Stream Sediments of the Pestrinsk Silver-Bearing System (Northeastern Russia)
Abstract
:1. Introduction
2. Characteristics of the Study Area
2.1. Geological Setting
2.2. Mineralization
2.3. Geography and Climate
3. Materials and Methods
3.1. Methods of Geochemical Sampling
3.2. Analysis Methods
3.3. Methods of Data Processing
4. Results
4.1. AGCFs of the Pestrinsk Silver-Bearing System, Identified through SSs (Survey at a 1:200,000 Scale)
4.2. AGCFs of the Pestrinsk Silver-Bearing System, Identified through SSs (Survey at 1:50,000 Scale)
4.3. Sampling Features at the Watercourse Heads
5. Discussion
5.1. The Composition and Structure of the AGCFs of the Pestrinsk Silver-Bearing System
5.1.1. Survey of Stream Sediments at 1:200,000 Scale
5.1.2. Survey of Stream Sediments at a 1:50,000 Scale
5.1.3. Erosion Level Estimation of the Pestrinsk Silver-Bearing System
5.2. Bryolithochemical Research under Prospecting for Silver Mineralization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogolyubov, A.N.; Sochevanov, N.N. Small-scale metallometric searches for polymetals on halos and stream sediments. Razved. Okhrana Nedr. 1959, 10, 9–12. (In Russian) [Google Scholar]
- Krasnikov, V.I. Rational Method Fundamentals of Ore Deposit Prospecting; Gosgeoltekhizdat: Moscow, Russia, 1959; p. 412. (In Russian) [Google Scholar]
- Polikarpochkin, V.V. Geochemical methods for ore deposit prospecting on stream sediments. Sov. Geol. 1963, 4, 63–76. (In Russian) [Google Scholar]
- Polikarpochkin, V.V. Secondary Halos and Stream Sediments; Nauka: Novosibirsk, Russia, 1976; p. 408. (In Russian) [Google Scholar]
- Solovov, A.P. Geochemical Methods for Mineral Deposit Prospecting; Nedra: Moscow, Russia, 1985; p. 294. (In Russian) [Google Scholar]
- Solovov, A.P.; Arkhipov, A.Y.; Bugrov, V.A.; Vorobyev, S.A.; Gershman, D.M.; Grigoryan, S.V.; Kvyatkovsky, E.M.; Matveev, A.A.; Milyaev, S.A.; Nikolaev, V.A.; et al. Handbook of Geochemical Prospecting for Minerals; Nedra: Moscow, Russia, 1990; p. 335. (In Russian) [Google Scholar]
- Kvyatkovsky, E.M. Lithochemical Methods of Prospecting for Endogenous Ore Deposits; Nedra: Leningrad, Russia, 1977; p. 189. (In Russian) [Google Scholar]
- Grigoryan, S.V.; Solovov, A.P.; Kuzin, M.F. Instruction on Geochemical Prospecting for Ore Deposits; Ovchinnikov, L.N., Ed.; Nedra: Moscow, Russia, 1983; p. 191. (In Russian) [Google Scholar]
- Pitul’ko, V.M.; Kritsuk, I.N. Data Interpretation Basics of Prospecting Geochemistry; Nedra: Leningrad, Russia, 1990; p. 336. (In Russian) [Google Scholar]
- Tauson, L.V.; Kravtsova, R.G.; Zaripov, R.H. Geochemical mapping of primary and secondary settings in ore-bearing regions. In Exploration Geochemistry 1990, Proceedings of the 3rd International Joint Symposium of the IAGC and the AEG, Prague, Czechoslovakia, 21–25 May 1990; Mrňa, F., Ed.; Prague Geological Survey: Prague, Czechoslovakia, 1991; pp. 376–381. [Google Scholar]
- Kravtsova, R.G.; Zakharov, M.N.; Ivanov, O.P. Combined geochemical investigations of the Pestrinsk silver-bearing field (Northeast Russia). Geol. Ore Depos. 1996, 38, 378–389. [Google Scholar]
- Kravtsova, R.G.; Pavlova, L.A.; Rogozina, Y.I. Modes of Ag occurrence in the loose deposits of dispersal trains at Au-Ag mineral deposits. Geochem. Int. 2010, 48, 731–736. [Google Scholar] [CrossRef]
- Kravtsova, R.G.; Pavlova, L.A.; Rogozina, Y.I.; Makshakov, A.S. First data on forms of gold occurrence in lithochemical sedimental streams of the gold-silver Dukat deposit (Northeastern Russia). Dokl. Earth Sci. 2010, 434, 1184–1191. [Google Scholar] [CrossRef]
- Kravtsova, R.G.; Tarasova, Y.I.; Makshakov, A.S.; Pavlova, L.A. Distribution and modes of occurrence of Au, Ag, and associated elements in the sediment streams of Au-Ag zones at the Dukat deposit (Northeastern Russia). Russ. Geol. Geophys. 2016, 57, 529–548. [Google Scholar] [CrossRef]
- Romanov, V.A. Stream sediments: Theory, methodology and practice. Ways of further development. Otechestvennaya Geol. 2008, 1, 78–82. (In Russian) [Google Scholar]
- Kravtsova, R.G. Geochemistry and Forming Conditions of Gold-Silver Ore-Forming Systems, Northern Pre Okhotsk Region; Academic Publishing House “Geo”: Novosibirsk, Russia, 2010; p. 292. (In Russian) [Google Scholar]
- Sokolov, S.V. The prediction and estimation of resource potential ore fields, nodes and areas of stray flux on the stages of a regional study of subsurface. Razved. Okhrana Nedr. 2010, 5, 48–53. (In Russian) [Google Scholar]
- Kravtsova, R.G.; Makshakov, A.S. Streams sediments of gold-silver ore-forming systems (Balygychan-Sugoisk depression, Northeast of Russia). In Gold of the North Pacific Rim, Proceedings of the Geology & Mining Conference and II International Geology & Mining Forum dedicated to Yu. A. Bilibin’s 110th Anniversary, Magadan, Russia, 3–5 September 2011; Goryachev, N.A., Ed.; NEISRI FEB RAS: Magadan, Russia, 2011; pp. 249–250. [Google Scholar]
- Kravtsova, R.G.; Makshakov, A.S. Anomalous geochemical fields of Au-Ag ore-forming systems of the Northern Priokhotje (Russia). In Geoanalysis 2012, Proceedings of the 8th International Conference on the Analysis of Geological and Environmental Materials, Buzios, Brazil, 16–20 September 2012; International Association of Geonalysts: Buzios, Brazil, 2012; p. 123. [Google Scholar]
- Makshakov, A.S.; Kravtsova, R.G.; Tatarinov, V.V. Lithochemical stream sediments of the Dukat gold-silver ore-forming system (North-East of Russia). Minerals 2019, 9, 789. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, H.E.; Webb, J.S. Geochemistry in Mineral Exploration; Harper & Row: Evanston, NY, USA, 1962; p. 415. [Google Scholar]
- Brown, B.W. Error in lead anomalous stream sediments. Econ. Geol. 1970, 65, 514–515. [Google Scholar] [CrossRef]
- Bradshaw, P.M.D.; Clews, D.R.; Walker, J.L. Exploration Geochemistry; Barringer Research Ltd.: Rexdale, ON, Canada, 1972; p. 304. [Google Scholar]
- Hawkes, H.E. The downstream dilution of stream sediment anomalies. J. Geochem. Explor. 1976, 6, 345–358. [Google Scholar] [CrossRef]
- Rose, A.W.; Hawkes, H.E.; Webb, J.S. Geochemistry in Mineral Exploration, 2nd ed.; Academic Press: London, UK, 1979; p. 657. [Google Scholar]
- Levinson, A.A. Introduction to Exploration Geochemistry, 2nd ed.; Applied Publishing: Wilmette, IL, USA, 1980; p. 924. [Google Scholar]
- Chork, C.Y.; Cruikshank, B.I. Statistical map analysis of regional stream-sediment data from Australia. J. Geochem. Explor. 1984, 21, 405–419. [Google Scholar] [CrossRef]
- Day, S.J.; Fletcher, W.K. Effects of valley and local channel morphology on the distribution of gold in stream sediments from Harris Creek, British Columbia, Canada. J. Geochem. Explor. 1989, 32, 1–16. [Google Scholar] [CrossRef]
- Siegel, F.R. Exploration for Mississippi-Valley type stratabound Zn ores with stream suspensates and stream sediments, Virginia, USA. J. Geochem. Explor. 1990, 38, 265–283. [Google Scholar] [CrossRef]
- Fletcher, W.K.; Loh, C.H. Transport equivalence of cassiterite and its application to stream sediment surveys for heavy minerals. J. Geochem. Explor. 1996, 56, 47–57. [Google Scholar] [CrossRef]
- Xie, X.; Mu, X.; Ren, T. Geochemical mapping in China. J. Geochem. Explor. 1997, 60, 99–113. [Google Scholar] [CrossRef]
- Melo, G.; Fletcher, W.K. Dispersion of gold and associated elements in stream sediments under semi-arid conditions, northeast Brazil. J. Geochem. Explor. 1999, 67, 235–243. [Google Scholar] [CrossRef]
- Naseem, S.; Sheikh, S.A.; Qadeeruddin, M.; Shirin, K. Geochemical stream sediment survey in Winder Valley, Balochistan, Pakistan. J. Geochem. Explor. 2002, 76, 1–12. [Google Scholar] [CrossRef]
- Ohta, A.; Imai, N.; Terashima, S.; Tachibana, Y. Influence of surface geology and mineral deposits on the spatial distributions of elements concentrations in the stream sediments of Hokkaido, Japan. J. Geochem. Explor. 2005, 86, 86–103. [Google Scholar] [CrossRef]
- Macdonald, E.H. Handbook of Gold Exploration and Evaluation; Woodhead Publishing Limited: Cambridge, UK, 2007; p. 647. [Google Scholar]
- Carranza, E.J.M. Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J. Geochem. Explor. 2011, 110, 167–185. [Google Scholar] [CrossRef]
- Yousefi, M.; Carranza, E.J.M.; Kamkar-Rouhani, A. Weighted drainage catchment basin mapping of geochemical anomalies using stream sediment data for mineral potential modeling. J. Geochem. Explor. 2013, 128, 88–96. [Google Scholar] [CrossRef]
- Ali, L.; Williamson, B.J.; Moon, C.J.; Shah, M.T.; Khattak, S.A. Distribution of gold in different size fractions of stream sediments as a guide to bedrock gold mineralisation along the Shyok Suture Zone and adjacent areas of the Kohistan Island Arc, Pakistan. Arab. J. Geosci. 2015, 8, 2227–2235. [Google Scholar] [CrossRef]
- Yilmaz, H.; Sonmez, F.N.; Carranza, E.J.M. Discovery of Au-Ag mineralization by stream sediment and soil geochemical exploration in metamorphic terrain in western Turkey. J. Geochem. Explor. 2015, 158, 55–73. [Google Scholar] [CrossRef]
- Yilmaz, H.; Ghezelbash, R.; Cohen, D.R.; Sari, R.; Sonmez, F.N.; Maghsoudi, A. Comparison between the geochemical response of BLEG and fine fraction stream sediments to mineralization in the Eastern Black Sea region, Turkey. J. Geochem. Explor. 2020, 217, 106609. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Y.; Xu, R.; Wang, H.; Jiang, X.; Yan, H.; Cai, P.; Guo, X. Application of classical statistics and multifractals to delineate Au mineralization-related geochemical anomalies from stream sediment data: A case study in Xinghai-Zeku, Qinghai, China. Geochem. Explor. Environ. Anal. 2016, 16, 253–264. [Google Scholar] [CrossRef]
- Xiao, F.; Chen, J.; Hou, W.; Wang, Z.; Zhou, Y.; Erten, O. A spatially weighted singularity mapping method applied to identify epithermal Ag and Pb-Zn polymetallic mineralization associated geochemical anomaly in Northwest Zhejiang, China. J. Geochem. Explor. 2018, 189, 122–137. [Google Scholar] [CrossRef]
- Chen, D.; Wei, J.; Wang, W.; Shi, W.; Li, H.; Zhan, X. Comparison of methods for determining the thresholds of geochemical anomalies and the prospecting direction—A case of gold deposits in the Gouli exploration area, Qinghai Province. Minerals 2019, 9, 368. [Google Scholar] [CrossRef] [Green Version]
- Shahrestani, S.; Mokhtari, A.R.; Carranza, E.J.M.; Hosseini-Dinani, H. Comparison of efficiency of techniques for delineating uni-element anomalies from stream sediment geochemical landscapes. J. Geochem. Explor. 2019, 197, 184–198. [Google Scholar] [CrossRef]
- Yu, X.; Xiao, F.; Zhou, Y.; Wang, Y.; Wang, K. Application of hierarchical clustering, singularity mapping, and Kohonen neural network to identify Ag-Au-Pb-Zn polymetallic mineralization associated geochemical anomaly in Pangxidong district. J. Geochem. Explor. 2019, 203, 87–95. [Google Scholar] [CrossRef]
- Zomorrodian, M.; Shayestehfar, M.R. Indicator ratios and additive composite halos in stream sediment samples as a geochemical indicator for identifying promising epithermal gold deposit in the north of Kashmar. Arab. J. Geosci. 2019, 12, 331. [Google Scholar] [CrossRef]
- Lin, X.; Hu, Y.; Meng, G.; Zhang, M. Geochemical patterns of Cu, Au, Pb and Zn in stream sediments from Tongling of East China: Compositional and geostatistical insights. J. Geochem. Explor. 2020, 210, 106457. [Google Scholar] [CrossRef]
- Wang, J.; Zuo, R. Quantifying the Distribution Characteristics of Geochemical Elements and Identifying Their Associations in Southwestern Fujian Province, China. Minerals 2020, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Milyaev, S.A.; Chekvaidze, V.B.; Isakovich, I.Z. Conjugated systems: Ore body + primary halo—Secondary halo—Stream sediments on the Natalkinskoe ore field example, North-East Russia. Otechestvennaya Geol. 2010, 1, 47–54. (In Russian) [Google Scholar]
- Goncharov, V.I.; Alshevsky, A.V.; Vortsepnev, V.V. Geology and Minerals of North-East Asia; Nauka: Vladivostok, Russia, 1984; p. 128. (In Russian) [Google Scholar]
- Umitbaev, R.B. Okhotsk-Chaun Metallogenic Province; Nauka: Moscow, Russia, 1986; p. 286. (In Russian) [Google Scholar]
- Grigor’yev, N.V.; Livach, A.E. Goltsovy deposit. In Predictive Exploration Models for Gold and Silver Deposits in Northeast Russia; Konstantinov, M.M., Rosenblum, I.S., Zinnatullin, M.Z., Eds.; North-Eastern Geological Committee: Moscow, Russia, 1992; pp. 54–59. [Google Scholar]
- Belyi, V.F. Geology of the Okhotsk-Chukotsk Volcanogenic Belt; NEISRI FEB RAS: Magadan, Russia, 1994; p. 76. (In Russian) [Google Scholar]
- Belyi, V.F. Problems of geological and isotopic age of the Okhotsk-Chukotsk Volcanogenic Belt (OCVB). Stratigr. Geol. Correl. 2008, 16, 639–649. [Google Scholar] [CrossRef]
- Akinin, V.V.; Khanchuk, A.I. The Okhotsk-Chukotka volcanogenic belt: Age revision based on new 40Ar/39Ar and U-Pb isotope data. Dokl. Earth Sci. 2005, 405, 1131–1135. [Google Scholar]
- Struzhkov, S.F.; Konstantinov, M.M. The Metallogeny of Gold and Silver in the Okhotsk-Chuckchee Volcanogenic Belt; Nauchny Mir: Moscow, Russia, 2005; p. 320. (In Russian) [Google Scholar]
- Sidorov, A.A.; Volkov, A.V.; Belyi, V.F.; Alekseev, V.Y.; Kolova, E.E. The gold-silver Okhotsk-Chukotka volcanic belt. Geol. Ore Depos. 2009, 51, 441–455. [Google Scholar] [CrossRef]
- Sidorov, A.A.; Chekhov, A.D.; Volkov, A.V.; Alekseev, V.Y. Metallogeny of the inner and outer zones of the Okhotsk-Chukotsk volcanogenic belt. Dokl. Earth Sci. 2011, 439, 949–954. [Google Scholar] [CrossRef]
- Ganelin, A.V.; Vatrushkina, E.V.; Luchitskaya, M.V. New data on volcanism of the Central Chukotka segment of the Okhotsk-Chukotka volcanogenic belt. Dokl. Earth Sci. 2019, 485, 252–256. [Google Scholar] [CrossRef]
- Filatov, S.I. USSR Geological Map. Scale 1:200,000; Upper-Kolyma Series. P-56-XVIII; Gosgeoltekhizdat: Moscow, Russia, 1960; 1 sheet. (In Russian) [Google Scholar]
- Filatov, S.I. USSR Geological Map of 1:200,000 Scale; Upper-Kolyma Series. Sheet P-56-XVIII. Explanatory Note; Nedra: Moscow, Russia, 1965; p. 88. (In Russian) [Google Scholar]
- Silinsky, A.D. USSR Geological Map Scale 1:200,000; Magadan Series. P-56-XXIV; Factory No 9: Moscow, Russia, 1963; 1 sheet. (In Russian) [Google Scholar]
- Silinsky, A.D. USSR Geological Map of 1:200,000 Scale; Magadan Series. Sheet P-56-XXIV. Explanatory Note; Nedra: Moscow, Russia, 1968; p. 60. (In Russian) [Google Scholar]
- Livach, A.E.; Churavtsov, A.P.; Tret’yakova, N.I. Russian Federation State Geological Map of 1:200,000 Scale, 2nd ed.; Sugoy Series. P-56-XVIII (Omsukchan); VSEGEI: Saint Petersburg, Russia, 2007; 1 sheet. (In Russian) [Google Scholar]
- Tauson, L.V.; Kravtsova, R.G.; Zakharov, M.N. Petrogeochemical factors of the distribution of ore fields in rare-metal ore magmatic systems, North-East of the USSR. Dokl. Akad. Nauk SSSR 1990, 313, 700–704. (In Russian) [Google Scholar]
- Anan’in, V.A.; Pridatko, M.R. Geological structure of the Upper Tap ore field. In Materials on Geology and Mineral Resources of North-East USSR; Tsopanov, O.K., Ed.; Book Publishing House: Magadan, Russia, 1978; pp. 136–141. (In Russian) [Google Scholar]
- Anan’in, V.A.; Pridatko, M.R.; Terent’yev, V.B. A new promising type of tin mineralization in the Omsukchan district. Kolyma 1980, 10, 36–38. (In Russian) [Google Scholar]
- Sidorov, A.A.; Konstantinov, M.M.; Eremin, R.A.; Savva, N.E.; Kopytin, V.I.; Safronov, D.N.; Naiborodin, V.I.; Goncharov, V.I. Silver: Geology, Mineralogy, Genesis, and Deposits’ Localization Regularities; Nauka: Moscow, Russia, 1989; p. 240. (In Russian) [Google Scholar]
- Plyashkevich, A.A. Mineralogy and Geochemistry of North-East Russian Tin-Silver Polymetallic Deposits; NEISRI FEB RAS: Magadan, Russia, 2002; p. 72. (In Russian) [Google Scholar]
- Kravtsova, R.G.; Zakharov, M.N.; Shatkov, N.G. Mineralogical and geochemical features of host rocks of the Gol’tsovoe silver-base metal deposit (Northeastern Russia). Geol. Ore Depos. 1998, 40, 197–210. [Google Scholar]
- Shilo, N.A.; Sakharova, M.S.; Krivitskaya, N.N.; Riakhovskaya, S.K.; Bryzgalov, I.A. Mineralogy and Origin Features of Gold-Silver Ores of the North-East Part of Pacific Ocean Frame; Nauka: Moscow, Russia, 1992; p. 256. (In Russian) [Google Scholar]
- Konstantinov, M.M.; Rosenblum, I.S.; Strujkov, S.F. Types of epithermal silver deposits, northeastern Russia. Econ. Geol. 1993, 88, 1797–1809. [Google Scholar] [CrossRef]
- Savva, N.E. Mineralogy of Silver in the North-East of Russia; Triumph: Moscow, Russia, 2018; p. 544, (In Russian). [Google Scholar] [CrossRef]
- Makshakov, A.S.; Kravtsova, R.G. Bryolithochemical studies in the search for and evaluation of gold-silver mineralization based on stream sediments (Northeastern Russia). Russ. Geol. Geophys. 2018, 59, 1836–1851. [Google Scholar] [CrossRef]
- Vasileva, I.E.; Shabanova, E.V. Arc atomic-emission analysis in geochemical research. Zavod. Lab. Diagn. Mater. 2012, 78, 14–24. (In Russian) [Google Scholar]
- Kitaev, N.A. Multidimensional Analysis of Geochemical Fields; Nauka: Novosibirsk, Russia, 1990; p. 120. (In Russian) [Google Scholar]
- Vinogradov, A.P. An average chemical elements content in main types of igneous crust rocks. Geokhimiya 1962, 7, 555–571. (In Russian) [Google Scholar]
- Clarke, F.W.; Washington, H.S. The Composition of the Earth’s Crust; US Geological Survey: Preston, VA, USA, 1924; pp. 127–140.
- Taylor, S.R. Trace element abundances and the chondritic Earth model. Geochim. Cosmochim. Acta 1964, 28, 1989–1998. [Google Scholar] [CrossRef]
- Li, Y.; Cao, J.; Hopke, P.K.; Holub, R.F.; Jiang, T. The discovery of the metallic particles of groundwater from the Dongshengmiao polymetallic deposit, Inner Mongolia, and their prospecting significance. J. Geochem. Explor. 2016, 161, 49–61. [Google Scholar] [CrossRef]
- Hu, G.; Cao, J. Occurrence and significance of natural ore-related Ag nanoparticles in groundwater systems. Chem. Geol. 2019, 515, 9–21. [Google Scholar] [CrossRef]
- Cao, J.; Cheng, S. Characteristics of particles in groundwater and their prospecting significance for the Shijiangshan Pb-Zn-Ag deposit, Inner Mongolia, China. J. Geochem. Explor. 2020, 217, 106592. [Google Scholar] [CrossRef]
- Liu, X.; Cao, J.; Dang, W.; Lin, Z.; Qiu, J. Nanoparticles in groundwater of the Qujia deposit, eastern China: Prospecting significance for deep-seated ore resources. Ore Geol. Rev. 2020, 120, 103417. [Google Scholar] [CrossRef]
- Kravtsova, R.G.; Borovikov, A.A.; Borisenko, A.S.; Prokof’ev, V.Y. Formation conditions of gold–silver deposits in the northern Okhotsk region, Russia. Geol. Ore Depos. 2003, 45, 395–415. [Google Scholar]
Element | Cb | In Average Rocks | In Acidic Rocks | In the Crust | ||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
Ag | 0.1 | 0.07 | 0.05 | 0.07 | 0.0n | 0.07 |
Hg | 0.05 | - | 0.08 | 0.083 | 0.n | 0.08 |
Sb | 0.2 | 0.2 | 0.26 | 0.5 | 0.n | 0.2 |
As | 2 | 2.4 | 1.5 | 1.7 | n | 1.8 |
Pb | 10 | 15 | 20 | 16 | 20 | 12.5 |
Zn | 50 | 72 | 60 | 83 | 40 | 70 |
Cu | 10 | 35 | 20 | 47 | 100 | 55 |
Mo | 1 | 0.9 | 1 | 1.1 | n | 1.5 |
W | 1 | 1 | 1.5 | 1.3 | 50 | 1.5 |
Sn | 2 | - | 3 | 2.5 | n | 2 |
Bi | 0.1 | 0.01 | 0.01 | 0.009 | 0.0n | 0.17 |
B | 10 | 15 | 15 | 12 | 10 | 10 |
No. | Element Associations |
---|---|
Ag–Pb | |
1 | Pb (280/28), Ag (1.5/15), Bi (1.5/15), Zn (750/15), Sn (18/9), B (70/7), Cu (50/5) |
2 | Bi (2.7/27), As (32/16), Pb (90/9), Ag (0.8/8), Zn (350/7), B (60/6), Cu (60/6), Sn (8/4) |
3 | Bi (2.4/24), Pb (80/8), B (60/6), Zn (250/5), Ag (0.4/4), Sn (8/4), Cu (40/4) |
Sn–Ag | |
4 | As (360/180), Bi (9/90), Sn (60/30), B (150/15), Pb (150/15), Zn (750/15), Ag (0.9/9), Cu (90/9) |
5 | As (420/210), Bi (13/130), Sn (32/16), B (140/14), Zn (550/11), Cu (90/9), Pb (90/9), Ag (0.8/8) |
6 | Bi (6/60), As (80/40), Sn (30/15), Zn (600/12), Pb (110/11), Ag (1/10), Cu (70/7), B (60/6) |
Sn | |
7 | As (880/440), Bi (16.5/165), Sn (230/115), B (190/19), W (14/14), Zn (650/13), Cu (110/11), Pb (70/7), Ag (0.4/4) |
8 | As (260/130), Bi (8.5/85), Sn (60/30), B (120/12), Zn (600/12), Pb (90/9), Cu (80/8), W (6/6), Mo (3/3), Ag (0.3/3) |
9 | As (280/140), Bi (8.5/85), Sn (24/12), Pb (100/10), B (100/10), Cu (90/9), Zn (350/7), W (5/5), Mo (3/3), Ag (0.3/3) |
10 | Bi (4/40), As (60/30), Sn (16/8), B (80/8), Zn (350/7), Pb (70/7), Cu (50/5), Mo (3/3), Ag (0.3/3) |
Sn–W and Mo–W | |
11 | As (460/230), Bi (11/110), W (14/14), Sn (26/13), Cu (120/12), B (110/11), Pb (100/10), Zn (400/8), Ag (0.7/7) |
12 | Bi (4/40), As (46/23), W (15/15), B (120/12), Zn (350/7), Sn (12/6), Pb (60/6), Cu (60/6), Ag (0.4/4) |
13 | Bi (6/60), As (100/50), Sn (20/10), W (10/10), Mo (7/7), Pb (70/7), Zn (350/7), Cu (60/6), B (40/4), Ag (0.3/3) |
Variable composition in ZDSM | |
14 | As (34/17), Bi (1/10), Pb (60/6), Zn (250/5), Cu (50/5), B (50/5), Sn (6/3), Ag (0.3/3), Mo (3/3) |
15 | W (5/5), Zn (200/4), Cu (40/4), B (40/4) |
16 | As (200/100), Cu (60/6), Zn (250/5), B (40/4), Mo (3/3) |
No. | Element Associations |
---|---|
Ag–Pb | |
1 | Ag (3.7/37), Pb (100/10), B (60/6) |
2 | Ag (2.3/23), B (100/10), Pb (60/6), Hg (0.3/6) |
3 | Ag (1.5/15), Pb (100/10), B (100/10), Sn (10/5), Hg (0.15/3) |
4 | Ag (0.9/9), B (80/8), Pb (60/6), Sn (10/5), Bi (0.3/3) |
5 | B (80/8), Ag (0.6/6), Pb (50/5), Sn (10/5), Bi (0.4/4) |
6 | B (50/5), Pb (40/4), Ag (0.4/4), Sn (8/4) |
Sn–Ag | |
7 | As (60/30), Ag (2.6/26), Bi (1.9/19), Sn (20/10), Cu (90/9), B (70/7), Pb (50/5), Zn (250/5), Mo (5/5), |
8 | As (24/12), Bi (1.1/11), Ag (1/10), B (80/8), Sn (14/7), Pb (60/6), Cu (30/3) |
9 | Ag (0.6/6), Sn (10/5), B (50/5), Bi (0.5/5), Pb (40/4) |
10 | As (22/11), Pb (70/7), B (70/7), Sn (10/5), Bi (0.4/4), Ag (0.4/4), Zn (150/3), Cu (30/3) |
11 | As (150/75), Ag (2.3/23), Cu (160/16), Bi (1.5/15), Sn (18/9), B (90/9), Pb (50/5), Zn (200/4), Mo (3/3) |
12 | Sb (34/170), As (200/100), Sn (36/18), Bi (1.7/17), Cu (120/12), Ag (1/10), B (90/9), Pb (70/7), Zn (200/4) |
Sn | |
13 | Sn (190/95), As (130/65), Pb (220/22), B (130/13), Bi (1.1/11), Zn (350/7), Ag (0.6/6), Cu (50/5) |
14 | As (160/80), Sn (36/18), Bi (1.5/15), B (140/14), Cu (80/8), Pb (60/6), Ag (0.6/6), Zn (250/5) |
15 | As (120/60), B (180/18), Bi (1.7/17), Sn (30/15), Pb (90/9), Cu (40/4), Zn (200/4), Ag (0.3/3) |
16 | As (90/45), Bi (3.8/38), B (150/15), Sn (10/5), Cu (40/4), Pb (30/3), Zn (150/3) |
17 | Bi (1.7/17), As (24/12), B (110/11), Sn (10/5), Cu (40/4) |
Sn–W and Mo–W | |
18 | As (36/18), Bi (1.1/11), B (100/10), W (6/6), Sn (8/4), Cu (40/4) |
19 | As (34/17), Bi (1.4/14), Mo (5/5), Sn (8/4), Cu (30/3), B (30/3) |
20 | As (200/100), Sn (76/38), B (200/20), Bi (1.3/13), Cu (50/5), W (4/4), Pb (40/4), Zn (150/3) |
21 | As (170/85), Bi (2/20), B (150/15), Cu (60/6), Sn (10/5), Mo (5/5), W (4/4) |
Variable composition in ZDSM | |
22 | As (24/12), Pb (120/12), B (50/5), Zn (200/4), Sn (8/4), Cu (30/3) |
23 | Bi (1.1/11), B (80/8), Sn (10/5), Hg (0.15/3) |
24 | B (50/5), Sn (8/4), Bi (0.3/3) |
25 | B (50/5) |
Mineralization Type | AGCFs’ Types | |||
---|---|---|---|---|
Endogenous (Ores + Primary Halos) | Exogenous (Secondary Halos) | Exogenous (Stream Sediments, Survey at a 1:200,000 Scale) | Exogenous (Stream Sediments, Survey at a 1:50,000 Scale) | |
Ag–Pb (Goltsovy deposit) | Sb (140/700), Ag (40/400), Pb (2600/260), As (180/90), Hg (0.8/16), B (80/8), Zn (250/5), Bi (0.5/5), Sn (8/4) | Ag (20/200), Sb (20/100), Pb (500/50), As (30/15), Hg (0.35/7), B (50/5) | Ag (1.1/11), Pb (100/10), B (90/9), Sn (12/6), Zn (300/6), Cu (30/3) | Ag (1.8/18), Pb (90/9), B (90/9), Sn (10/5), Hg (0.15/3) |
Sn–Ag (Goltsovy deposit) | As (300/150), Sb (20/100), Sn (200/100), Ag (8/80), Bi (4/40), Zn (1500/30), Pb (300/30), B (200/20), Cu (100/10) | Ag (5/50), Sn (40/20), As (40/20), Bi (0.8/8), Zn (400/8), Pb (80/8), B (60/6), Cu (40/4) | As (90/45), Bi (2/20), Sn (22/11), Zn (500/10), Pb (100/10), B (100/10), Ag (0.7/7), Cu (50/5) | As (66/33), Ag (2.5/25), Bi (2.3/23), Sn (24/12), Cu (80/8), B (70/7), Zn (300/6), Pb (50/5) |
Sn–W (Kalyan prospect) | W (1100/1100), As (500/250), Bi (17.5/175), Sn (130/65), Mo (10/10) | W (600/600), As (130/65), Bi (3.5/35), Sn (20/10), Mo (6/6) | Bi (4.3/43), As (72/36), W (15/15), B (120/12), Sn (16/8), Zn (300/6), Cu (60/6), Pb (60/6), Ag (0.4/4) | As (36/18), Bi (1.1/11), B (100/10), W (6/6), Sn (8/4), Cu (40/4) |
Particle Diameter, μm | Number of Ag Particles | ||
---|---|---|---|
1 | 2 | 3 | |
3–7 | >> | 932 | 1612 |
7–11 | >> | 829 | 1305 |
11–15 | >> | 352 | 193 |
15–18 | >> | 159 | 90 |
18–25 | >> | 28 | 28 |
Total number of particles | >> | 2300 | 3228 |
Average Ag content (ppm) | 26.5 | 4.4 | 3.3 |
Sample number | 19 | 19 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makshakov, A.S.; Kravtsova, R.G. Stream Sediments of the Pestrinsk Silver-Bearing System (Northeastern Russia). Minerals 2021, 11, 65. https://doi.org/10.3390/min11010065
Makshakov AS, Kravtsova RG. Stream Sediments of the Pestrinsk Silver-Bearing System (Northeastern Russia). Minerals. 2021; 11(1):65. https://doi.org/10.3390/min11010065
Chicago/Turabian StyleMakshakov, Artem S., and Raisa G. Kravtsova. 2021. "Stream Sediments of the Pestrinsk Silver-Bearing System (Northeastern Russia)" Minerals 11, no. 1: 65. https://doi.org/10.3390/min11010065
APA StyleMakshakov, A. S., & Kravtsova, R. G. (2021). Stream Sediments of the Pestrinsk Silver-Bearing System (Northeastern Russia). Minerals, 11(1), 65. https://doi.org/10.3390/min11010065