Editorial for Special Issue “Mineral Liberation”
Funding
Acknowledgments
Conflicts of Interest
References
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Guntoro, P.I.; Ghorbani, Y.; Koch, P.H.; Rosenkranz, J. X-ray microcomputed tomography (µCT) for mineral characterization: A review of data analysis methods. Minerals 2019, 9, 183. [Google Scholar] [CrossRef] [Green Version]
- Alfonso, P.; Hamid, S.A.; Anticoi, H.; Garcia-Valles, M.; Oliva, J.; Tomasa, O.; López-Moro, F.J.; Bascompta, M.; Llorens, T.; Castro, D.; et al. Liberation Characteristics of Ta–Sn Ores from Penouta, NW Spain. Minerals 2020, 10, 509. [Google Scholar] [CrossRef]
- Rong, G.; Xia, Y.; Zhang, Y.; Guo, F.; Wang, D.; Zhang, R.; Xing, Y.; Gui, X. Effect of Comminution Methods on Low-Rank Coal Bubble–Particle Attachment/Detachment: Implications for Flotation. Minerals 2019, 9, 452. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, Z.S.; Khalesi, M.R. Development of a Simulator for Random and Non-Random Breakage of Particles and Liberation of Grains Based on Voronoi Tessellation. Minerals 2019, 9, 341. [Google Scholar] [CrossRef] [Green Version]
- Guldris Leon, L.; Hogmalm, J.L.; Bengtsson, M. Understanding Mineral Liberation during Crushing Using Grade-by-Size Analysis—A Case Study of the Penuota Sn-Ta Mineralization, Spain. Minerals 2020, 10, 164. [Google Scholar] [CrossRef] [Green Version]
- Hamid, S.A.; Alfonso, P.; Oliva, J.; Anticoi, H.; Guasch, E.; Sampaio, C.H.; Garcia-Valles, M.; Escobet, T. Modeling the Liberation of Comminuted Scheelite Using Mineralogical Properties. Minerals 2019, 9, 536. [Google Scholar] [CrossRef] [Green Version]
- Saramak, D.; Saramak, A. Potential Benefits in Copper Sulphides Liberation through Application of HRC Device in Ore Comminution Circuits. Minerals 2020, 10, 817. [Google Scholar] [CrossRef]
- Lastra, R. Seven practical application cases of liberation analysis. Int. J. Miner. Process. 2007, 84, 337–347. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Ehrig, K.; Slattery, A.; Verdugo-Ihl, M.R.; Courtney-Davies, L.; Gao, W. Advances and opportunities in ore mineralogy. Minerals 2017, 7, 333. [Google Scholar] [CrossRef] [Green Version]
- Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ueda, T.; Oki, T.; Koyaanaka, S. Comparison of Seven Texture Analysis Indices for Their Applicability to Stereological Correction of Mineral Liberation Assessment in Binary Particle Systems. Minerals 2017, 7, 222. [Google Scholar] [CrossRef] [Green Version]
- Hamid, S.A.; Alfonso, P.; Anticoi, H.; Guasch, E.; Oliva, J.; Dosbaba, M.; Garcia-Valles, M.; Chugunova, M. Quantitative Mineralogical Comparison between HPGR and Ball Mill Products of a Sn-Ta Ore. Minerals 2018, 8, 151. [Google Scholar] [CrossRef] [Green Version]
- Anticoi, H.; Guasch, E.; Hamid, S.A.; Alfonso, P.; Oliva, J.; Bascompta, M.; Sanmiquel, L.; Escobet, A.; Argelaguet, R.; Escobet, T.; et al. Mineral and mechanical characterization of tantalum and tungsten ores. Minerals 2018, 8, 170. [Google Scholar] [CrossRef] [Green Version]
- Vizcarra, T.G.; Wightman, E.M.; Johnson, N.W.; Manlapig, E.V. The effect of breakage mechanism on the mineral liberation properties of sulphide ores. Miner. Eng. 2010, 23, 374–382. [Google Scholar] [CrossRef]
- Mariano, R.A.; Evans, C.L.; Manlapig, E. Definition of random and non-random breakage in mineral liberation-A review. Miner. Eng. 2016, 94, 51–60. [Google Scholar] [CrossRef]
- Oliva, J.; Alfonso, P.; Fitzpatrick, R.; Ghorbani, Y.; Graham, P.; Graham, A.; Bengtsson, M.; Everstsson, M.; Hühnerfürst, T.; Lieberwirth, H.; et al. Optimization systems developed to improve the yield on tungsten and tantalum extraction and reduce associated costs–the EU HORIZON 2020 Optimore project (grant no. 642201). In Proceedings of the Real-Time Mining—International Raw Materials Extraction Innovation Conference, Amsterdam, The Netherlands, 10–11 October 2017; pp. 69–89. [Google Scholar]
- Ghorbani, Y.; Fitzpatrick, R.; Kinchington, M.; Rollinson, G.; Hegarty, P. A process mineralogy approach to gravity concentration of Tantalum bearing minerals. Minerals 2017, 7, 194. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonso, P. Editorial for Special Issue “Mineral Liberation”. Minerals 2021, 11, 47. https://doi.org/10.3390/min11010047
Alfonso P. Editorial for Special Issue “Mineral Liberation”. Minerals. 2021; 11(1):47. https://doi.org/10.3390/min11010047
Chicago/Turabian StyleAlfonso, Pura. 2021. "Editorial for Special Issue “Mineral Liberation”" Minerals 11, no. 1: 47. https://doi.org/10.3390/min11010047
APA StyleAlfonso, P. (2021). Editorial for Special Issue “Mineral Liberation”. Minerals, 11(1), 47. https://doi.org/10.3390/min11010047