Mineralogical Analysis of the Kestel Mine: An Early Bronze Age Source of Tin Ore in the Taurus Mountains, Turkey
Abstract
:1. Introduction
1.1. The Controversy
1.2. Regional and Local Geology
2. Materials and Methods
3. Results
3.1. In Situ Veins and Surface Finds
3.2. Heavy Mineral Concentrate
4. Discussion
5. Conclusions
- 1.
- Remnant exposures of Kestel mineralization are composed of mineralogically simple assemblages (Hem + Qz ± Cst ± Tur ± Cal ± Clay) with trace Apy, Bi, and Au.
- 2.
- The heavy mineral assemblage preserved in sediments within the mine are far more complex than that of surface veins, with 27 heavy-metal bearing minerals identified, and the additional elemental components Sb, REEs, W, Hg, and Pb. Thus, the remnant mineralization is not representative of the ore that was extracted.
- 3.
- Arsenates are the most diverse group of minerals within heavy mineral fraction, and they are directly associated with cassiterite.
- 4.
- The scarcity of Cu, Au, and the lack of elements including Co, Ni, U, and F indicate that Kestel is not an OICG deposit. Rather the shallowly emplaced Hem + Qz + Cst + Arsenates ores appear to be a regional feature, occurring both at Kestel and at Hisarcık, and so may represent a new target for tin exploration in Central Turkey.
- 5.
- With cassiterite being the only non-ferrous ore mineral present at <1%, and the paucity of gold both in mine sediments and surface veins it is clear that Kestel was a large-scale tin mine in the Early Bronze Age.
- 6.
- Activities at Kestel represent the earliest evidence thus far for an emerging pattern of local tin exploitation that may continue into the Late Bronze Age. More definitively, this evidence demonstrates that Central Turkey was a significant tin producer in the Early Bronze Age, a millennium before nearby Kültepe-Kanesh arose as an administrative trade center that is known to have imported tin from Central Asia.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muhly, J. Sources of tin and the beginnings of bronze metallurgy. Am. J. Arch. 1985, 89, 275–291. [Google Scholar] [CrossRef]
- Penhallurick, R. Tin in Antiquity; The Institute of Metals: London, UK, 1986; 271p. [Google Scholar]
- Garner, J. Bronze Age tin mines in central Asia. In Archaeometallurgy in Europe III; Hauptmann, A., Modarressi-Tehrani, D., Eds.; Deutsches Bergbau-Museum: Bochum, Germany, 2015; pp. 135–143. [Google Scholar]
- Berger, D.; Soles, J.S.; Giumlia-Mair, A.R.; Brügmann, G.; Galili, E.; Lockhoff, N.; Pernicka, E. Isotope systematics and chemical composition of tin ingots from Mochlos (Crete) and other Late Bronze Age sites in the eastern Mediterranean Sea: An ultimate key to tin provenance? PLoS ONE 2019, 14, e0218326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yener, K.A.; Özbal, H.; Kaptan, E.; Pehlivan, A.N.; Goodway, M. Kestel: An Early Bronze Age source of tin ore in the Taurus Mountains, Turkey. Science 1989, 244, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Yener, K.A.; Kulakoğlu, F.; Yazgan, E.; Kontani, R.; Hayakawa, Y.; Lehner, J.; Dardeniz, G.; Öztürk, G.; Johnson, M.; Kaptan, E.; et al. New tin mines and production sites near Kultepe in Turkey: A third-millennium BC highland production model. Antiquity 2015, 345, 596–612. [Google Scholar] [CrossRef]
- Durman, A. Tin in southeastern Europe? Opusc. Archaeol. 1997, 21, 7–14. [Google Scholar]
- Mason, A.; Powell, W.; Bankoff, H.A.; Mathur, R.; Price, M.; Bulatović, A.; Filipović, V. Provenance of tin in the Late Bronze Age Balkans based on probabilistic and spatial analysis of Sn isotopes. J. Arch. Sci. 2020, 122, 105181. [Google Scholar] [CrossRef]
- Yener, K.A. Revisiting Kestel Mine and Göltepe: The dynamics of local provisioning of tin during the Early Bronze Age. In Ancient Mining in Turkey and the Eastern Mediterranean; Yalçın, Ü., Özbal, H., Paşamehmetoğlu, A.G., Eds.; Atılım University: Ankara, Turkey, 2008; pp. 57–64. [Google Scholar]
- Yener, K.A.; Vandiver, P. Tin processing at Göltepe, an Early Bronze Age site in Anatolia. Am. J. Arch. 1993, 97, 207–238. [Google Scholar] [CrossRef]
- Earl, B.; Özbal, H. Early Bronze Age tin processing at Kestel/Göltepe, Anatolia. Archaeometry 1996, 38, 289–303. [Google Scholar] [CrossRef]
- Öztürk, H.; Hanlinçi, N. Metallogenic evaluation of Turkey: Implications for tin sources of Bronze Age in Turkey. Tuba-Ar-Turk. Acad. Sci. J. Archaeol. 2009, 12, 105–116. [Google Scholar]
- Muhly, J.; Begemann, F.; Öztunali, Ö.; Pernicka, E.; Schmitt-Strecker, S.; Wagner, G. The bronze metallurgy of Anatolia and the question of local tin sources. Archaeometry 1991, 90, 209–220. [Google Scholar]
- Whitney, D.; Teyssier, C.; Heizler, M. Gneiss domes, metamorphic core complexes, and wrench zones: Thermal and structural evolution of the Niğde Massif, central Anatolia. Tectonics 2007, 28, TC5002. [Google Scholar] [CrossRef]
- Hall, M.; Steadman, S. Tin and Anatolia-Another Look. J. Mediterr. Arch. 1991, 4, 217–234. [Google Scholar] [CrossRef]
- Pernicka, E.; Wagner, G.; Muhly, J.; Öztunali, Ö. Comment on the discussion of ancient tin sources in Anatolia. J. Mediterr. Arch. 1993, 5, 91–98. [Google Scholar] [CrossRef]
- Muhly, J. Early Bronze Age tin and the Taurus. Am. J. Arch. 1993, 97, 239–253. [Google Scholar] [CrossRef]
- Yigit, O. Gold in Turkey—A missing link in Tethyan metallogeny. Ore Geol. Rev. 2006, 28, 147–179. [Google Scholar] [CrossRef]
- Kuşcu, I.; Yılmazer, E.; Güleç, N.; Bayır, S.; Demilela, G.; Kuşcu, G.; Kuru, G.; Kaymakçı, N. U-Pb and 40Ar-39Ar geochronology and isotopic constraints on the genesis of copper-gold-bearing iron oxide deposits in the Hasançelebi district, Eastern Turkey. Econ. Geol. 2011, 106, 261–288. [Google Scholar]
- Yılmazer, E.; Güleç, N.; Kusçu, I.; Lentz, D. Geology, geochemistry, and geochronology of Fe-oxide CU (±Au) mineralization associated with Şamlı pluton, western Turkey. Ore Geol. Rev. 2014, 57, 191–215. [Google Scholar] [CrossRef]
- Yener, K.A. The Domestication of Metals: The Rise of Complex Metal Industries in Anatolia; Brill: Leiden, The Netherlands; Boston, MA, USA; Koln, Germany, 2000; 228p. [Google Scholar]
- Whitney, D.; Teyssier, C.; Fayon, A.; Hamilton, M.; Heizler, M. Tectonic controls on metamorphism, partial melting, and intrusion: Timing and duration of regional metamorphism and magmatism in the Niğde Massif, Turkey. Tectonophysics 2003, 376, 37–60. [Google Scholar] [CrossRef]
- Kurt, H.; Koçak, K.; Asan, K.; Karakaş, M. Petrogenesis of the Üçkapılı granitoid and its mafic enclaves in Elmalı area (Niğde, Central Anatolia, Turkey. Acta Geol. Sin. 2013, 87, 738–748. [Google Scholar] [CrossRef]
- Kuşcu, I. Skarns and skarn deposits of Turkey. In Mineral Resources of Turkey; Pirajno, F., Ünlü, T., Dönmez, C., Şahin, M.B., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 283–336. [Google Scholar]
- Tumuklu, A.; Altuncu, S.; Ozgur, F. Mineralogy of the iron mineralizations associated with the Uckapili granitoid (Nigde Massif). Int. J. Eng. Res. Man 2016, 3, 2058–2349. [Google Scholar]
- Akçay, M. Geological and mineralogical investigation of the Gümüşler (Niğde) Sb±Hg±W occurrences and implications on their gold potential. Geol. Bul. Tur. 1995, 38, 11–22. [Google Scholar]
- Çağatay, A.; Pehlivan, N. Mineralogy of the Celaller (Niğde-Çamardi) tin mineralization. Geol. Eng. 1988, 32–33, 27–31. [Google Scholar]
- Williams, P.J.; Barton, M.D.; Johnson, D.A.; Fontboté, L.; De Haller, A.; Mark, G.; Oliver, N.H.S.; Marschik, R. Iron Oxide Copper-Gold Deposits: Geology, Space-Time Distribution, and Possible Modes of Origin. In Economic Geology; 100th Anniversary Volume; Society of Economic Geologists: Lyttelton, CO, USA, 2005; pp. 371–405. [Google Scholar]
- Yazgan, E. Cassiterite (tin) mineralization related with Erciyes volcanic activities and the mode of formation of the magnetite-cassiterite-yazganite-tridymite paragenesis. In Proceedings of the 58th Geological Congress of Turkey Abstracts, Ankara, Turkey, 11–17 April 2005; pp. 135–138. [Google Scholar]
- Yazgan, E. Erciyes volcanic activities and the mode of formation of the hematite-cassiterite-yazganite-tridymite paragenesis and its implication for bronze alloys. In Proceedings of the 1st Kültepe International Meeting, Studies Dedicated to Kutlu Emre, Kültepe, Turkey, 19–23 September 2013; Kulakoğlu, F., Michel, C., Eds.; pp. 183–194. [Google Scholar]
Mineral Name | Abbreviation in Text | Formula |
---|---|---|
Native Antimony | Sb | Sb |
Native Bismuth | Bi | |
Native Gold | Au | |
Arsenopyrite | Apy | FeAsS |
Cinnabar | HgS | |
Wittechinite | CuBiS3 | |
Hematite | Hem | Fe2O3 |
Magnetite | Fe3O4 | |
Ilmenite | FeTiO3 | |
Chromite | FeCr2O4 | |
Cassiterite | Cst | SnO2 |
Rutile | TiO2 | |
Damaraite | Pb3O2(OH)Cl | |
Beyerite | Bey | Ca(BiO2)(CO3)2 |
Calcite | Cal | CaCO3 |
Cerussite | Cer | PbCO3 |
Dolomite | Dol | MgCa(CO3)2 |
Barstowite | Bst | Pb4Cl6(CO3) · H2O |
Barite | BaSO4 | |
Apatite | Ap | Ca5(PO4)3(F,Cl,OH) |
Monazite | Mnz | (Ce,La,Nd,Th)PO4 |
As-Monazite | As-Mnz | (Ce,La,Nd,Th)(As,P)O4 |
Phosphohedyphane | Ca2Pb3(PO4)3Cl | |
Plumbogummite | PbAl3(PO4)(PO3OH)(OH)6 | |
Fluorcalcioroméite | (Ca,Na,□)2Sb5+2(O,OH)6F | |
Arsenoflorencite | (Ce,La,Nd)Al3(AsO4)2(OH)6 | |
Berzeliite | Brz | (NaCa2)Mg2(AsO4)3 |
Chernovite | YAsO4 | |
Mimetite | Pb5(AsO4)3Cl | |
Sewardite | Sew | CaFe3+2(AsO4)2(OH)2 |
Hydrotungstite | Htu | WO3 · H2O |
Raspite | Ras | PbWO4 |
Garnet | (Fe,Mg,Ca)3Al2(SiO4)3 | |
Titanite | CaTi(SiO4)O | |
Zircon | ZrSiO4 | |
Tourmaline | Tur | Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH) |
Diopside | CaMgSi2O6 | |
Hornblende | (Ca,Na)2–3(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2 | |
Chlorite | (Mg,Fe)5Al(Si3Al)O10(OH)8 | |
Quartz | Qz | SiO2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powell, W.; Yazgan, E.; Johnson, M.; Yener, K.A.; Mathur, R. Mineralogical Analysis of the Kestel Mine: An Early Bronze Age Source of Tin Ore in the Taurus Mountains, Turkey. Minerals 2021, 11, 91. https://doi.org/10.3390/min11010091
Powell W, Yazgan E, Johnson M, Yener KA, Mathur R. Mineralogical Analysis of the Kestel Mine: An Early Bronze Age Source of Tin Ore in the Taurus Mountains, Turkey. Minerals. 2021; 11(1):91. https://doi.org/10.3390/min11010091
Chicago/Turabian StylePowell, Wayne, Evren Yazgan, Michael Johnson, K. Aslıhan Yener, and Ryan Mathur. 2021. "Mineralogical Analysis of the Kestel Mine: An Early Bronze Age Source of Tin Ore in the Taurus Mountains, Turkey" Minerals 11, no. 1: 91. https://doi.org/10.3390/min11010091
APA StylePowell, W., Yazgan, E., Johnson, M., Yener, K. A., & Mathur, R. (2021). Mineralogical Analysis of the Kestel Mine: An Early Bronze Age Source of Tin Ore in the Taurus Mountains, Turkey. Minerals, 11(1), 91. https://doi.org/10.3390/min11010091