Monitoring of Lithium Contents in Lithium Ores and Concentrate-Assessment Using X-ray Diffraction (XRD)
Abstract
:1. Introduction
2. Experimental
2.1. Qualitative and Quantitative Mineral Analysis by XRD Combined with Rietveld Refinement Calculations
2.2. PLSR—Partial Least Squares Refinement Techniques for Different Mineral Mixtures
2.3. Cluster-Analysis of Obtained XRD Patterns of Mixtures
2.4. Principal Component Analysis—PCA
2.5. Determination of Detection Limits for Different Lithium Minerals in Matrices
3. Results for the Quantifications of Different Lithium Minerals in Binary Mixtures with Quartz
3.1. Quantification of Petalite—LiAlSi4O10-Quartz SiO2
3.2. Quantification of Spodumene LiAlSi2O6-Quartz SiO2
3.3. Quantification of Triphylite LiFePO4-Quartz SiO2
3.4. Quantification of Montebrasite LiAlPO4(OH,F)-Quartz SiO2
3.5. Quantification of Lepidolite KLi2AlSi3O10(OH,F)2-Quartz SiO2
3.6. Calibration of Zinnwaldite KLiFeAl2Si3O10(F,OH)2-Quartz SiO2
3.7. Analysis of Complex Lithium Ores and Process Mixtures
3.8. Investigation of Complex Ores Composed of Spodumene, Mica (Lepidolite), Quartz and Feldspar
4. Investigation of Special Hard Rock Ores and Brines—Industrial Case Studies on Complex Ores
4.1. Hard Rock Lithium Deposits—Characterization of Raw and Processed Materials
4.2. Lithium Brines—Mineralogical Characterization of Salts
5. Conclusions
- Quantitative lithium determination by mineral quantification is possible;
- Definite mineral composition must be known for calculations of contents;
- Rapid and fast lithium determination in mineral mixtures by XRD is possible;
- XRD quantification method is easily applied for simple mineralogical compositions of minerals and can replace wet chemical analysis;
- XRD methods for typical ternary mineral systems can already be successfully applied;
- XRD methods and interpretations combined with statistical treatment methods can be applied in practical applications:
- (A)
- Rietveld quantification—no calibration curve necessary
- (B)
- Partial Least Squares—refinement with calibration curves—rapid and reliable for lithium concentrates
- (C)
- Clustering of different lithium mineral compositions—identifies different lithium ore qualities
- (D)
- Classic lithium content determination using chemical methods—time consuming but useful for referencing
- More complex ores and brines can be treated by XRD and useful results are obtained methodology is more complicated;
- Determination of lithium in brines is more complicated due to lower lithium contents and due to complex mineralogy;
- For detailed mineralogical determinations a more sophisticated Rietveld analysis is useful for multi-mineral mixtures and more detailed results.
6. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaussidon, M.; Robert, F. Lithium nucleosynthesis in the Sun inferred from solar wind 7Li/6Li ratio. Nature 1999, 402, 270–273. [Google Scholar] [CrossRef]
- Liao, B.; Chen, J. The application of cluster analysis in X-ray diffraction phase analysis. J. Appl. Cryst. 1992, 25, 336–339. [Google Scholar] [CrossRef] [Green Version]
- Penniston-Dorland, S.; Liu, X.-M.; Rudnick, R.L. Lithium isotope geochemistry. Rev. Mineral. Geochem. 2017, 82, 165–217. [Google Scholar] [CrossRef]
- Pöllmann, H.; König, U. Determination of Lithium Concentrations in Different Ores Determined by X-ray Diffraction and Statistical. In Proceedings of the International Mineralogical Association IMA 2018 Meeting, Melbourne, Australia, 13–17 August 2018. [Google Scholar]
- Tomascak, P.B.; Magna, T.; Dohmen, R. Advances in Lithium Isotope Geochemistry; Springer International Publishing: Cham, Switzerland, 2016; p. 195. [Google Scholar]
- Bibienne, T.; Magnan, J.-F.; Rupp, A.; Laroche, N. From mine to mind and mobiles: Society’s increasing dependence on lithium. Elements 2020, 16, 265–270. [Google Scholar] [CrossRef]
- Evans, K. Lithium. In Critical Metals Handbook; Gunn, G., Ed.; American Geophysicals Union: Washington, DC, USA, 2014; pp. 230–260. [Google Scholar]
- Tadesse, B.; Makuei, F.; Albijanic, B.; Dyer, L. The beneficiation of lihtium minerals from hard rock ores: A review. Miner. Eng. 2019, 131, 170–184. [Google Scholar] [CrossRef]
- Benson, T.R.; Coble, M.; Rytuba, J.J.; Mahood, G.A. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nat. Commun. 2017, 8, 270. [Google Scholar] [CrossRef] [PubMed]
- Bowell, R.J.; Pogge von Strandmann, P.A.E.; Grew, E.S. Lithium: Less is more. Elements 2020, 16, 4. [Google Scholar]
- Bowell, R.; Lagos, L.; de los Hoyes, C.R.; Declercq, J. Classification and characteristics of natural lithium resources. Elements 2020, 16, 259–264. [Google Scholar] [CrossRef]
- Garrett, D.E. Their deposits, processing. Use and properties. In Handbook of Lithium and Natural Calcium Chloride; Elsevier: Amsterdam, The Netherlands, 2004; p. 476. [Google Scholar]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. 2012, 106, 55–69. [Google Scholar] [CrossRef]
- Gourcerol, B.; Gloaguen, E.; Melleton, J.; Tuduri, J.; Galiegue, X. Re-Assessing the European lithium resource potential—A review of hard-rock resources and metallogeny. Ore Geol. Rev. 2019, 109, 494–519. [Google Scholar] [CrossRef] [Green Version]
- London, D. Pegmatites. The Canadian Mineralogist. Special Publication 10; Mineralogical Association of Canada: Quebec City, QC, Canada, 2008. [Google Scholar]
- London, D. Reading pegmatites: Part 3—What lithium minerals say. Rocks Miner. 2017, 92, 420–425. [Google Scholar] [CrossRef]
- Schmidt, M. Risikobewertung Lithium; DERA(Deutsche Rohstoffagentur) Rohstoffinformation: Berlin, Germany, 2017. [Google Scholar]
- Grew, E.S. The minerals of lithium. Elements 2020, 16, 235–240. [Google Scholar] [CrossRef]
- Grew, E.S.; Hystad, G.; Toapanta, M.P.; Eleish, A.; Ostroverkhova, A.; Golden, J.; Hazen, R.M. Lithium mineral evolution and ecology: Comparison with boron and beryllium. Eur. J. Mineral. 2019, 31, 755–774. [Google Scholar] [CrossRef] [Green Version]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef] [Green Version]
- Černý, P.; London, D.; Novák, M. Granitic pegmatites as reflections of their sources. Elements 2012, 8, 289–294. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Bradley, D.C.; McCauley, A.D.; Stillings, L.M. Mineral-Deposit Model for Lithium-Cesium-Tantalum Pegmatites; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2017; p. 48.
- Brand, N.; Brand, C. Detecting the Undectable: Lithium by Portable XRF—Talk S3 Presentation Big Sky Montana. In Proceedings of the DXC Conference, Big Sky, MT, USA, 31 July–4 August 2017. [Google Scholar]
- Bale, M.; May, A. Processing of ores to produce tantalum and lithium. Miner. Eng. 1989, 2, 299–320. [Google Scholar] [CrossRef]
- Bishimbayeva, G.; Zhumabayeva, D.; Zhandayev, N.; Nalibayeva, A.; Shestakov, K.; Levanevsky, I.; Zhanabayeva, A. Technological improvement, lithium recovery methods from primary resources. Orient. J. Chem. 2018, 34, 2762–2769. [Google Scholar] [CrossRef]
- Braga, P.; Franca, S.; Neumann, R.; Rodriguez, M.; Rosales, G. Alkaline process for extracting lithium from Spodumene. In Proceedings of the 11th International Seminar on Process Hydrometallurgy-Hydroprocess, Santiago, Chile, 19–21 June 2019; pp. 1–9. [Google Scholar]
- Choubey, P.K.; Kim, M.-S.; Srivastava, R.R.; Lee, J.-C.; Lee, J.-Y. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources. Miner. Eng. 2016, 89, 119–137. [Google Scholar] [CrossRef]
- Dessemond, C.; Soucy, G.; Harvey, J.-P.; Ouzilleau, P. Phase transitions in the α–γ–β spodumene thermodynamic system and impact of γ-spodumene on the efficiency of lithium extraction by acid leaching. Minerals 2020, 10, 519. [Google Scholar] [CrossRef]
- Yan, Q.; Li, X.; Yin, Z.; Wang, Z.; Guo, H.; Peng, W.; Hu, Q. A novel process for extracting lithium from lepidolite. Hydrometallurgy 2012, 121–124, 54–59. [Google Scholar] [CrossRef]
- Shankleman, J.; Biesheuvel, T.; Ryan, J.; Merrill, D. We’re Going to Need More Lithium. Bloomberg Businessweek, 7 September 2017. Available online: https://www.bloomberg.com/graphics/2017-lithium-battery-future/ (accessed on 21 July 2021).
- Dessemond, C.; Lajioe-Leroux, F.; Soucy, G.; Laroche, N.; Magnan, J.-F. Spodumene—The lithium market, resources and processes. Minerals 2019, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Ross, N.L.; Zhao, J.; Slebodnick, C.; Spencer, E.C.; Chakoumakos, B.C. Petalite under pressure: Elastic behavior and phase stability. Am. Mineral. 2015, 100, 714–721. [Google Scholar] [CrossRef]
- Schneider, A.; Schmidt, H.; Meven, M.; Brendler, E.; Kirchner, J.; Martin, G.; Bertau, M.; Voigt, W. Lithium extraction from the mineral zinnwaldite: Part I: Effect of thermal treatment on properties and structure of zinnwaldite. Miner. Eng. 2017, 111, 55–67. [Google Scholar] [CrossRef]
- Fehr, K.T.; Hochleitner, R.; Schmidbauer, E.; Schneider, J. Mineralogy, mössbauer spectra and electrical conductivity of triphylite. Phys. Chem. Miner. 2007, 34, 485–494. [Google Scholar] [CrossRef]
- Norberg, N.; König, U.; Bhaskar, H.; Narygina, O. Accurate mineralogical analysis for efficient lithium ore processing. In Proceedings of the ALTA 2020 Lithium & Battery Technology, Online, 26 November 2020. [Google Scholar]
- Rietveld, H.M. Line profiles of neutron powder diffraction peaks for structure refinement. Acta Crystallogr. 1967, 22, 151–152. [Google Scholar] [CrossRef]
- De Jong, S. SIMPLSR: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18, 251–263. [Google Scholar] [CrossRef]
- Lohninger, H. Teach/Me Data Analysis; Springer: Berlin, Germany; New York, NY, USA; Tokyo, Japan, 1999. [Google Scholar]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The highscore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- Kelley, L.A.; Gardner, S.P.; Sutcliffe, M.J. An automated approach for clustering an ensemble of NMR-derived protein structures into conformational-related subfamilies. Protein Eng. 1996, 9, 1063–1065. [Google Scholar] [CrossRef] [Green Version]
- König, U.; Norberg, N. New Tools for Process Control in Aluminum Industries—PLSR on XRD Raw Data. In Proceedings of the 10th International Alumina Quality Workshop, Perth, Australia, 19–23 April 2015; pp. 305–308. [Google Scholar]
- Wold, H. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis; Krishnaiaah, P.R., Ed.; Academic Press: New York, NY, USA, 1966; pp. 391–420. [Google Scholar]
- Filippov, L.; Farrokhpay, S.; Lyo, L.; Filipova, I. Spodumene flotation mechanism. Minerals 2019, 9, 372. [Google Scholar] [CrossRef] [Green Version]
- Groat, L.A.; Chakoumakos, B.C.; Brouwer, D.H.; Hofmann, C.M.; Fyfe, C.A.; Morell, H.; Schultz, A.J. The amblygonite LiAlPO4F-Montebrasite LiAlPO4OH solid solution: A combined powder and single-crystal neutron diffraction and solid state Li MAS, COP MAS and REDOR NMR study. Am. Mineral. 2003, 88, 195–210. [Google Scholar] [CrossRef]
- Grosjean, C.; Miranda, P.H.; Perrin, M.; Poggi, P. Assesment of the world lithium ressources and consequenses of their geographic distribution on the expected development of the electric vehicle industry. Renew. Sustain. Energy Rev. 2012, 166, 1735–1744. [Google Scholar] [CrossRef]
Mineral | Composition | Lithium-Content in wt.% | Lithium Oxide Content in wt.% | ICSD-No. | Literature |
---|---|---|---|---|---|
Spodumene | LiAl[Si2O6]—(α, ß, γ) | 3.73 | 8.03 | 30,521 9668 (α) 14,235 (ß) 69,221 (γ) Virgilite | [32] |
Petalite | LiAl[Si4O10] | 3.09 | 4.50 | 100,348 | [33] |
Lepidolite Polylithionite | KLi2[AlSi3O10/(OH,F)2] | 3.58 3.00 | 7.7 6.46 | 30,785 34,336 (with F) | [30] |
Zinnwaldite | KLiFeAl[AlSi3O10/(F,OH)2] | 3.42 | 432,226 | [34] | |
Amblygonite/ Montebrasite | LiAl[PO4F]/ LiAl[PO4OH] | 3.44/3.80 4.74 | 10.21 7.49 (at 5% Na2O) | 26,513 68,925 (OH/F) 68,921 (OH) | [18] |
Lithiophilite/ Triphylite | LiMn[PO4]/ LiFe[PO4] | 4.43 4.40 | 9.53 9.47 | 75,283 72,545 | [35] |
Parameter | LFF-Tube-Cu | LFF-Tube-Co |
---|---|---|
Measurement range (2 theta) | 5–70 | 5–90 |
Step (2 theta) | 0.02 | 0.02 |
Counting time in s | 10 | 10 |
Antiscatter slit | 1/8 | 1/8 |
Soller slits | 2.3 | 2.3 |
Voltage in kV | 45 | 40 |
Tension in mA | 30 | 35 |
ß-filter | Ni | Fe |
XRD-Mixture of Petalite/Quartz in % | Li2O Content in % |
---|---|
Petalite 100 | 4.5 |
Petalite/Quartz 80/20 | 3.6 |
Petalite/Quartz 50/50 | 2.25 |
Petalite/Quartz 20/80 | 0.9 |
Petalite/Quartz 1.25/98.75 | 0.056 |
Mineral | Formula |
---|---|
Halite | NaCl |
Sylvine | KCl |
Carnallite | KMgCl3·6H2O |
Bischofite | MgCl2·6H2O |
Chloromagnesite | MgCl2 |
Anhydrite | CaSO4 |
Gypsum | CaSO4·2H2O |
Syngenite | K2Ca(SO4)2·H2O |
Polyhalite | K2MgCa2(SO4)4·2H2O |
Kainite | KMg(Cl,SO4)·2.75H2O |
Picromerite (Schoenite) | K2Mg(SO4)2·6H2O |
Li-Sulfate Monohydrate | Li2SO4·H2O |
Li-Carnallite | LiMgCl3·7H2O |
Mineral Name | Detection Limit (% of Li2O) | Detection Limit (Mineral Content in %) | Content Li2O in % (Ideal Composition) |
---|---|---|---|
Triphylite | 0.1% | <1 | 9.47 |
Spodumene | 0.1% | 1–2 | 8.03 |
Amblygonite | 0.1% | 1 | 7.4 |
Lepidolite | <0.1% | <1 | 7.7 |
Zinnwaldite | 0.1% | 1 | 3.42 |
Petalite | 0.1% | 1 | 4.5 |
Initial Value (%) | Measured Value (%) | |||||
---|---|---|---|---|---|---|
Spodumene | Triphylite | Petalite | Montebrasite | Zinnwaldite | Lepidolite | |
10 | 9.88 | 8.02 | 10.34 | 10.13 | 10 | 9.92 |
50 | 49.89 | 50.14 | 51.32 | 49.99 | 49.85 | 49.93 |
80 | 80.02 | 79.97 | 80.33 | 80.02 | 80.26 | 79.63 |
95 | 95.22 | 94.75 | 94.85 | 95.02 | 94.93 | 94.55 |
97.5 | 96.1 | 96.89 | ||||
99 | 97.01 | 97.03 | ||||
100 | 99.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pöllmann, H.; König, U. Monitoring of Lithium Contents in Lithium Ores and Concentrate-Assessment Using X-ray Diffraction (XRD). Minerals 2021, 11, 1058. https://doi.org/10.3390/min11101058
Pöllmann H, König U. Monitoring of Lithium Contents in Lithium Ores and Concentrate-Assessment Using X-ray Diffraction (XRD). Minerals. 2021; 11(10):1058. https://doi.org/10.3390/min11101058
Chicago/Turabian StylePöllmann, Herbert, and Uwe König. 2021. "Monitoring of Lithium Contents in Lithium Ores and Concentrate-Assessment Using X-ray Diffraction (XRD)" Minerals 11, no. 10: 1058. https://doi.org/10.3390/min11101058
APA StylePöllmann, H., & König, U. (2021). Monitoring of Lithium Contents in Lithium Ores and Concentrate-Assessment Using X-ray Diffraction (XRD). Minerals, 11(10), 1058. https://doi.org/10.3390/min11101058