Editorial on Special Issue “Surface Chemistry in Mineral Processing and Extractive Metallurgy”
1. Introduction
References
- He, D.; Xiong, Y.; Wang, L.; Sun, W.; Liu, R.; Yue, T. Arsenic (III) removal from a high-concentration arsenic (III) solution by forming ferric arsenite on red mud surface. Minerals 2020, 10, 583. [Google Scholar] [CrossRef]
- Laskowski, J. Interfacial chemistry of mineral processing separations. In Surface and Colloid Science; Matijević, E., Ed.; Springer: Boston, MA, USA, 1982; Volume 12. [Google Scholar] [CrossRef]
- Solongo, S.K.; Gomez-Flores, A.; You, J.; Choi, S.; Heyes, G.W.; Ilyas, S.; Lee, J.; Kim, H. Cationic collector conformations on an oxide mineral interface: Roles of pH, ionic strength, and ion valence. Miner. Eng. 2020, 150, 106277. [Google Scholar] [CrossRef]
- Gomez-Flores, A.; Solongo, S.K.; Heyes, G.W.; Ilyas, S.; Kim, H. Bubble−particle interactions with hydrodynamics, XDLVO theory, and surface roughness for flotation in an agitated tank using CFD simulations. Miner. Eng. 2020, 152, 106368. [Google Scholar] [CrossRef]
- Huang, L.; Zeng, Q.; Hu, L.; Hu, Y.; Zhong, H.; He, Z. The contribution of long-terms static interactions between minerals and flotation reagents for the separation of fluorite and calcite. Minerals 2020, 9, 699. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Liu, Z.; Li, J.; Ao, S.; Pei, B.; Liu, D.; Li, J. Reexamining the role of ammonium ions in the sulfidization, xanthate-flotation of malachite. Minerals 2020, 10, 537. [Google Scholar] [CrossRef]
- An, D.; Zhang, J. A study of temperature effect on the xanthate’s performance during chalcopyrite flotation. Minerals 2020, 10, 426. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Xiao, W.; Wei, Y.; Li, S. Effect of Cu2+ on the activation to muscovite using electrochemical pretreatment. Minerals 2020, 10, 206. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Pei, B.; Liu, Z.; Wang, Y.; Li, J.; Liu, D. Improved Understanding of the Sulfidization Mechanism in Amine Flotation of Smithsonite: An XPS, AFM and UV–Vis DRS Study. Minerals 2020, 10, 370. [Google Scholar] [CrossRef] [Green Version]
- Wang., X.; Zhang, Q. Insight into the influence of surface roughness on the wettability of apatite and dolomite. Minerals 2020, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Chai, X.; Tian, M.; Chen, W.; Wan, S.; Meng, Q.; Zhai, J.; Gao, Y. The performance and adsorption mechanism of a novel collector, dodecyl dimethyl betaine (BS-12), for the flotation separation of ilmenite and titanaugite. Minerals 2020, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Hu, Y.; Sun, W.; Gao, Z.; Liu, R. Utilization of sodium hexametaphosphate for separating scheelite from calcite and fluorite using an anionic–nonionic collector. Minerals 2020, 9, 705. [Google Scholar] [CrossRef] [Green Version]
- Xiong, W.; Deng, J.; Zhao, K.; Wang, W.; Wang, Y.; Wei, D. Bastnaesite, barite, and calcite flotation behaviors with salicylhydroxamic acid as the collector. Minerals 2020, 10, 282. [Google Scholar] [CrossRef] [Green Version]
- Kupka, N.; Babel, B.; Rudolph, M. The Potential Role of Colloidal Silica as a Depressant in Scheelite Flotation. Minerals 2020, 10, 144. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Solongo, S.K.; Gomez-Flores, A.; Choi, S.; Zhao, H.; Urik, M.; Ilyas, S.; Kim, H. Intensified bioleaching of chalcopyrite concentrate using adapted mesophilic culture in continuous stirred tank reactors. Bioresour. Technol. 2020, 307, 123181. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.R.; Ilyas, S.; Kim, H.; Choi, S.; Trinh, H.B.; Ghauri, M.A.; Ilyas, N. Biotechnological recycling of critical metals from waste printed circuit boards. J. Chem. Technol. Biotechnol. 2020, 95, 2796–2810. [Google Scholar] [CrossRef]
- Chai, X.; Li, G.; Zhang, Z.; Chi, R.; Chen, Z. Leaching kinetics of weathered crust elution-deposited rare earth ore with compound ammonium carboxylate. Minerals 2020, 10, 516. [Google Scholar] [CrossRef]
- Sun, J.; Wen, J.; Wu, B.; Chen, B. Mechanism for the bio-oxidation and decomposition of pentlandite: Implication for nickel bioleaching at elevated pH. Minerals 2020, 10, 289. [Google Scholar] [CrossRef] [Green Version]
- Miao, B.; Shen, L.; Liu, X.; Zeng, W.; Wu, X. Bioinformatics and transcriptional study of the Nramp Gene in the extreme acidophile Acidithiobacillus ferrooxidans strain DC. Minerals 2020, 10, 554. [Google Scholar] [CrossRef]
- Chen, X.; Jin, X.; Jiao, H.; Yang, Y.; Liu, J. Pore connectivity and dewatering mechanism of tailings bed in raking deep-cone thickener process. Minerals 2020, 10, 375. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Zhao, H.; Ilyas, S. Editorial on Special Issue “Surface Chemistry in Mineral Processing and Extractive Metallurgy”. Minerals 2021, 11, 13. https://doi.org/10.3390/min11010013
Kim H, Zhao H, Ilyas S. Editorial on Special Issue “Surface Chemistry in Mineral Processing and Extractive Metallurgy”. Minerals. 2021; 11(1):13. https://doi.org/10.3390/min11010013
Chicago/Turabian StyleKim, Hyunjung, Hongbo Zhao, and Sadia Ilyas. 2021. "Editorial on Special Issue “Surface Chemistry in Mineral Processing and Extractive Metallurgy”" Minerals 11, no. 1: 13. https://doi.org/10.3390/min11010013
APA StyleKim, H., Zhao, H., & Ilyas, S. (2021). Editorial on Special Issue “Surface Chemistry in Mineral Processing and Extractive Metallurgy”. Minerals, 11(1), 13. https://doi.org/10.3390/min11010013