Diagnosis of Problems in Truck Ore Transport Operations in Underground Mines Using Various Machine Learning Models and Data Collected by Internet of Things Systems
Abstract
:1. Introduction
2. Study Area and Data Collection
3. Methods
3.1. Data Preprocessing for Machine Learning Model
3.2. Experimental Setup for Machine Learning Algorithms
3.3. Validation of Machine Learning Models
4. Results
4.1. Results of Data Preprocessing
4.2. Results of Model Training and Application
5. Discussion
5.1. Analysis of Model Accuracy for Each Transport Route Section
5.2. Further Verification of the CART Model Using Unused Data
5.3. Practical Use at the Underground Mine Site
5.4. Comparison between the Existing and Machine Learning-Based Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartman, H.L.; Mutmansky, J.M. Unit operations of mining. In Introductory Mining Engineering, 2nd ed.; Wiley: New York, NY, USA, 2002; pp. 119–152. [Google Scholar]
- Choi, Y.; Nieto, A. Optimal haulage routing of off-road dump trucks in construction and mining sites using Google Earth and a modified least-cost path algorithm. Autom. Constr. 2011, 20, 982–997. [Google Scholar] [CrossRef]
- Choi, Y.; Nieto, A. Software for simulating open-pit truck/shovel haulage systems using Google Earth and GPSS/H. J. Korean Soc. Miner. Energy Resour. Eng. 2011, 48, 734–743. [Google Scholar]
- Ercelebi, S.G.; Bascetin, A. Optimization of shovel-truck system for surface mining. J. S. Afr. Inst. Min. Metall. 2009, 109, 433–439. [Google Scholar]
- Jung, D.; Baek, J.; Choi, Y. Stochastic predictions of ore production in an underground limestone mine using different probability density functions: A comparative study using big data from ICT system. Appl. Sci. 2021, 11, 4301. [Google Scholar] [CrossRef]
- Alarie, S.; Gamache, M. Overview of solution strategies used in truck dispatching systems for open pit mines. Int. J. Min. Reclam. Environ. 2010, 16, 59–76. [Google Scholar] [CrossRef]
- Afrapoli, A.M.; Tabesh, M.; Askari-Nasab, H. A stochastic hybrid simulation-optimization approach towards haul fleet sizing in surface mines. Min. Technol. 2018, 128, 9–20. [Google Scholar] [CrossRef]
- Markeset, T.; Kumar, U. Application of LCC techniques in selection of mining equipment and technology. In Mine Planning and Equipment Selection 2000, 1st ed.; Routledge: London, UK, 2018; pp. 635–640. [Google Scholar]
- Samanta, B.; Sarkar, B.; Mukherjee, S.K. Selection of opencast mining equipment by a multi-criteria decision-making process. Min. Technol. 2013, 111, 136–142. [Google Scholar] [CrossRef]
- Douglas, J. Prediction of Shovel-Truck Production: A Reconciliation of Computer and Conventional Estimates; Stanford University: Stanford, CA, USA, 1964. [Google Scholar]
- Smith, S.D.; Wood, G.S.; Gould, M. A new earthworks estimating methodology. Constr. Manag. Econ. 2000, 18, 219–228. [Google Scholar] [CrossRef]
- Burt, C.N.; Caccetta, L. Match factor for heterogeneous truck and loader fleets. Int. J. Min. Reclam. Environ. 2008, 21, 262–270. [Google Scholar] [CrossRef]
- Edwards, D.J.; Malekzadeh, H.; Yisa, S.B. A linear programming decision tool for selecting the optimum excavator. Struct. Surv. 2001, 19, 113–120. [Google Scholar] [CrossRef]
- Sturgul, J.R. Modeling and simulation in mining—Its time has finally arrived. Simulation 2001, 76, 286–288. [Google Scholar] [CrossRef]
- Salama, A.; Greberg, J. Optimization of truck-loader haulage system in an underground mine: A simulation approach using SimMine. In Proceedings of the MassMin 2012: 6th International Conference and Exhibition on Mass Mining, Sudbury, ON, Canada, 10–14 June 2012. [Google Scholar]
- Choi, Y. New software for simulating truck-shovel operation in open pit mines. J. Korean Soc. Miner. Energy Resour. Eng. 2011, 48, 448–459. [Google Scholar]
- Park, S.; Choi, Y. Simulation of shovel-truck haulage systems by considering truck dispatch methods. J. Korean Soc. Miner. Energy Resour. Eng. 2013, 50, 543–556. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y.; Park, H.S. Simulation of shovel-truck haulage systems in open-pit mines by considering breakdown of trucks and crusher capacity. Tunn. Undergr. Space 2014, 24, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Lee, S.; Choi, Y.; Park, H.S. Development of a windows-based simulation program for selecting equipments in open-pit shovel-truck haulage systems. Tunn. Undergr. Space 2014, 24, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Choi, Y.; Park, H.S. Simulation of truck-loader haulage systems in an underground mine using GPSS/H. Tunn. Undergr. Space 2014, 24, 430–439. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Choi, Y.; Park, H.S. Optimization of truck-loader haulage systems in an underground mine using simulation methods. Geosyst. Eng. 2016, 19, 222–231. [Google Scholar] [CrossRef]
- Choi, Y.; Park, S.; Lee, S.J.; Baek, J.; Jung, J.; Park, H.S. Development of a windows-based program for discrete event simulation of truck-loader haulage systems in an underground mine. Tunn. Undergr. Space 2016, 26, 87–99. [Google Scholar] [CrossRef]
- Thompson, R.J.; Visser, A.T.; Heyns, P.S.; Hugo, D. Mine road maintenance management using haul truck response measurements. Min. Technol. 2013, 115, 123–128. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y. Analysis and diagnosis of truck transport routes in underground mines using transport time data collected through bluetooth beacons and tablet computers. Appl. Sci. 2021, 11, 4525. [Google Scholar] [CrossRef]
- Wodecki, J.; Stefaniak, P.K.; Zimroz, P.D.S.R.; Sliwinski, M.S.P.; Andrzejewski, M.S.M. Condition monitoring of loading-haulage-dumping machines based on long-term analysis of temperature data. In Proceedings of the 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Albena, Bulgaria, 28 June–6 July 2016. [Google Scholar]
- Carvalho, R.; Nascimento, R.; D’Angelo, T.; Delabrida, S.G.C.; Bianchi, A.; Oliveira, R.A.R.; Azpúrua, H.; Uzeda Garcia, L.G. A UAV-based framework for semi-automated thermographic inspection of belt conveyors in the mining industry. Sensors 2020, 20, 2243. [Google Scholar] [CrossRef] [Green Version]
- Paduraru, C.; Dimitrakopoulos, R. Responding to new information in a mining complex: Fast mechanisms using machine learning. Min. Technol. 2019, 128, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Ristovski, K.; Gupta, C.; Harada, K.; Tang, H.K. Dispatch with confidence: Integration of machine learning, optimization and simulation for open pit mines. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017. [Google Scholar]
- Xue, X.U.E.; Sun, W.; Liang, R. A new method of real time dynamic forecast of truck link travel time in open mines. J. China Coal Soc. 2012, 37, 1418–1422. [Google Scholar]
- Sun, X.; Zhang, H.; Tian, F.; Yang, L. The use of a machine learning method to predict the real-time link travel time of open-pit trucks. Math. Probl. Eng. 2018, 2018, 4368045. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, X.; Zhang, Y.; Yang, J. Support vector machine of the coal mine machinery equipment fault diagnosis. In Proceedings of the 2013 IEEE International Conference on Information and Automation (ICIA), Yinchuan, China, 26–28 August 2013. [Google Scholar] [CrossRef]
- D’Angelo, T.; Mendes, M.; Keller, B.; Ferreira, R.; Delabrida, S.; Rabelo, R.; Azpurua, H.; Bianchi, A. Deep learning-based object detection for digital inspection in the mining industry. In Proceedings of the 18th IEEE International Conference on Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y. Bluetooth beacon-based mine production management application to support ore haulage operations in underground mines. Sustainability 2021, 13, 2281. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, J.; Long, P.; Xie, M.; Wang, J. Small-batch-size convolutional neural network based fault diagnosis system for nuclear energy production safety with big-data environment. Int. J. Energy Res. 2020, 44, 5841–5855. [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning; McGraw-Hill: New York, NY, USA, 1997. [Google Scholar]
- Pandya, D.H.; Upadhyay, S.H.; Harsha, S.P. Fault diagnosis of rolling element bearing with intrinsic mode function of acoustic emission data using APF-KNN. Expert Syst. Appl. 2013, 40, 4137–4145. [Google Scholar] [CrossRef]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992. [Google Scholar]
- Yélamos, I.; Escudero, G.; Graells, M.; Puigjaner, L. Performance assessment of a novel fault diagnosis system based on support vector machines. Comput. Chem. Eng. 2009, 33, 244–255. [Google Scholar] [CrossRef]
- Tuba, E.; Stanimirovic, Z. Elephant herding optimization algorithm for support vector machine parameters tuning. In Proceedings of the 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Targoviste, Romania, 29 June–1 July 2017. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984; pp. 151–166. [Google Scholar]
- Hasanipanah, M.; Faradonbeh, R.S.; Amnieh, H.B.; Armaghani, D.J.; Monjezi, M. Forecasting blast-induced ground vibration developing a CART model. Eng. Comput. 2016, 33, 307–316. [Google Scholar] [CrossRef]
- Lewis, R.J. An introduction to classification and regression tree (CART) analysis. In Proceedings of the 2000 Society for Academic Emergency Medicine (SAEM) Annual Meeting, San Francisco, CA, USA, 22–25 May 2000. [Google Scholar]
- Syarif, I.; Prugel-Bennett, A.; Wills, G. SVM parameter optimization using grid search and genetic algorithm to improve classification performance. Telkomnika 2016, 14, 1502. [Google Scholar] [CrossRef]
- Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
- Lekhtman, A. Data Science in Medicine—Precision and Recall or Specificity and Sensitivity? Available online: https://towardsdatascience.com/should-i-look-at-precision-recall-or-specificity-sensitivity-3946158aace1 (accessed on 8 October 2021).
Dataset | Description | Data Type |
---|---|---|
Features | Origin beacon ID | Integer (1–22) |
Destination beacon ID | Integer (1–22) | |
Transport time | Seconds (sec) | |
Average daily temperature | Celsius temperature (°C) | |
Daily precipitation | Millimeter (mm) | |
Whether ores are loaded | 0: Loaded, 1: Empty | |
Label | Truck transport time status on transport route | 0: Normal, 1: Abnormal |
GNB | kNN | SVM | CART | |
---|---|---|---|---|
Parameter | var_smoothing | neighbors | C/ | min_samples_leaf/min_samples_split |
Min | 10−9 | 1 | 10/0.1 | 1/2 |
max | 1 | 100 | 100/1 | 10/10 |
Step | () 1.232847 | (+) 1 | (+) 5/0.1 | (+) 1/1 |
Predicted Data | |||
---|---|---|---|
Negative (0) | Positive (1) | ||
Actual data | Negative (0) | TN (True Negative) | FP (False Positive) |
Positive (1) | FN (False Negative) | TP (True Positive) |
Truck Travel Time (s) | Average Daily Temperature (°C) | Daily Precipitation (mm) | |
---|---|---|---|
Mean | 95.55 | −2.71 | 0.24 |
Standard deviation | 74.12 | 5.03 | 0.85 |
Minimum value | 1.00 | −14.30 | 0.00 |
Maximum value | 299.00 | 11.40 | 6.90 |
Normalization | Predicted Data | |||
---|---|---|---|---|
Negative (0) | Positive (1) | Accuracy | ||
Actual data | Negative (0) | 687 (TN) | 75 (FP) | 0.90 |
Positive (1) | 496 (FN) | 242 (TP) | 0.33 | |
Accuracy | 0.58 | 0.77 | 0.62 | |
Training accuracy | 0.60 |
Normalization n Neighbors = 1 | Predicted Data | |||
---|---|---|---|---|
Negative (0) | Positive (1) | Accuracy | ||
Actual data | Negative (0) | 642 (TN) | 120 (FP) | 0.84 |
Positive (1) | 122 (FN) | 616 (TP) | 0.83 | |
Accuracy | 0.84 | 0.84 | 0.84 | |
Training accuracy | 0.85 |
Normalization | Predicted Data | |||
---|---|---|---|---|
Negative (0) | Positive (1) | Accuracy | ||
Actual data | Negative (0) | 655 (TN) | 107 (FP) | 0.86 |
Positive (1) | 196 (FN) | 542 (TP) | 0.73 | |
Accuracy | 0.77 | 0.84 | 0.80 | |
Training accuracy | 0.79 |
Normalization Leaf = 1, Split = 4 | Predicted Data | |||
---|---|---|---|---|
Negative (0) | Positive (1) | Accuracy | ||
Actual data | Negative (0) | 713 (TN) | 49 (FP) | 0.94 |
Positive (1) | 32 (FN) | 706 (TP) | 0.96 | |
Accuracy | 0.96 | 0.94 | 0.95 | |
Training accuracy | 0.94 |
Performance Assessment Indicators | GNB | kNN | SVM | CART |
---|---|---|---|---|
Accuracy (%) | 61.9 | 83.9 | 79.8 | 94.6 |
Precision (%) | 76.3 | 83.7 | 83.5 | 93.5 |
Recall (%) | 32.8 | 83.5 | 73.4 | 95.7 |
F1 score (%) | 45.9 | 83.6 | 78.2 | 94.6 |
Operation Type | Prediction Accuracy (%) | Number of Sections | Average of the Number of Data Used for Machine Learning for Each Section |
---|---|---|---|
Empty haul | 91–100 | 14 | 105.9 |
81–90 | 5 | 90.2 | |
71–80 | 3 | 59.3 | |
61–70 | 0 | N/A | |
57.1–60 | 1 | 26.0 | |
Loaded haul | 91–100 | 19 | 138.0 |
81–90 | 1 | 90.0 | |
71–80 | 1 | 48.0 | |
66.7–70 | 1 | 27.0 |
Normalization Leaf = 1, Split = 4 | Predicted Data | |||
---|---|---|---|---|
Negative (0) | Positive (1) | Accuracy | ||
Actual data | Negative (0) | 26,027 (TN) | 1094 (FP) | 0.96 |
Positive (1) | 3 (FN) | 311 (TP) | 0.99 | |
Accuracy | 1.00 | 0.22 | 0.96 |
Performance Assessment Indicators | CART Model |
---|---|
Accuracy (%) | 96.0 |
Precision (%) | 22.1 |
Recall (%) | 99.0 |
F1 score (%) | 36.2 |
Normalization | Predicted Data | |||
---|---|---|---|---|
Negative (0) | Positive (1) | |||
Actual data | Truck A | Negative (0) | 1 (TN) | 0 (FP) |
Positive (1) | 0 (FN) | 0 (TP) | ||
Truck B | Negative (0) | 22 (TN) | 0 (FP) | |
Positive (1) | 0 (FN) | 3 (TP) | ||
Truck C | Negative (0) | 14 (TN) | 0 (FP) | |
Positive (1) | 0 (FN) | 1 (TP) |
Time | 22 February 2021 | 23 February 2021 | 24 February 2021 | 25 February 2021 | 26 February 2021 | 27 February 2021 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Truck | Truck | Truck | Truck | Truck | Truck | |||||||||||||
A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | A | B | C | |
08:00 | ■ | ● | ● | ● | ● | |||||||||||||
09:00 | ● | ● | ● ● | ● | ● | |||||||||||||
10:00 | ● | ● | ● | ● | ● | ● | ||||||||||||
11:00 | ● | ■ | ● | |||||||||||||||
12:00 (Break time) | ||||||||||||||||||
13:00 | ● | ● | ● | ● | ■ | ● | ||||||||||||
14:00 | ● | ● | ● | ● | ||||||||||||||
15:00 | ● | ● | ● | ● ● | ● ● | |||||||||||||
16:00 | ● | ■ | ● | ● |
Normalization | Predicted Data | |||
---|---|---|---|---|
Negative (0) | Positive (1) | |||
Actual data | Truck A | Negative (0) | 25 (TN) | 7 (FP) |
Positive (1) | 0 (FN) | 2 (TP) | ||
Truck B | Negative (0) | 21 (TN) | 1 (FP) | |
Positive (1) | 0 (FN) | 2 (TP) |
Time | 22 February 2021 | 23 February 2021 | 24 February 2021 | 25 February 2021 | 26 February 2021 | 27 February 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Truck | Truck | Truck | Truck | Truck | Truck | |||||||
A | B | A | B | A | B | A | B | A | B | A | B | |
08:00 | ● | ● | ● | ● | ● | ● | ● | ● | ||||
09:00 | ● ● | ● ■ | ● ● | ● | ● | ● | ||||||
10:00 | ● ● | ■ | ● ● | ● | ● ● | ● | ● | |||||
11:00 | ● | ● | ● | ● | ||||||||
12:00 (Break time) | ● | ● | ● | |||||||||
13:00 | ● | ● ● | ● | ● | ||||||||
14:00 | ● | ● | ● ● | ■ | ||||||||
15:00 | ● | ● | ● | ● | ● | ■ | ● | ● | ● ● | ● | ||
16:00 | ● | ● | ● |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Jung, D.; Nguyen, H.; Choi, Y. Diagnosis of Problems in Truck Ore Transport Operations in Underground Mines Using Various Machine Learning Models and Data Collected by Internet of Things Systems. Minerals 2021, 11, 1128. https://doi.org/10.3390/min11101128
Park S, Jung D, Nguyen H, Choi Y. Diagnosis of Problems in Truck Ore Transport Operations in Underground Mines Using Various Machine Learning Models and Data Collected by Internet of Things Systems. Minerals. 2021; 11(10):1128. https://doi.org/10.3390/min11101128
Chicago/Turabian StylePark, Sebeom, Dahee Jung, Hoang Nguyen, and Yosoon Choi. 2021. "Diagnosis of Problems in Truck Ore Transport Operations in Underground Mines Using Various Machine Learning Models and Data Collected by Internet of Things Systems" Minerals 11, no. 10: 1128. https://doi.org/10.3390/min11101128
APA StylePark, S., Jung, D., Nguyen, H., & Choi, Y. (2021). Diagnosis of Problems in Truck Ore Transport Operations in Underground Mines Using Various Machine Learning Models and Data Collected by Internet of Things Systems. Minerals, 11(10), 1128. https://doi.org/10.3390/min11101128