Crystal Structure of an Anisotropic Pyrope Garnet That Contains Two Cubic Phases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Electron-Probe Microanalysis (EPMA)
2.3. Synchrotron High-Resolution Powder X-ray Diffraction (HRPXRD)
2.4. Rietveld Structural Refinement
3. Results
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cussen, E.J. Structure and ionic conductivity in lithium garnets. J. Mater. Chem. 2010, 20, 5167–5173. [Google Scholar] [CrossRef] [Green Version]
- Bank, H. Über grossular und hydrogrossular. Z. Dtsch. Gemmol. Ges. 1982, 31, 93–96. [Google Scholar]
- Ganguly, J.; Cheng, W.; O’Neill, H.S.C. Syntheses, volume, and structural changes of garnets in the pyrope-grossular join: Implications for stability and mixing properties. Am. Mineral. 1993, 78, 583–593. [Google Scholar]
- Hirai, H.; Nakazawa, H. Visualizing low symmetry of a grandite garnet on precession photographs. Am. Mineral. 1986, 71, 1210–1213. [Google Scholar]
- Hirai, H.; Nakazawa, H. Grandite garnet from Nevada: Confirmation of origin of iridescence by electron microscopy and interpretation of a moiré-like texture. Am. Mineral. 1986, 71, 123–126. [Google Scholar]
- Koritnig, S.; Rösch, H.; Schneider, A.; Seifert, F. Der Titan-zirkon-granat aus den Kalksilikatfels-Einschlüssen des Gabbro im Radautal, Harz, Bundesrepublik Deutschland. Tschermaks Mineral. Petrogr. Mitt. 1978, 25, 305–313. [Google Scholar] [CrossRef]
- Lager, G.A.; Armbruster, T.; Rotella, F.J.; Rossman, G.R. OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. Am. Mineral. 1989, 74, 840–851. [Google Scholar]
- Manning, P.G.; Owens, D.R. Electron microprobe, X-ray diffraction, and spectral studies of South African and British Columbian “jades”. Can. Mineral. 1977, 15, 512–517. [Google Scholar]
- Zabinski, W. Hydrogarnets; Polska Akademia Nauk, Oddzial Krakowie, Komisja Nauk Mineralogicznych, Prace Mineralogiczne: Kraków, Poland, 1966; Volume 3, pp. 1–69. [Google Scholar]
- Angel, R.; Finger, L.W.; Hazen, R.M.; Kanzaki, M.; Weidner, D.J.; Liebermann, R.C.; Veblen, D.R. Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800 °C. Am. Mineral. 1989, 74, 509–512. [Google Scholar]
- Heinemann, S.; Sharp, T.G.; Seifert, F.; Rubie, D.C. The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12)-pyrope (Mg3Al2Si3O12), and garnet symmetry in the Earth’s transition zone. Phys. Chem. Miner. 1997, 24, 206–221. [Google Scholar] [CrossRef]
- Kato, T.; Kumazawa, M. Garnet phase of MgSiO3 filling the pyroxene-ilmenite gap at very high temperature. Nature 1985, 316, 803–805. [Google Scholar] [CrossRef]
- Nakatsuka, A.; Yoshiasa, A.; Yamanaka, T.; Ito, E. Structure refinement of a birefringent Cr-bearing majorite Mg3(Mg0.34Si0.34Al0.18Cr0.14)2Si3O12. Am. Mineral. 1999, 84, 199–202. [Google Scholar] [CrossRef]
- Nakatsuka, A.; Yoshiasa, A.; Yamanaka, T.; Ohtaka, O.; Katsura, T.; Ito, E. Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12-MgSiO3. Am. Mineral. 1999, 84, 1135–1143. [Google Scholar] [CrossRef]
- Parise, J.B.; Wang, Y.; Gwanmesia, G.D.; Zhang, J.; Sinelnikov, Y.; Chmielowski, J.; Weidner, D.J.; Liebermann, R.C. The symmetry of garnets on the pyrope (Mg3Al2Si3O12)-majorite (MgSiO3) join. Geophys. Res. Lett. 1996, 23, 3799–3802. [Google Scholar] [CrossRef]
- Sawamoto, H. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200 °C: Phase stability and properties of tetragonal garnet. In High Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto, Geophysical Monograph; Manghnani, M.H., Syono, Y., Eds.; American Geophysical Union: Washington, DC, USA, 1987; Volume 39, pp. 209–219. [Google Scholar]
- Antao, S.M. Three cubic phases intergrown in a birefringent andradite-grossular garnet and their implications. Phys. Chem. Miner. 2013, 40, 705–716. [Google Scholar] [CrossRef]
- Antao, S.M. Is near-endmember birefringent grossular non-cubic? New evidence from synchrotron diffraction. Can. Mineral. 2013, 51, 771–784. [Google Scholar] [CrossRef]
- Antao, S.M. The mystery of birefringent garnet: Is the symmetry lower than cubic? Powder Diffr. 2013, 28, 281–288. [Google Scholar] [CrossRef]
- Antao, S.M.; Klincker, A.M. Origin of birefringence in andradite from Arizona, Madagascar, and Iran. Phys. Chem. Miner. 2013, 40, 575–586. [Google Scholar] [CrossRef]
- Antao, S.M.; Klincker, A.M. Crystal structure of a birefringent andradite-grossular from Crowsnest Pass, Alberta, Canada. Powder Diffr. 2013, 29, 20–27. [Google Scholar] [CrossRef]
- Antao, S.M.; Round, S.A. Crystal chemistry of birefringent spessartine. Powder Diffr. 2014, 29, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Schingaro, E.; Lacalamita, M.; Mesto, E.; Ventruti, G.; Pedrazzi, G.; Ottolini, L.; Scordari, F. Crystal chemistry and light elements analysis of Ti-rich garnets. Am. Mineral. 2016, 101, 371–384. [Google Scholar] [CrossRef]
- Agrosì, G.; Schingaro, E.; Pedrazzi, G.; Scandale, E.; Scordari, R. A crystal chemical insight into sector zoning of a titanian andradite (‘melanite’) crystal. Eur. J. Mineral. 2002, 14, 785–794. [Google Scholar] [CrossRef]
- Armbruster, T.; Geiger, C.A. Andradite crystal chemistry, dynamic X-site disorder and structural strain in silicate garnets. Eur. J. Mineral. 1993, 5, 59–71. [Google Scholar] [CrossRef]
- Munno, R.; Rossi, G.; Tadini, C. Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, Italy. Am. Mineral. 1980, 65, 188–191. [Google Scholar]
- Novak, G.A.; Gibbs, G.V. The crystal chemistry of the silicate garnets. Am. Mineral. 1971, 56, 1769–1780. [Google Scholar]
- Schingaro, E.; Scordari, F.; Capitanio, F.; Parodi, G.; Smith, D.C.; Mottana, A. Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy. Eur. J. Mineral. 2001, 13, 749–759. [Google Scholar] [CrossRef]
- Armbruster, T.; Birrer, J.; Libowitzky, E.; Beran, A. Crystal chemistry of Ti-bearing andradites. Eur. J. Mineral. 1998, 10, 907–921. [Google Scholar] [CrossRef]
- Armbruster, T.; Geiger, C.A.; Lager, G.A. Single crystal X-ray structure study of synthetic pyrope almandine garnets at 100 and 293 K. Am. Mineral. 1992, 77, 518–527. [Google Scholar]
- Artioli, G.; Pavese, A.; Ståhl, K.; McMullan, R.K. Single-crystal neutron-diffraction study of pyrope in the temperature range 30-1173 K. Can. Mineral. 1997, 35, 1009–1019. [Google Scholar]
- Gibbs, G.V.; Smith, J.V. Refinement of the crystal structure of synthetic pyrope. Am. Mineral. 1965, 50, 2023–2039. [Google Scholar]
- Pavese, A.; Artioli, G.; Prencipe, M. X-ray single-crystal diffraction study of pyrope in the temperature range 30–973 K. Am. Mineral. 1995, 80, 457–464. [Google Scholar] [CrossRef]
- Cressey, G. Entropies and enthalpies of aluminosilicate garnets. Contrib. Mineral. Petrol. 1981, 76, 413–419. [Google Scholar] [CrossRef]
- Hofmeister, A.M.; Chopelas, A. Thermodynamic properties of pyrope and grossular from vibrational spectroscopy. Am. Mineral. 1991, 76, 880–891. [Google Scholar]
- Pilati, T.; Demartin, F.; Gramaccioli, C.M. Atomic displacement parameters for garnets: A lattice-dynamical evaluation. Acta Crystallogr. 1996, B52, 239–250. [Google Scholar] [CrossRef]
- Zemann, J. Zur Kristallchemie der Granate. Beiträge Mineral. Petrol. 1962, 8, 180–188. [Google Scholar] [CrossRef]
- Geiger, C.A.; Merwin, L.; Sebald, A. Structural investigation of pyrope garnet using temperature-dependent FTIR and 29Si and 27Al MAS NMR spectroscopy. Am. Mineral. 1992, 77, 713–717. [Google Scholar]
- Kolesov, B.A.; Geiger, C.A. Raman spectra of silicate garnets. Phys. Chem. Miner. 1998, 25, 142–151. [Google Scholar] [CrossRef]
- Nakatsuka, A.; Shimokawa, M.; Nakayama, N.; Ohtaka, O.; Arima, H.; Okube, M.; Yoshiasa, A. Static disorders of atoms and experimental determination of Debye temperature in pyrope: Low- and high-temperature single-crystal X-ray diffraction study. Am. Mineral. 2011, 96, 1593–1605. [Google Scholar] [CrossRef]
- Sawada, H. The crystal structure of garnets (I): The residual electron density distribution in pyrope. Z. Krist. 1993, 203, 41–48. [Google Scholar]
- Winkler, B.; Milman, V.; Akhmatskaya, E.V.; Nobes, R.H. Bonding and dynamics of Mg in pyrope: A theoretical investigation. Am. Mineral. 2000, 85, 608–612. [Google Scholar] [CrossRef]
- Locock, A.J. An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput. Geosci. 2008, 34, 1769–1780. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I.; Wang, J.; Lee, P.L.; Toby, B.H. State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can. Mineral. 2008, 46, 1501–1509. [Google Scholar] [CrossRef]
- Lee, P.L.; Shu, D.; Ramanathan, M.; Preissner, C.; Wang, J.; Beno, M.A.; Von Dreele, R.B.; Ribaud, L.; Kurtz, C.; Antao, S.M.; et al. A twelve-analyzer detector system for high-resolution powder diffraction. J. Synchrotron Radiat. 2008, 15, 427–432. [Google Scholar] [CrossRef]
- Wang, J.; Toby, B.H.; Lee, P.L.; Ribaud, L.; Antao, S.M.; Kurtz, C.; Ramanathan, M.; Von Dreele, R.B.; Beno, M.A. A dedicated powder diffraction beamline at the advanced photon source: Commissioning and early operational results. Rev. Sci. Instrum. 2008, 79, 085105. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.; Schubert, M.; Antao, S. Elevated radionuclide concentrations in heavy mineral-rich beach sands in the Cox’s Bazar region, Bangladesh and related possible radiological effects. Isot. Environ. Health Stud. 2012, 48, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Skinner, L.B.; Benmore, C.J.; Antao, S.M.; Soignard, E.; Amin, S.A.; Bychkov, E.; Rissi, E.; Parise, J.B.; Yarger, J.L. Structural changes in vitreous GeSe4 under pressure. J. Phys. Chem. 2011, 116, 2212–2217. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I.; Mulder, W.H.; Lee, P.L. The R-3c→R-3m transition in nitratine, NaNO3, and implications for calcite, CaCO3. Phys. Chem. Miner. 2008, 35, 545–557. [Google Scholar] [CrossRef]
- Parise, J.B.; Antao, S.M.; Michel, F.M.; Martin, C.D.; Chupas, P.J.; Shastri, S.; Lee, P.L. Quantitative high-pressure pair distribution function analysis. J. Synchrotron Radiat. 2005, 12, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.; Antao, S.M.; Parise, J.B. Haüyne: Phase transition and high-temperature structures obtained from synchrotron radiation and Rietveld refinements. Mineral. Mag. 2004, 68, 499–513. [Google Scholar] [CrossRef]
- Hassan, I.; Antao, S.M.; Hersi, A.A. Single-crystal XRD, TEM, and thermal studies of the satellite reflections in nepheline. Can. Mineral. 2003, 41, 759–783. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS). Los Alamos National Laboratory Report; LAUR 86-748; LAUR: Santa Fe, NM, USA, 2000. [Google Scholar]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Cagliotti, G.; Paoletti, A.; Ricci, F.P. Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl. Instrum. 1958, 3, 223–228. [Google Scholar] [CrossRef]
- Thompson, P.; Cox, D.E.; Hastings, J.B. Rietveld refinement of Debye-Scherrer synchrotron X-ray data from alumina. J. Appl. Crystallogr. 1987, 20, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Rock-Forming Minerals: Orthosilicates; Longman Group Limited: New York, NY, USA, 1982; Volume 1A, p. 919. [Google Scholar]
- Chopin, C. Coesite and pure pyrope in high-grade blueschists of the Western Alps: A first record and some consequences. Contrib. Mineral. Petrol. 1984, 86, 107–118. [Google Scholar] [CrossRef]
- Merli, M.; Ungaretti, L.; Oberti, R. Leverage analysis and structure refinement of minerals. Am. Mineral. 2000, 85, 532–542. [Google Scholar] [CrossRef]
- Simon, G.; Chopin, C.; Schenk, V. Near-end-member magnesiochloritoid in prograde-zoned pyrope, Dora-Maira massif, western Alps. Lithos 1997, 41, 37–57. [Google Scholar] [CrossRef]
- Grew, E.S.; Locock, A.J.; Mills, S.J.; Galuskina, I.O.; Galuskin, E.V.; Hålenius, U. Nomenclature of the garnet supergroup. Am. Mineral. 2013, 98, 785–811. [Google Scholar] [CrossRef]
- Bosi, F.; Hatert, F.; Hålenius, U.; Passero, M.; Miyawaki, R.; Mills, S.J. On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions. Mineral. Mag. 2019, 83, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Antao, S.M. Crystal chemistry of six grossular garnet samples from different well-known localities. Minerals 2021, 11, 767. [Google Scholar] [CrossRef]
- Antao, S.M.; Salvador, J.J. Crystal chemistry of birefringent uvarovite solid solutions. Minerals 2019, 9, 395. [Google Scholar] [CrossRef] [Green Version]
- Antao, S.M.; Cruickshank, L.A. Crystal structure refinements of tetragonal (OH,F)-rich spessartine and henritermierite garnets. Acta Crystallogr. 2018, B74, 104–114. [Google Scholar] [CrossRef]
- Antao, S.M.; Cruickshank, L.A. Two cubic phases in kimzeyite garnet from the type locality Magnet Cove, Arkansas. Acta Crystallogr. 2016, B72, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Antao, S.M.; Zaman, M.; Gontijo, V.L.; Camargo, E.S.; Marr, R.A. Optical anisotropy, zoning, and coexistence of two cubic phases in andradites from Quebec and New York. Contrib. Mineral. Petrol. 2015, 169, 10. [Google Scholar] [CrossRef]
- Antao, S.M.; Mohib, S.; Zaman, M.; Marr, R.A. Ti-rich andradites: Chemistry, structure, multi-phases, optical anisotropy, and oscillatory zoning. Can. Mineral. 2015, 53, 133–158. [Google Scholar] [CrossRef]
- Antao, S.M. Crystal chemistry of birefringent hydrogrossular. Phys. Chem. Miner. 2015, 42, 455–474. [Google Scholar] [CrossRef]
- Antao, S.M. Schorlomite and morimotoite: What’s in a name? Powder Diffr. 2014, 29, 346–351. [Google Scholar] [CrossRef]
- Antao, S.M. Crystal structure of morimotoite from Ice River, Canada. Powder Diffr. 2014, 29, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Antao, S.M.; Suarez Nieto, N.S.; Cruickshank, L.A.; Gwanmesia, G.D. Crystal structure refinements of pyrope-majorite solid solutions between Prp100Mj0 and Prp17Mj83. Adv. X-Ray Anal. 2015, 59, 192–211. [Google Scholar]
- Antao, S.M.; Hovis, G.L. Structural variations across the nepheline (NaAlSiO4)-kalsilite (KAlSiO4) series. Am. Mineral. 2021, 106, 801–811. [Google Scholar] [CrossRef]
- Antao, S.M. Linear structural trends and multi-phase intergrowths in helvine-group minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. Minerals 2021, 11, 325. [Google Scholar] [CrossRef]
- Antao, S.M.; Hassan, I. A two-phase intergrowth of genthelvite from Mont Saint-Hilaire, Quebec. Can. Mineral. 2010, 48, 1217–1223. [Google Scholar] [CrossRef]
- Antao, S.M.; Nicholls, J.W. Crystal chemistry of three volcanic K-rich nepheline samples from Oldoinyo Lengai, Tanzania and Mount Nyiragongo, Eastern Congo, Africa. Front. Earth Sci. 2018, 6, 155. [Google Scholar] [CrossRef]
- Zaman, M.M.; Antao, S.M. A Possible Radiation-Induced Transition from Monazite-(Ce) to Xenotime-(Y). Minerals 2021, 11, 16. [Google Scholar] [CrossRef]
- Antao, S.M.; Zaman, M.; Suarez Nieto, N.S.; Gontijo, V.L.; Marr, R.A. Structural variations in pyrope-almandine solid solutions. Adv. X-Ray Anal. 2014, 58, 90–107. [Google Scholar]
- Novak, G.A.; Meyer, H.O.A. Refinement of the crystal structure of a chrome pyrope garnet: An inclusion in natural diamond. Am. Mineral. 1970, 55, 2124–2127. [Google Scholar]
Oxide (wt. %) | Sample 1 | Sample 2 |
---|---|---|
SiO2 | 41.67(11) | 42.17(12) |
TiO2 | 0.15(2) | 0.85(2) |
Al2O3 | 18.05(6) | 20.65(13) |
Cr2O3 | 6.95(5) | 0.98(5) |
FeO/FeOtot | 5.44(8) | 8.37(8) |
MnO | 0.35(2) | 0.23(2) |
MgO | 21.40(12) | 21.95(15) |
CaO | 5.42(5) | 4.32(4) |
∑ | 99.43 | 99.52 |
Recalc. (wt. %) | ||
Final FeO | 4.52(31) | 6.29(17) |
Final Fe2O3 | 1.03(31) | 2.31(21) |
∑ (calc.) | 99.54 | 99.75 |
Cations for 12 O atoms | ||
Mg2+ | 2.297 | 2.328 |
Ca2+ | 0.418 | 0.329 |
Fe2+ | 0.264 | 0.329 |
Mn2+ | 0.021 | 0.014 |
∑X | 3.000 | 3.000 |
Al3+ | 1.532 | 1.731 |
Cr3+ | 0.396 | 0.055 |
Fe3+ | 0.056 | 0.123 |
Fe2+ | 0.008 | 0.045 |
Ti4+ | 0.008 | 0.045 |
∑Y | 2.000 | 2.000 |
Si4+ | 3.000 | 3.000 |
∑Z | 3.000 | 3.000 |
End-member mole % | ||
Pyrope * | 69.86 | 77.59 |
Almandine | 6.01 | 8.49 |
Morimotoite | 0.81 | 4.51 |
Andradite | 0.00 | 3.69 |
Uvarovite | 13.13 | 2.76 |
{Fe3}[Fe2]Si3O12 | 2.78 | 2.49 |
Spessartine | 0.71 | 0.46 |
Knorringite | 6.66 | 0.00 |
Quality Index | Superior | Superior |
Miscellaneous | Sample 1 | Sample 2 | |
---|---|---|---|
Single Phase | Phase 2a | Phase 2b | |
wt. % | 100 | 62.2(1) | 37.8(1) |
a (Å) | 11.56197(1) | 11.56185(1) | 11.53896(1) |
Δa (Å) | 0 | - | 0.0229 |
Reduced χ2 | 1.508 | 1.121 | |
*R (F2) | 0.0421 | 0.0658 | |
Nobs † | 542 | 1286 | |
λ (Å) | 0.41383(2) | 0.41387(2) | |
Data points | 47994 | 47990 |
Site | Miscellaneous | 1. Single | 2. Phase 2a | 2. Phase 2b | 2a−2b |
---|---|---|---|---|---|
Mg(X) | U | 0.0080(1) | 0.0081(1) | 0.0088(2) | |
Al(Y) | U | 0.0033(1) | 0.0033(1) | 0.0035(1) | |
Si(Z) | U | 0.0024(1) | 0.0029(1) | 0.0028(1) | |
O | x | 0.03396(3) | 0.03409(3) | 0.03403(5) | |
y | 0.04955(3) | 0.04930(4) | 0.04950(5) | ||
z | 0.65390(3) | 0.65375(4) | 0.65350(5) | ||
U | 0.0104(1) | 0.0107(1) | 0.0105(2) | ||
Mg(X) | sof | 1.164(1) | 1.176(2) | 1.155(2) | 0.021 |
Al(Y) | sof | 1.122(1) | 1.107(2) | 1.039(2) | 0.068 |
Si(Z) | sof | 0.925(1) | 0.926(1) | 0.928(2) | −0.002 |
Mg(X) | EPMA sof | 1.203 | 1.206 | ||
Al(Y) | EPMA sof | 1.202 | 1.123 | ||
Si(Z) | EPMA sof | 1.000 | 1.000 | ||
X† | Δ(sof) | −0.039 | −0.030 | −0.051 | |
Y | Δ(sof) | −0.080 | −0.016 | −0.084 | |
Z | Δ(sof) | −0.075 | −0.074 | −0.072 | |
X‡ | Δe | −0.47 | −0.36 | −0.62 | |
Y | Δe | −1.04 | −0.21 | −1.10 | |
Z | Δe | −1.05 | −1.04 | −1.01 |
Bond | Multiplicity | 1. Single | 2. Phase 2a | 2. Phase 2b | 2a–2b |
---|---|---|---|---|---|
Z-O | ×4 | 1.6343(3) | 1.6334(4) | 1.6334(6) | 0.0000 |
Y-O | ×6 | 1.9101(4) | 1.9080(4) | 1.9020(6) | 0.0060 |
X-O | ×4 | 2.2227(3) | 2.2240(4) | 2.2211(5) | 0.0029 |
X-O | ×4 | 2.3742(3) | 2.3771(4) | 2.3696(5) | 0.0075 |
<X-O> | <8> | 2.2985 | 2.3006 | 2.2954 | 0.0052 |
<D-O> * | <4> | 2.0353 | 2.0356 | 2.0315 | 0.0041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antao, S.M. Crystal Structure of an Anisotropic Pyrope Garnet That Contains Two Cubic Phases. Minerals 2021, 11, 1320. https://doi.org/10.3390/min11121320
Antao SM. Crystal Structure of an Anisotropic Pyrope Garnet That Contains Two Cubic Phases. Minerals. 2021; 11(12):1320. https://doi.org/10.3390/min11121320
Chicago/Turabian StyleAntao, Sytle M. 2021. "Crystal Structure of an Anisotropic Pyrope Garnet That Contains Two Cubic Phases" Minerals 11, no. 12: 1320. https://doi.org/10.3390/min11121320
APA StyleAntao, S. M. (2021). Crystal Structure of an Anisotropic Pyrope Garnet That Contains Two Cubic Phases. Minerals, 11(12), 1320. https://doi.org/10.3390/min11121320