Effect of MgO and K2O on High-Al Silicon–Manganese Alloy Slag Viscosity and Structure
Abstract
:1. Introduction
2. Experimental
2.1. Materials Preparation
2.2. Measurement of Viscosity
2.3. Measurement of Melting Properties
2.4. Measurement of Structure
3. Results and Discussion
3.1. Viscosity of Slag
3.2. Flow Activation Energy
3.3. Structure Analysis of the Slag Using FTIR Spectroscopy
3.4. Structure Analysis of the Slag Using XPS
3.5. Melting Properties of Slags
4. Conclusions
- (1)
- The viscosity of SiO2–CaO–25 mass% Al2O3–MgO–MnO–K2O slag decreases with the increment of MgO content, and the decreasing rate of viscosity slows down by further increasing the content of MgO from 8 to 10 mass%. However, the viscosity of slag increases with the increase in K2O.
- (2)
- MgO acts as a network modifier that can dissociate O2− and interact with the O0 within Si–O or Al–O network structures, leading to an increase in the simpler O−, and then depolymerizes the complex network structure. On the contrary, when K2O is added into the molten slag, the K+ can accelerate the formation of [AlO4] tetrahedra and connects aluminate–silicate structural units, which results in the increase in O0 and O− and the polymerization of structure.
- (3)
- An increase in the MgO and K2O content leads to the transformation from the feldspar and liquid phase to spinel, which increases the melting temperature. By combining with the results of the viscosity and melting properties experiment, it is suitable to limit the content of MgO and K2O to less than 8 mass% and 1 mass%, respectively, for the production of silicon–manganese alloy.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ahmed, A.; Ghali, S.; El–Fawakhry, M.K.; El–Faramawy, H.; Eissa, M. Silicomanganese Production Utilizing Local Manganese Ores and Manganese Rich Slag. Ironmak. Steelmak. 2013, 41, 310–320. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Lv, X.; Li, B.; Bai, C. Relationship between Structure and Viscosity of CaO–SiO2–MgO–30.00wt–%Al2O3 Slag by Molecular Dynamics Simulation with FT–IR and Raman Spectroscopy. Ironmak. Steelmak. 2017, 45, 492–501. [Google Scholar] [CrossRef]
- Xing, X.; Pang, Z.; Mo, C.; Wang, S.; Ju, J. Effect of MgO and BaO on Viscosity and Structure of Blast Furnace Slag. J. Non-Cryst. Solids 2020, 530, 119801. [Google Scholar] [CrossRef]
- Sun, C.; Liu, X.; Li, J.; Yin, X.; Song, S.; Wang, Q. Influence of Al2O3 and MgO on the Viscosity and Stability of CaO–MgO–SiO2–Al2O3 Slags with CaO/SiO2=1.0. ISIJ Int. 2017, 57, 978–982. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Ren, S.; Wang, X.; Liu, Q.; Dong, L.; Yang, J.; Liu, J. Effect of Al2O3, MgO, and CaO/SiO2 on Viscosity of High Alumina Blast Furnace Slag. Steel Res. Int. 2016, 87, 241–249. [Google Scholar] [CrossRef]
- Liu, W.; Xing, X.; Zuo, H. The Viscous Behavior and Potassium Removal Capacity of CaO–SiO2–8wt%MgO–17wt%Al2O3–2.5wt%BaO–K2O Slag. Metall. Res. Technol. 2020, 117, 7. [Google Scholar]
- Zhang, G.; Chou, K. Measuring and Modeling Viscosity of CaO–Al2O3–SiO2(–K2O) Melt. Metall. Mater. Trans. B 2012, 43, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Jiang, T.; Xue, X.; Hu, B. Influence of MgO/Al2O3 Ratio on Viscosity of Blast Furnace Slag with High Al2O3 Content. Steel Res. Int. 2016, 87, 87–94. [Google Scholar] [CrossRef]
- Gao, E.; Wang, W.; Zhang, L. Effect of Alkaline Earth Metal Oxides on the Viscosity and Structure of the CaO–Al2O3 Based Mold Flux for Casting High–Al Steels. J. Non-Cryst. Solids 2016, 473, 79–86. [Google Scholar] [CrossRef]
- Li, P.; Ning, X. Effects of MgO/Al2O3 Ratio and Basicity on the Viscosities of CaO–MgO–SiO2–Al2O3 Slags: Experiments and Modeling. Metall. Mater. Trans. B 2016, 47, 446–457. [Google Scholar]
- Kim, W.H.; Sohn, I.; Min, D.J. A Study on the Viscous Behaviour with K2O Additions in the CaO–SiO2–Al2O3–MgO–K2O Quinary Slag System. Steel Res. Int. 2010, 81, 735–741. [Google Scholar] [CrossRef]
- Chang, Z.; Jiao, K.; Ning, X.; Zhang, J. Novel Approach to Studying Influences of Na2O and K2O Additions on Viscosity and Thermodynamic Properties of BF Slags. Metall. Mater. Trans. B 2019, 50, 1399–1406. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Z.; Liu, L.; Wang, X. FT–IR, Raman and NMR Investigation of CaO–SiO2–P2O5 and CaO–SiO2–TiO2–P2O5 Glasses. J. Non-Cryst. Solids 2015, 420, 26–33. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Xie, S.; Zhang, K.; Sohn, I. Effect of Basicity and B2O3 on the Viscosity and Structure of Fluorine–Free Mold Flux. J. Non-Cryst. Solids 2017, 460, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Liu, C.; Jiang, M. Role of Li2O on the structure and viscosity in CaO–Al2O3–Li2O–Ce2O3 melts. J. Non-Cryst. Solids 2017, 475, 101–107. [Google Scholar] [CrossRef]
- Zheng, K.; Zhang, Z.; Liu, L.; Wang, X. Investigation of the Viscosity and Structural Properties of CaO–SiO2–TiO2 Slags. Metall. Mater. Trans. B 2014, 45, 1389–1397. [Google Scholar] [CrossRef]
- Sohn, I.; Min, D.J. A Review of the Relationship between Viscosity and the Structure of Calcium–Silicate–Based Slags in Ironmaking. Steel Res. Int. 2012, 83, 611–637. [Google Scholar] [CrossRef]
- Kim, H.; Sohn, I. Effect of CaF2 and Li2O Additives on the Viscosity of CaO–SiO2–Na2O Slags. ISIJ Int. 2011, 51, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Zhang, Y.; Yuan, F.; An, Z. Effects of the Cr2O3 Content on the Viscosity of CaO–SiO2–10 Pct Al2O3–Cr2O3 Quaternary Slag. Metall. Mater. Trans. B 2018, 49, 1719–1731. [Google Scholar] [CrossRef]
- Wang, Z.; Sohn, I. Effect of substituting CaO with BaO on the viscosity and structure of CaO–BaO–SiO2–MgO–Al2O3 slags. J. Am. Ceram. Soc. 2018, 101, 4285–4296. [Google Scholar] [CrossRef]
Composition | SiO2 | CaO | Al2O3 | MnO | MgO | K2O | Other |
---|---|---|---|---|---|---|---|
Mass% | 38.54 | 26.21 | 22.87 | 4.24 | 3.97 | 0.32 | 3.85 |
Sample | SiO2 | CaO | Al2O3 | MnO | MgO | K2O | Basicity |
---|---|---|---|---|---|---|---|
(mass%) | (mass%) | (mass%) | (mass%) | (mass%) | (mass%) | (CaO/SiO2) | |
1 | 38.79 | 25.21 | 25 | 5 | 4 | 2 | 0.65 |
2 | 37.58 | 24.42 | 25 | 5 | 6 | 2 | 0.65 |
3 | 36.36 | 23.64 | 25 | 5 | 8 | 2 | 0.65 |
4 | 35.15 | 22.85 | 25 | 5 | 10 | 2 | 0.65 |
5 | 36.97 | 24.03 | 25 | 5 | 8 | 1 | 0.65 |
6 | 35.76 | 23.24 | 25 | 5 | 8 | 3 | 0.65 |
7 | 35.15 | 22.85 | 25 | 5 | 8 | 4 | 0.65 |
MgO (mass%) | Ef (kJ/mol) | K2O (mass%) | Ef (kJ/mol) |
---|---|---|---|
4 | 203.45 ± 12.95 | 1 | 183.06 ± 17.10 |
6 | 194.06 ± 8.29 | 2 | 190.14 ± 13.50 |
8 | 185.31 ± 9.11 | 3 | 203.29 ± 13.27 |
10 | 175.99 ± 3.86 | 4 | 218.47 ± 12.51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Pang, Z.; Zheng, J.; Du, Y.; Ren, S.; Ju, J. Effect of MgO and K2O on High-Al Silicon–Manganese Alloy Slag Viscosity and Structure. Minerals 2020, 10, 810. https://doi.org/10.3390/min10090810
Xing X, Pang Z, Zheng J, Du Y, Ren S, Ju J. Effect of MgO and K2O on High-Al Silicon–Manganese Alloy Slag Viscosity and Structure. Minerals. 2020; 10(9):810. https://doi.org/10.3390/min10090810
Chicago/Turabian StyleXing, Xiangdong, Zhuogang Pang, Jianlu Zheng, Yueli Du, Shan Ren, and Jiantao Ju. 2020. "Effect of MgO and K2O on High-Al Silicon–Manganese Alloy Slag Viscosity and Structure" Minerals 10, no. 9: 810. https://doi.org/10.3390/min10090810
APA StyleXing, X., Pang, Z., Zheng, J., Du, Y., Ren, S., & Ju, J. (2020). Effect of MgO and K2O on High-Al Silicon–Manganese Alloy Slag Viscosity and Structure. Minerals, 10(9), 810. https://doi.org/10.3390/min10090810