson, S.C.; Large, R.R.; Coveney, R.M.; Kelley, K.D.; Slack, J.F.; Steadman, J.A.; Gregory, D.D.; Sack, P.J.; Meffre, S. Secular distribution of highly metalliferous black shales corresponds with peaks in past atmosphere oxygenation. Miner. Depos. 2017, 52, 791–798. [Google Scholar] [CrossRef]
- Calvert, S.E.; Pedersen, T.F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 1993, 113, 67–88. [Google Scholar] [CrossRef]
- Morford, J.L.; Emerson, S. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta 1999, 63, 1735–1750. [Google Scholar] [CrossRef]
- Nameroff, T.J.; Balistrieri, L.S.; Murray, J.W. Suboxic trace metal geochemistry in the Eastern Tropical North Pacific. Geochim. Cosmochim. Acta 2002, 66, 1139–1158. [Google Scholar] [CrossRef]
- Nijenhuis, I.A.; Bosch, H.-J.; Sinninghe Damsté, J.S.; Brumsack, H.-J.; De Lange, G.J. Organic matter and trace element rich sapropels and black shales: A geochemical comparison. Earth Planet. Sci. Lett. 1999, 169, 277–290. [Google Scholar] [CrossRef]
- Brumsack, H.-J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 232, 344–361. [Google Scholar] [CrossRef]
- Palvadre, R.; Kleemeier, T. Leaching of several heavy metals from argillites. Izv. Akad. Nauk Est. SSR Ser. Khim. 1982, 31, 243–248. [Google Scholar]
- Kirsimäe, K.; Soesoo, A.; Paiste, P.; Romann, T. Complexation of metals in GA. In Applicability of Bioleaching for the Extraction of Metals from Estonian Graptolitic Argillite (RITA Project); Kivisaar, M., Menert, A., Eds.; University of Tartu: Tartu, Estonia, 2020; pp. 12–14. [Google Scholar]
- Johnson, S.C. The geochemistry of Metalliferous Black Shales: Understanding Primary Enrichments, Metamorphic Processes, and the Role of Metal-Rich Black Shales in Archiving Earth Evolution. Ph.D. Thesis, University of Tasmania, Hobart, Australia, 2017. [Google Scholar]
- Cocks, L.R.M.; Torsvik, T.H. Baltica from the late Precambrian to mid-Palaeozoic times: The gain and Loss of a Terrane’s Identity. Earth-Sci. Rev. 2005, 72, 39–66. [Google Scholar] [CrossRef]
- Hints, R.; Hade, S.; Soesoo, A.; Voolma, M. Depositional framework of the East Baltic Tremadocian black shale revisited. GFF 2014, 136, 464–482. [Google Scholar] [CrossRef]
- Nielsen, A.T.; Schovsbo, N.H. The Lower Cambrian of Scandinavia: Depositional environment, sequence stratigraphy and palaeogeography. Earth-Sci. Rev. 2011, 107, 207–310. [Google Scholar] [CrossRef]
- Buchardt, B.; Nielsen, A.T.; Schovsbo, N.H.; Bojesen-Kofoed, J.A. Alun skiferen i Skandinavien. Geol. Tidsskr. 1997, 1997, 1–3. [Google Scholar]
Sample | Locality | Lat | Long | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | P2O5 | TiO2 | K2O | LOI | TOC |
IRU-7A | Iru | 59.460 | 24.91 | 49.00 | 14.35 | 5.69 | 0.86 | 0.33 | 1.35 | 0.89 | 8.53 | 17.7 | 7.60 |
RITA-1Y | Sõtke | 59.37 | 27.71 | 38.5 | 7.81 | 4.06 | 0.81 | 13.9 | 1.2 | 0.46 | 4.84 | 13.8 | 5.98 |
RITA-4A | Sõtke | 59.37 | 27.71 | 52.2 | 8.36 | 7.52 | 0.69 | 1.57 | 0.96 | 0.54 | 5.00 | 15.3 | 5.54 |
F-338-09 | Metsküla | 59.13 | 23.65 | 46.3 | 11.3 | 4.21 | 1.04 | 0.23 | 0.12 | 0.67 | 6.57 | 28.3 | 12.65 |
Sample | Locality | Lat | Long | V | Mo | Ni | Zn | Cd | Pb | Th | U | ΣREE | ΣREE + Y |
IRU-7A | Iru | 59.460 | 24.91 | 174 | 25 | 21 | 106 | 0.13 | 81 | 14.8 | 58.9 | 170 | 195 |
RITA-1Y | Sõtke | 59.37 | 27.71 | 664 | 361 | 109 | 4010 | 30.9 | 205 | 10.3 | 206.0 | 218 | 271 |
RITA-4A | Sõtke | 59.37 | 27.71 | 916 | 202 | 169 | 53 | 0.2 | 186 | 14.3 | 258.0 | 377 | 475 |
F-338-09 | Metsküla | 59.13 | 23.65 | 1240 | 170 | 168 | 47 | 0.12 | 85 | 13.5 | 121.5 | 207 | 236 |
Area | Area (km2) | Total Resource (Mt) | U (t) | V (t) | Mo (t) | Th (t) | Average U (ppm) | Reference |
---|---|---|---|---|---|---|---|---|
GIS-based total basin | 12,212.64 | 67,000 | 5,665,600 | - | 12,761,600 | - | - | [2] |
- | - | - | 47,753,803 | - | 213,000–254,300 1 | - | current | |
NW Estonia (total) | 4540.6 | 42,830 | 4,216,000 | 28,123,000 | 7,860,000 | - | 103 | [34] |
NW Estonia (meeting criteria) | 1607.5 | 10,651 | 1,176,000 | 7,260,000 | 2,444,000 | - | 116 | ib. |
Toolse | 62.219 | 141.4 | 21,143 | 147,000 | 57,400 | - | 148 | [36] |
Aseri | 162 | - | 72,800 | 521,500 | 193,300 | - | 162 | [4] |
Rakvere, incl.: | 213 | - | 17,810 | 139,780 | 37,140 | - | - | ib. |
Assamalla | 132 | - | 8910 | 98,900 | 25,150 | - | 73 | ib. |
Rägavere | 40 | - | 2770 | - | 6230 | - | 187 | ib. |
Kabala | 41 | - | 6130 | 40,880 | 5760 | - | 231 | ib. |
Total basin | - | 64,000 | 6,800,000 | 58,200,000 | 11,500,000 | - | - | [37] |
Sample | Locality | Lat | Long | SiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | P2O5 | LOI |
ASERI | Aseri | 59.469 | 26.850 | 21.78 | 1.80 | 0.17 | 5.37 | 34.80 | 0.47 | 19.21 | 15.97 | |
IRU9 | Iru | 59.460 | 24.905 | 59.67 | 0.46 | 0.85 | 0.09 | 0.10 | 19.66 | 0.19 | 14.20 | 2.65 |
ORASOJA | Orasoja | 59.410 | 28.018 | 47.35 | 0.15 | 1.58 | 0.06 | 0.24 | 25.25 | 0.20 | 18.98 | 3.37 |
SAKA1 | Saka | 59.442 | 27.214 | 86.81 | 0.49 | 0.45 | 0.02 | 0.23 | 5.35 | 0.07 | 3.74 | 1.57 |
TOOLSE2 | Toolse | 59.500 | 26.476 | 11.79 | 0.27 | 2.65 | 0.26 | 4.77 | 39.21 | 0.39 | 24.01 | 15.03 |
Sample | Locality | Lat | Long | V | Sr | Zn | Cd | Pb | Th | U | ΣREE | ΣREE + Y |
ASERI | Aseri | 59.469 | 26.850 | 55 | 1843 | 4 | 0.02 | 9.0 | 2.2 | 28.9 | 769 | 1023 |
IRU9 | Iru | 59.460 | 24.905 | 23 | 1409 | 110 | 0.12 | 16.2 | 12.8 | 15.7 | 1005 | 1401 |
ORASOJA | Orasoja | 59.410 | 28.018 | 34 | 1825 | 5 | 0.00 | 23.2 | 4.9 | 62.1 | 1191 | 1506 |
SAKA1 | Saka | 59.442 | 27.214 | 33 | 358 | bdl | 0.00 | 14.8 | 4.8 | 11.7 | 402 | 534 |
TOOLSE2 | Toolse | 59.500 | 26.476 | 33 | 2193 | 10 | 0.12 | 21.0 | 5.4 | 32.6 | 1298 | 1584 |
Deposit | [4] | [6] | This Study |
---|---|---|---|
Toolse | 8300 | 5599 | - |
Toolse, current extent | - | - | 14,368 |
Aseri | 5300 | - | - |
Southern Maardu | 27,400 | - | - |
Rakvere, including fields: | 134,300 | - | 146,989 |
Rägavere | 37,600 | - | - |
Western locality | 14,000 | - | - |
Assamalla | 29,700 | - | - |
South-Eastern locality | 22,900 | - | - |
Kabala, including: | 30,100 | - | - |
Western Kabala | 18,100 | - | - |
TOTAL | 175,300 | - | - |
Single Shell or Ore | Single Shell | Single Shell | Ore | Ore |
---|---|---|---|---|
Value | Uranium (ppm) | Thorium (ppm) | Uranium (ppm) | Thorium (ppm) |
No. Analyses | 41 | 41 | 52 | 52 |
MIN | 0.2 | 0.0 | 1.5 | 1.5 |
MAX | 159.3 | 47.6 | 91.4 | 14.8 |
AVERAGE | 50.2 | 4.9 | 24.3 | 5.4 |
STD DEVIATION | 30.8 | 8.8 | 18.2 | 3.3 |
Annual Mining, Ore (t) | Single Shell | Single Shell | U (kg) | Th (kg) |
5,000,000 | - | - | 121,659 | 27,108 |
10,000,000 | - | - | 243,317 | 54,216 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soesoo, A.; Vind, J.; Hade, S. Uranium and Thorium Resources of Estonia. Minerals 2020, 10, 798. https://doi.org/10.3390/min10090798
Soesoo A, Vind J, Hade S. Uranium and Thorium Resources of Estonia. Minerals. 2020; 10(9):798. https://doi.org/10.3390/min10090798
Chicago/Turabian StyleSoesoo, Alvar, Johannes Vind, and Sigrid Hade. 2020. "Uranium and Thorium Resources of Estonia" Minerals 10, no. 9: 798. https://doi.org/10.3390/min10090798
APA StyleSoesoo, A., Vind, J., & Hade, S. (2020). Uranium and Thorium Resources of Estonia. Minerals, 10(9), 798. https://doi.org/10.3390/min10090798