Alteration of Granitoids and Uranium Mineralization in the Blatná Suite of the Central Bohemian Plutonic Complex, Czech Republic
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Petrography of the Blatná and Červená Granitoids
4.2. Petrography of Altered Granitoids
4.3. Chemical Composition of Unaltered Granitoids
4.4. Chemical Composition of Altered Granitoid Rocks
4.5. Composition of Uranium and Thorium Minerals
4.6. Composition of REE-Fluorcarbonates
5. Discussion
5.1. Origin and Evolution of Aceites
5.2. Sources of Uranium and Thorium
5.3. Behavior of Yttrium and Zirconium
5.4. Occurrence of Th-Rich Uraninite and Thorite
5.5. Occurrence and Origin of REE-Fluorcarbonates
6. Conclusions
- The disseminated coffinite-uraninite-thorite mineralization occurs in highly hydrothermal altered amphibole-bearing biotite granodiorites of the Blatná suite. In intensively hematitized granitoids the content of Fe2O3 reaches up to 3.3 wt %. The content of Ca distinctly increases due to intensive carbonatization, reaching up to 14.4 wt % CaO in aceites from the Nahošín deposit. The content of Na increases especially in altered granodiorites from the Mečichov deposit (up to 5.4 wt % Na2O). In granodiorites affected by K-feldspathization, there are distinctly increased K concentrations (up to 6.2 wt % K2O). These granodiorites are also enriched on Rb (up to 214 ppm). In the same aceites depletions in Sr were found (79–383 ppm). The altered granodiorites from the Nahošín deposit occur high Y concentrations (up to 45 ppm).
- Coffinite, uraninite, and thorite is distinctly enriched in Y (up to 4.3 wt % in thorite). Uraninite is enriched in Th (up to 9.8 wt % ThO2) and thorite is enriched also in Zr (up to 5.7 wt % ZrO2). The enrichment of the both elements in above mentioned uranium minerals very probably correlated with their enrichment in original I-type granitic rocks.
- In the highly carbonatized aceites from the Mečichov uranium deposit REE-fluorcarbonate synchysite—(Ce) was found with La/Nd = 2.07 and La/Ce = 0.62. The REE-fluorcarbonates are in uranium deposits very rare and their occurrence in researched uranium deposits is the first occurrence in aceites.
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Kříbek, B.; Žák, K.; Dobeš, P.; Leichmann, J.; Pudilová, M.; René, M.; Scharm, B.; Scharmová, M.; Hájek, A.; Holeczy, D. The rožná uranium deposit (Bohemian Massif, Czech Republic): Shear-zone hosted, late variscan and post-variscan hydrothermal mineralization. Minim. Depos. 2009, 44, 99–128. [Google Scholar] [CrossRef]
- René, M. Rare earth, yttrium and zirconium mobility associated with the uranium mineralization at okrouhlá radouň, bohemian massif, Czech Republic. Eur. J. Mineral. 2015, 27, 57–70. [Google Scholar] [CrossRef]
- René, M. Alteration of granitoids and crystalline rocks and uranium mineralization in the bor pluton area, bohemian massif, Czech Republic. Ore Geol. Rev. 2017, 81, 188–200. [Google Scholar] [CrossRef]
- René, M. Shear Zone-Hosted Uranium Deposits of the Bohemian Massif (Central European V.ariscan Belt). In Uranium-Safety, Resources, Separation and Thermodynamic Calculation; Awwad, N.S., Ed.; IntechOpen Ltd.: London, UK, 2018; pp. 49–64. [Google Scholar] [CrossRef] [Green Version]
- René, M.; Dolníček, Z. Uraninite, coffinite and brannerite from shear-zone hosted uranium deposits of the Bohemian Massif (Central European Variscan Belt). Minerals 2017, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- René, M.; Dolníček, Z.; Sejkora, J.; Škácha, P.; Šrein, V. Uraninite, coffinite and ningyoite from vein-type uranium deposits of the Bohemian Massif (Central European Variscan Belt). Minerals 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Havelcová, M.; Machovič, V.; René, M.; Sýkorová, I.; Lapčák, L.; Špaldoňová, A. Geochemistry of shear-hosted uranium mineralization at the Zadní Chodov uranium deposit (Bohemian Massif). Ore Geol. Rev. 2020, 120, 1–16. [Google Scholar] [CrossRef]
- Cathelineau, M. The hydrothermal alkali metasomatism effects on granitic rocks. Quartz dissolution and related subsolidus changes. J. Pets 1986, 27, 945–965. [Google Scholar] [CrossRef]
- Leroy, J. The Margnac and Fanay uranium deposits of the La Crouzille district (western Massif Central, France): Geologic and fluid inclusion studies. Econ. Geol. 1978, 73, 1611–1634. [Google Scholar] [CrossRef]
- Suikkanen, E.; Rämö, O.T. Episyenites-Characteristics, genetic constraints, and mineral potential. Min. Met. Explor. 2019, 36, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Fettes, D.; Desmons, J. (Eds.) Metamorphic Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences. Subcommision on the Systematics of Metamorphic Rocks; Cambridge University Press: Cambridge, UK, 2007; p. 244. [Google Scholar]
- Omel’yanenko, B.I. Wall-Rock Hydrothermal Alterations; Nedra Publishing House: Moscow, Russia, 1978; pp. 1–215. (In Russian) [Google Scholar]
- Janoušek, V.; Bowes, D.R.; Rogers, G.; Farrow, C.M.; Jelínek, E. Modelling diverse processes in the petrogenesis of a composite batholith: The central bohemian pluton, central european variscides. J. Pets 2000, 41, 511–543. [Google Scholar] [CrossRef]
- Janoušek, V.; Wiegand, B.A.; Žák, J. Dating the offset of Variscan crustal exhumation in the core of the bohemian massif: New U Pb single zircon ages from the high-K calc alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J. Geol. Soc. 2010, 167, 347–360. [Google Scholar] [CrossRef]
- Žák, J.; Verner, K.; Holub, F.V.; Kabele, P.; Chlupáčová, M.; Halodová, P. Magmatic to solid state fabrics in syntectonic granitoids recording early carboniferous orogenic collapse in the bohemian massif. J. Struct. Geol. 2012, 36, 27–42. [Google Scholar] [CrossRef]
- Habásko, J.; Litochleb, J.; Pletánek, Z. The new findings about uranium mineralization in granitoids of the SW part of the central bohemian pluton. In Sbor. Symp. Horn. Příbram ve Vědě a Technice, Geologie; ČSUP: Příbram, Czech Republic, 1980; pp. 67–87. (In Czech) [Google Scholar]
- Litochleb, J.; Novická, Z.; Hlaváček, A. Mineralogical-petrological and geochemical characteristics of uranium mineralization and hydrothermal altered rocks on the Nahošín and Mečichov uranium deposits. Uranium Explor. Enterp. Příbram. 1984, unpublished report. 1–101. (In Czech) [Google Scholar]
- Litochleb, J.; Kotlovský, P. Geological building and mineralization of the nahošín uranium deposit. In Sbor. Symp. Horn. Příbram ve vědě a Technice; ČSUP: Příbram, Czech Republic, 1988; pp. 91–101. (In Czech) [Google Scholar]
- Litochleb, J.; Sejkora, J.; Šrein, V.; Klaudy, S.; Cílek, V.; Žák, K. Hydrothermal alterations and mineralization of the uranium deposit Nahošín SW of Blatná, Czech Republic. Bull. Mineral. Petrogr. Odd. Nár. Muz. (Praha) 2009, 17, 1–22. (In Czech) [Google Scholar]
- René, M. Petrogenesis of granitoids of the Blatná area. Acta Mont. 1998, 12, 141–152. [Google Scholar]
- René, M. Petrogenesis of granitoids of the Červená type (central bohemian plutonic complex). Acta Mont. IRSM AS CR 1999, 14, 81–97. [Google Scholar]
- Dudek, A.; Fediuk, F. Quarries for granodiorite in environs of Blatná. Geotechnica 1960, 30, 1–63. (In Czech) [Google Scholar]
- DIAMO. The Mining and Mining Possibilities of Uranium in the Czech Republic; DIAMO: Stráž pod Ralskem, Czech Republic, unpublished study. (In Czech)
- Kafka, J. (Ed.) Czech Ore and Uranium Mining Industry; Anagram: Ostrava, Czech Republic, 2003; pp. 1–647. (In Czech) [Google Scholar]
- Grant, J.A. The isocon diagram-A simple solution to gresens equation for metasomatic alteration. Econ. Geol. 1986, 81, 1976–1982. [Google Scholar] [CrossRef]
- Pouchou, J.J.; Pichoir, F. “PAP” (ϕ-ρ-Z) procedure for improved quantitative microanalysis. In Microbeam Analysis; Armstrong, J.T., Ed.; San Francisco Press: San Francisco, CA, USA, 1985; pp. 104–106. [Google Scholar]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Miner. Pets 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Miner. Pets 1987, 95, 407–419. [Google Scholar] [CrossRef]
- Hecht, L.; Cuney, M. Hydrothermal alteration of monazite in the precambrian crystalline basement of the athabasca basin (Saskatchewan, Canada): Implications for the formation of unconformity-related uranium deposits. Minim. Depos. 2000, 35, 791–795. [Google Scholar] [CrossRef]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and igneous systems: Evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect. Contrib. Miner. Pets 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Giére, R. Transport and deposition of REE in H2S-rich fluids: Evidence from accessory mineral assemblages. Chem. Geol. 1993, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Rubin, J.W.; Henry, C.D.; Price, J.G. The mobility of zirconium and other “immobile” elements during hydrothermal alteration. Chem. Geol. 1993, 110, 29–47. [Google Scholar] [CrossRef]
- MacMillan, E.; Cook, N.J.; Ehrig, K.; Pring, A. Chemical and textural interpretation of large stage coffinite and brannerite from the Olympic dam IOCG-Ag-U deposit. Miner. Mag. 2017, 81, 1323–1368. [Google Scholar] [CrossRef]
- Pointer, C.M.; Asworth, J.R.; Ixer, R.A. The zircon-thorite mineral group in metasomatized granite, ririwai, nigeria. 1. Geochemistry and metastable solid solution in thorite and coffinite. Miner. Pets 1988, 38, 245–262. [Google Scholar] [CrossRef]
- Wilde, A.; Otto, A.; Jory, J.; MacRae, C.; Pownceby, M.; Wilson, N.; Torby, A. Geology and mineralogy of uranium deposits from Mount Isa, Australia: Implications for albitite uranium deposit model. Minerals 2013, 3, 258–283. [Google Scholar] [CrossRef]
- Shahin, A.A. Geochemical characteristics and chemical electron microprobe U-Pb-Th dating of pitchblende mineralization from gabal gattar younger granite, north eastern desert, Egypt. Open J. Geol. 2014, 4, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Wang, K.; Liu, X.; Cuney, M.; Pan, J.; Wang, G.; Zhang, L.; Zhang, J. Uranium mineralogical and chemical features of the Na-metasomatic type uranium deposit in the Longshoushan metallogenic belt, northwestern China. Minerals 2020, 10, 335. [Google Scholar] [CrossRef] [Green Version]
- Alexandre, P. Mineralogy and geochemistry of the sodian metasomatism-related uranium occurrence of Aricheng South, Guyana. Minim. Depos. 2015, 45, 351–367. [Google Scholar] [CrossRef]
- Freemantle, G.G. Primary Uranium Mineralization of the Central Damara Orogeny, Namibia. Ph.D. Thesis, University of Witwatersrand, Johannesburg, South Africa, 2015. [Google Scholar]
- Abd El-Naby, H.H. High and low temperature alteration of uranium and thorium minerals, Um Ara granites, south eastern desert, Egypt. Ore Geol. Rev. 2009, 35, 436–446. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Silva, M.M.V.G.; Neiva, A.M.R.; Guimaräes, F.; Silva, P.B. Release, migration, sorption and (re)precipitation of U during peraluminous granite alteration under oxidizing conditions in Central Portugal. Geosciences 2018, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Hogarth, D.D.; Hartree, R.; Loop, J.; Solberg, T.N. Rare-earth element minerals in four carbonatites near Gatineau, Quebec. Amer. Miner. 1985, 70, 1135–1142. [Google Scholar]
- Zaitsev, A.N.; Wall, F.; Le Bas, M.J. REE-Sr-Ba minerals form the Khibina carbonatites, Kola Peninsula, Russia: Their mineralogy, paragenesis and evolution. Miner. Mag. 1998, 62, 225–250. [Google Scholar] [CrossRef]
- Smith, M.P.; Henderson, P.; Campbell, L.S. Fractionation of the REE during hydrothermal processes: Constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochim. Cosmochim. Acta 2000, 64, 3141–3160. [Google Scholar] [CrossRef]
- Yang, X.; LeBas, M.J. Chemical composition of carbonate minerals from Bayan Obo, Inner Mongolia, China: Implications fo0r petrogenesis. Lithos 2004, 72, 97–116. [Google Scholar] [CrossRef]
- Ruberti, E.; Enrich, G.E.R.; Gomes, C.B.; Comin-Chiaramonti, P. Hydrothermal REE fluorcarbonate mineralization at Barra do itapirapuã, a multiple stockwork carbonatite, Southern Brazil. Can. Miner. 2008, 46, 901–914. [Google Scholar] [CrossRef]
- Guastoni, A.; Nestola, F.; Giaretta, A. Mineral chemistry and alteration of rare earth element (REE) carbonates from alkali pegmatites of Mount Malosa, Malawi. Am. Miner. 2009, 94, 1216–1222. [Google Scholar] [CrossRef]
- Littlejohn, A.L. Alteration products of accessory allanite in radioactive granites from the Canadian shield. Geol. Surv. Can. Pap. 1981, 81, 95–104. [Google Scholar]
- Caruso, L.; Simmons, G. Uranium and microcracks in a 1.000-meter core, redstone, new hampshire. Contrib. Miner. Pets 1985, 90, 1–17. [Google Scholar] [CrossRef]
- Johan, Z.; Johan, V. Accessory minerals of the cínovec (zinnwald) granite cupola, Czech Republic: Indicators of petrogenetic evolution. Miner. Pets 2005, 83, 113–150. [Google Scholar] [CrossRef]
- Förster, H.-J. Cerite-(Ce) and thorian synchysite-(Ce) from niederbobritzsch (Erzgebirge, Germany): Implications for the differential mobility of Th and the LREE during granite alteration. Can. Miner. 2000, 38, 67–79. [Google Scholar] [CrossRef]
- Förster, H.-J. Synchysite-(Y)-synchysite-(Ce) solid solutions from markersbach, Erzgebirge, Germany: REE and Th mobility during high-T alteration of highly fractionated aluminous A-type granites. Miner. Pets 2001, 72, 259–280. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Rare earth element mineralogy of the olympic dam Cu-U-Au-Ag deposit, roxby downs, South Australia: Implications for ore genesis. Neues. Jahrb. Miner. Mon. 1995, 8, 371–384. [Google Scholar]
- Capitani, G. Synchysite-(Ce) from Cinqueralli (Tronto, Italy): Stacking disorder and polytpism of (Ca, REE)-fluorcrbonates. Minerals 2020, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Schmandt, D.S.; Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Wade, B.P.; Gilbert, S.; Kamenetsky, V.S. Rare earth element fluorocarbonate minerals from the olympic dam Cu-U-Au-Ag deposit, south Australia. Minerals 2017, 7, 202. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, M. Relative proportions of the lanthanides in minerals of the bastnaesite group. Can. Miner. 1978, 16, 361–363. [Google Scholar]
- Grammatikoupolos, T.; Mercer, W.; Gunning, C.; Prout, S. Quantitative characterization of the REE minerals by QEMSCAN from nechalacho heavy rare earth deposit, Thor Lke prospect, NWT, Canada. SGS Miner. Surv. Tech. Pap. 2011, 7, 1–11. [Google Scholar]
- Papoutsa, A.; Pe-Piper, G. Variation of REE-Hydrothermal circulation in complex shear zones: The cobequid highland, Nova Scotia. Can. Miner. 2014, 52, 943–968. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Brady, A.E.; Wall, F.; Gunn, G.; Dawes, W. REE minerals at the songwe hill carbonatite, malawi: HREE-enrichment in late-stage apatite. Ore Geol. Rev. 2017, 81, 23–41. [Google Scholar] [CrossRef] [Green Version]
Sample | R-704 | R-709 | R-780 | R-986 | R-710 | R-752 | R-781 | R-981 |
---|---|---|---|---|---|---|---|---|
Nahošín | Nahošín | Mečichov | Mečichov | Nahošín | Nahošín | Mečichov | Mečichov | |
Rock wt % | amf-bt gnt | amf-bt gnt | amf-bt gnt | amf-bt nt | altered gnt | altered gnt | altered gnt | altered gnt |
SiO2 | 69.52 | 68.87 | 63.38 | 62.11 | 59.28 | 43.65 | 53.52 | 58.97 |
TiO2 | 0.60 | 0.58 | 0.71 | 0.79 | 0.62 | 0.42 | 0.73 | 0.39 |
Al2O3 | 15.66 | 15.63 | 16.02 | 16.87 | 15.44 | 14.92 | 18.86 | 16.20 |
Fe2O3 | 0.01 | 0.44 | 0.80 | 0.74 | 1.30 | 1.53 | 2.22 | 1.00 |
FeO | 2.08 | 1.80 | 3.55 | 4.08 | 1.80 | 1.42 | 2.48 | 1.94 |
MnO | 0.04 | 0.05 | 0.07 | 0.08 | 0.10 | 0.12 | 0.09 | 0.05 |
MgO | 1.27 | 1.19 | 2.65 | 3.00 | 1.74 | 2.26 | 3.20 | 1.88 |
CaO | 1.98 | 2.36 | 3.25 | 3.68 | 5.25 | 14.40 | 3.85 | 4.23 |
Na2O | 3.26 | 3.58 | 3.06 | 2.95 | 3.73 | 3.46 | 4.28 | 5.38 |
K2O | 4.20 | 3.98 | 4.11 | 3.55 | 4.12 | 3.55 | 4.91 | 4.25 |
P2O5 | 0.30 | 0.36 | 0.26 | 0.25 | 0.42 | 0.20 | 0.28 | 0.17 |
H2O+ | 0.83 | 0.81 | 0.86 | 1.00 | 1.29 | 1.33 | 1.82 | 1.42 |
H2O− | 0.00 | 0.00 | 0.20 | 0.00 | 0.02 | 0.33 | 0.63 | 0.16 |
CO2 | 0.14 | 0.12 | 0.14 | 0.00 | 4.49 | 11.30 | 2.64 | 3.38 |
Total | 99.89 | 99.77 | 99.06 | 99.10 | 99.60 | 98.89 | 99.51 | 99.42 |
A/CNK | 1.26 | 1.08 | 1.04 | 1.10 | 0.77 | 0.42 | 0.97 | 0.77 |
ppm | ||||||||
Ba | 1165 | 1144 | 1562 | 1400 | 1191 | 659 | 1368 | 1710 |
Rb | 161 | 146 | 101 | 128 | 211 | 160 | 157 | 100 |
Sr | 410 | 453 | 466 | 427 | 320 | 185 | 233 | 276 |
Nb | 11 | 8 | 11 | 12 | 24 | 22 | 13 | 17 |
Zr | 150 | 141 | 223 | 236 | 166 | 322 | 205 | 195 |
Y | 23 | 23 | 29 | 20 | 45 | 33 | 29 | 11 |
Pb | 51 | 55 | 48 | 27 | 68 | 39 | 34 | 35 |
U | 9 | 8 | 8 | 3 | 366 | 378 | 11 | 391 |
Th | 18 | 20 | 15 | 14 | 16 | 20 | 24 | 28 |
Sample | R-752-17 | R752-19 | R-752-20 | R-752-21 | R-784-30 | R-787-20 | R-784-43 |
---|---|---|---|---|---|---|---|
Locality | Nahošín | Nahošín | Nahošín | Nahošín | Mečichov | Mečichov | Mečichov |
Mineral | coffinite | coffinite | coffinite | coffinite | thorite | thorite | uraninite |
UO2 | 60.99 | 61.64 | 61.50 | 59.48 | 1.85 | 4.70 | 81.90 |
ThO2 | b.d.l. | b.d.l. | 0.01 | b.d.l. | 54.94 | 51.71 | 9.78 |
TiO2 | 0.91 | 1.32 | 0.21 | 0.35 | b.d.l. | 0.17 | b.d.l. |
FeO | 0.05 | 0.12 | 0.13 | 0.26 | 2.14 | 0.65 | 0.28 |
CaO | 1.57 | 1.49 | 1.39 | 1.73 | 1.19 | 0.97 | 0.08 |
MnO | b.d.l. | 0.02 | b.d.l. | 0.04 | n.d. | n.d. | n.d. |
SiO2 | 21.08 | 21.07 | 20.95 | 20.82 | 17.78 | 19.46 | b.d.l. |
ZrO2 | b.d.l. | 0.15 | 0.97 | 0.19 | 0.16 | 1.31 | b.d.l. |
Nb2O5 | 0.01 | 0.03 | 0.05 | 0.05 | 0.04 | b.d.l. | b.d.l. |
Al2O3 | 1.45 | 1.68 | 1.53 | 1.54 | 0.51 | 1.33 | n.d. |
PbO | n.d. | n.d. | n.d. | n.d. | 0.55 | 0.54 | 4.07 |
P2O5 | 0.25 | 0.16 | 0.19 | 0.20 | 1.80 | 0.85 | n.d. |
La2O3 | 0.35 | 0.38 | 0.39 | 0.23 | 0.22 | 0.40 | b.d.l. |
Ce2O3 | 2.44 | 2.16 | 2.05 | 1.92 | 1.20 | 1.45 | 0.26 |
Pr2O3 | 0.57 | 0.41 | 0.42 | 0.35 | n.d. | n.d. | b.d.l. |
Nd2O3 | 2.54 | 1.96 | 1.50 | 2.22 | n.d. | n.d. | 0.49 |
Sm2O3 | 0.60 | 0.58 | 0.61 | 1.01 | n.d. | n.d. | 0.04 |
Gd2O3 | 0.49 | 0.56 | 0.64 | 0.80 | n.d. | n.d. | 0.05 |
Dy2O3 | 0.30 | 0.26 | 0.47 | 0.65 | 0.69 | 0.63 | 0.21 |
Er2O3 | 0.07 | 0.16 | 0.23 | 0.37 | 0.33 | 0.05 | 0.08 |
Yb2O3 | 0.04 | 0.14 | 0.24 | 0.24 | 0.42 | 0.17 | b.d.l. |
Y2O3 | 2.27 | 2.03 | 2.86 | 3.06 | 4.35 | 3.12 | 1.01 |
Total | 96.70 | 96.95 | 96.34 | 95.51 | 87.49 | 87.51 | 98.25 |
Analyze | R-784-27 | R-784-33 | R-784-34 | R-784-36 |
---|---|---|---|---|
Locality | Mečichov | Mečichov | Mečichov | Mečichov |
SO3 | 0.10 | b.d.l. | 0.05 | 0.11 |
P2O5 | 0.46 | 0.00 | 0.03 | 0.93 |
As2O5 | b.d.l. | b.d.l. | 0.11 | 0.22 |
CO2 * | 24.98 | 28.18 | 27.59 | 25.87 |
SiO2 | 1.40 | 0.08 | 0.10 | 0.17 |
ThO2 | 0.95 | 0.28 | 0.39 | 0.70 |
UO2 | 0.03 | b.d.l. | b.d.l. | 0.05 |
Y2O3 | 0.47 | 0.29 | 0.43 | 0.32 |
La2O3 | 10.38 | 14.61 | 12.76 | 12.10 |
Ce2O3 | 21.83 | 25.06 | 24.56 | 25.08 |
Pr2O3 | 2.48 | 2.36 | 2.44 | 2.46 |
Nd2O3 | 11.41 | 8.08 | 7.84 | 8.73 |
Sm2O3 | 1.91 | 0.58 | 0.86 | 0.68 |
Eu2O3 | b.d.l. | 0.02 | 0.04 | b.d.l. |
Gd2O3 | 0.82 | 0.26 | 0.33 | 0.30 |
Dy2O3 | 0.20 | 0.10 | 0.07 | 0.08 |
FeO | 0.68 | b.d.l. | 0.33 | 1.20 |
CaO | 15.99 | 18.39 | 18.16 | 15.96 |
SrO | b.d.l. | b.d.l | b.d.l. | b.d.l. |
BaO | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
PbO | 0.04 | 0.03 | b.d.l. | 0.03 |
H2O * | 0.03 | 0.04 | 0.01 | 0.11 |
F | 5.62 | 6.02 | 5.97 | 5.54 |
O=F | −2.36 | −2.53 | −2.51 | −2.33 |
Total | 97.22 | 101.85 | 99.56 | 98.31 |
Ca/cations | 0.91 | 1.04 | 1.06 | 0.88 |
La/Ce | 0.48 | 0.59 | 0.52 | 0.49 |
La/Nd | 0.94 | 1.87 | 1.68 | 1.43 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
René, M. Alteration of Granitoids and Uranium Mineralization in the Blatná Suite of the Central Bohemian Plutonic Complex, Czech Republic. Minerals 2020, 10, 821. https://doi.org/10.3390/min10090821
René M. Alteration of Granitoids and Uranium Mineralization in the Blatná Suite of the Central Bohemian Plutonic Complex, Czech Republic. Minerals. 2020; 10(9):821. https://doi.org/10.3390/min10090821
Chicago/Turabian StyleRené, Miloš. 2020. "Alteration of Granitoids and Uranium Mineralization in the Blatná Suite of the Central Bohemian Plutonic Complex, Czech Republic" Minerals 10, no. 9: 821. https://doi.org/10.3390/min10090821
APA StyleRené, M. (2020). Alteration of Granitoids and Uranium Mineralization in the Blatná Suite of the Central Bohemian Plutonic Complex, Czech Republic. Minerals, 10(9), 821. https://doi.org/10.3390/min10090821