First Evidence of the Post-Variscan Magmatic Pulse on the Western Edge of East European Craton: U-Pb Geochronology and Geochemistry of the Dolerite in the Lublin Podlasie Basin, Eastern Poland
Abstract
:1. Introduction
2. The Evidence of Dolerites on the SW Slope of EEC
Sample ID | Coordinates | Type of Rock | Age [Ma] | Method | Ref. |
---|---|---|---|---|---|
Great Whin Sill (NE England) | 54°39′ N, 2°11′ W | Dolerite | 297 ± 0.4 | U-Pb | [36] |
Fennoscandia | |||||
Hardeberga (Sk) | 55°42′ N, 13°17′ E | Dolerite | 285 ± 4 | K-Ar | [37] |
Åstorp (Sk) | 56°08′ N, 12°57′ E | Dolerite | 296 ± 4 | K-Ar | [37] |
Rönnarp (Sk) | 55°57′ N, 12°57′ E | Dolerite | 298 ± 4 | K-Ar | [37] |
Mölle (Sk) | 56°17′ N, 12°29′ E | Dolerite | 313 ± 4 | K-Ar | [37] |
ÖnnEstad (Sk) | 56°02′ N, 14°00′ E | Dolerite | 318 ± 5 | K-Ar | [37] |
Mösseberg | 58°12′ N, 13°30′ E | Dolerite | 298 ± 2.8 | Ar-Ar | [11] |
Kinnekulle | 58°36′ N, 13°24′ E | Dolerite | 293 ± 1.3 | Ar-Ar | [11] |
Billingen | 58°24′ N, 13°46′ E | Dolerite | 300 ± 1.6 297.5 ± 3 | Ar-Ar Ar-Ar | [11] |
Rügen | 54°21′ N, 13°35′ E | Dolerite | 306 ± 11 | Ar-Ar | [11] |
Bornholm | Dolerite | ~300 | K-Ar | [38,39] | |
Olsztyn 1 | 53°47′ N, 20°00′ E | Dolerite | 289 | K-Ar | [29] |
Olsztyn 2 | 53°53′ N, 19°57′ E | Dolerite | 291 | K-Ar | [29] |
Bargłów IG1 | 53°45′ N, 22°50′ E | Camptonite | 278 ± 11 301 ± 11 | K-Ar | [30] |
Klusy 1 | 53°48′ N, 22°10′ E | Syenite | 293 | K-Ar | [29] |
Prostki 1 | 53°42′ N, 22°22′ E | Syenite | 293 | K-Ar | [29] |
TajNo IG1 | 53°42′ N, 22°51′ E | Microsyenite | 289 | K-Ar | [29] |
Ełk IG1 | 53°52′ N, 22°23′ E | Porphyrite | 285 | K-Ar | [29] |
Ciechanów 1 | 52°49′ N, 20°32′ E | Porphyrite | 296 287 | K-Ar | [29] |
Konopki 1 | 52°58′ N, 20°24′ E | Porphyrite | 304 291 | K-Ar | [29] |
Mielnik IG1 | 52°20′ N, 23°01′ E | Dolerite | 300 ± 4 | U-Pb | This study |
Niedrzwica | 51°06′ N, 22°21′ E | Dolerite | 319 | K-Ar | [29] |
Lublin 1 | 51°11′ N, 22°41′ E | Dolerite | 333 | K-Ar | [29] |
Okuniew IG1 | 52°16′ N, 21°17′ E | Dolerite | 356 | K-Ar | [29] |
Trans-European Suture Zone | |||||
Daszewo | 54°03′ N, 15°55′ E | Rhyolite | 297 ± 1 | U-Pb | [34] |
Wysoka Kamieńska | 53°47′ N, 14°53′ E | Rhyolite | 302 ± 1.5 | U-Pb | [34] |
Pniewy | 52°33′ N, 16°21′ E | Rhyolite | 298 ± 1.7 | U-Pb | [40] |
Chrzypsko | 52°39′ N, 16°13′ E | Rhyolite | 302 ± 1 | U-Pb | [34] |
Janowice 2 | 50°50′ N, 21°13′ E | Dolerite | 300 ± 10 | U-Pb | [41] |
Milejowice 1 | 50°50′ N, 21°14′ E | Dolerite | 322 ± 1 331 ± 2 | Ar-Ar | [42] |
Małopolska Block | |||||
Podkranów | 50°47′ N, 20°46′ E | Lamprophyre | 322 ± 10 | U-Pb | [41] |
Wszachów | 50°46′ N, 21°09′ E | Lamprophyre | 275 ± 15 | K-Ar | [43] |
KLFZ [range] | Volcanic & plutonic | from 293 ± 5 to 305 ± 2 | U-Pb | [44,45,46] |
3. Geological Context of the Mielnik IG1 Dolerite Occurrence
4. Methods
4.1. Geochronology
4.2. Mineral Chemistry
4.3. Whole-Rock Geochemistry
5. Results
5.1. Geochronology
5.2. Mineral Chemistry
5.3. Major and Trace Element Whole-Rock Geochemistry
6. Discussion
6.1. Age Interpretation
6.2. Paleotemperature Evidence
6.3. Coeval Age of Dykes’ Emplacement along Edge of the EEC
6.4. Geochemical Comparison of the Dolerites
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bogdanova, S.; Gorbatschev, R.; Grad, M.; Guterch, A.; Janik, T.; Kozlovskaya, E.; Motuza, G.; Skridlaite, G.; Starostenko, V.; Taran, L. Eurobridge: New insight into the geodynamic evolution of the East European Craton. Geol. Soc. Lond. Mem. 2006, 32, 599–628. [Google Scholar] [CrossRef]
- Elming, S.-Å.; Mattson, H. Post Jotnian basic Intrusions in the Fennoscandian Shield, and the break up of Baltica from Laurentia: A palaeomagnetic and AMS study. Precambr. Res. 2001, 108, 215–236. [Google Scholar] [CrossRef]
- Söderlund, U.; Elming, S.-Å.; Ernst, R.; Schissel, D. The Central Scandinavian Dolerite Group—Protracted hotspot activity or back-arc magmatism? Precambr. Res. 2006, 150, 136–152. [Google Scholar] [CrossRef]
- Bingen, B.; Demaiffe, D.; van Breemen, O. The 616 Ma old Egersund basaltic dike swarm, SW Norway, and late Neoproterozoic opening of the Iapetus Ocean. J. Geol. 1998, 106, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Bogdanova, S.V.; Bingen, B.; Gorbatschev, R.; Kheraskova, T.N.; Kozlov, V.I.; Puchkov, V.N.; Volozh, Y.A. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambr. Res. 2008, 160, 23–45. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Nosova, A.; Billström, K.; Söderlund, U.; Andréasson, P.-G.; Kuzmenkova, O. The U–Pb zircon and baddeleyite ages of the Neoproterozoic Volyn Large Igneous Province: Implication for the age of the magmatism and the nature of a crustal contaminant. GFF 2016, 138, 17–30. [Google Scholar] [CrossRef]
- Poprawa, P.; Krzemińska, E.; Pacześna, J.; Amstrong, R. Geochronology of the Volyn volcanic complex at the western slope of the East European Craton—Relevance to the Neoproterozoic rifting and the break-up of Rodinia/Pannotia. Precambr. Res. 2020, 346, 105817. [Google Scholar] [CrossRef]
- Obst, K. Die permosilesischen Eruptivgänge innerhalb der Fennoskandischen Randzone (Schonen und Bornholm)—Untersuchungen zum Stoffbestand, zur Struktur und zur Genese. Greifswald. Geowiss. Beiträge 1999, 7, 5–121. [Google Scholar]
- Obst, K.; Solyom, Z.; Johansson, L. Permo-Carboniferous extension-related magmatism at the SW margin of the Fennoscandian Shield. Geol. Soc. Lond. Spec. Publ. 2004, 223, 259–288. [Google Scholar] [CrossRef]
- Obst, K.; Katzung, G. Spatial distribution and emplacement features of Permo-Carboniferous dykes at the southwestern margin of the Fennoscandian Shield. In Dyke Swarms—Time Markers of Crustal Evolution; Hanski, E., Mertanen, S., Ramo, T., Vuollo, J., Eds.; Taylor & Francis: London, UK, 2006; pp. 257–272. [Google Scholar]
- Timmerman, M.J.; Heeremans, M.; Kirstein, L.A.; Larsen, B.T.; Spencer-Dunworth, E.-A.; Sundvoll, B. Linking changes in tectonic style with magmatism in northern Europe during the late Carboniferous to latest Permian. Tectonophysics 2009, 473, 375–390. [Google Scholar] [CrossRef] [Green Version]
- Heeremans, M.; Faleide, J.I.; Larsen, B.T. Late Carboniferous-Permian of NW Europe: An introduction to a new regional map. In Permo-Carboniferous Magmatism and Rifting in Europe; Wilson, M., Neumann, E.-R., Davies, G.R., Timmerman, M.J., Heeremans, M., Larsen, B.T., Eds.; Geological Society, Special Publications: London, UK, 2004; Volume 223, pp. 75–88. [Google Scholar]
- Neumann, E.-R.; Wilson, M.; Heeremans, M.; Spencer, E.A.; Obst, K.; Timmerman, M.J.; Kirstein, L. Carboniferous-Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: A review. In Permo-Carboniferous Magmatism and Rifting in Europe; Wilson, M., Neumann, E.-R., Davies, G.R., Timmerman, M.J., Heeremans, M., Larsen, B.T., Eds.; Geological Society, Special Publications: London, UK, 2004; Volume 223, pp. 11–40. [Google Scholar]
- Poprawa, P. Geological setting and Ediacaran-Paleozoic evolution of the western slope of the East European Craton and adjacent regions. Ann. Soc. Geol. Pol. 2019, 89, 347–380. [Google Scholar] [CrossRef] [Green Version]
- Kuzmenkova, O.F.; Nosova, A.A.; Shumlyanskyy, L.V. Correlation of the Neoproterozoic Volyn-Brest magmatic province with large continental plateau basalt provinces of the world, nature of low- and high-titanium basite magmatism. Litasfera 2010, 33, 3–16, (In Russian with English Abstract). [Google Scholar]
- Doornenbal, J.C.; Stevenson, A.G. (Eds.) Petroleum Geological Atlas of the Southern Permian Basin Area; European Association of Geoscientists & Engineers Publications b.v.: Houten, The Netherlands, 2010; p. 342. [Google Scholar]
- Mazur, S.; Porębski, S.J.; Kędzior, A.; Paszkowski, M.; Podhalańska, T.; Poprawa, P. Refined timing and kinematics for Baltica–Avalonia convergence based on the sedimentary record of a foreland basin. Terra Nova 2018, 30, 8–16. [Google Scholar] [CrossRef]
- Krzywiec, P.; Kufrasa, M.; Poprawa, P.; Mazur, S.; Koperska, M.; Ślemp, P. Together but separate: Decoupled Variscan (late Carboniferous) and Alpine (Late Cretaceous—Paleogene) inversion tectonics in NW Poland. Solid Earth Discuss. 2021, in press. [Google Scholar] [CrossRef]
- Juskowiakowa, M. Basalts of the eastern Poland. Biul. Inst. Geol. 1971, 245, 173–252, (In Polish with English Abstract). [Google Scholar]
- Krzemińska, E. The outline of geochemical features of the Late Neoproterozoic volcanic activity in the Lublin-Podlasie basin, eastern Poland. Mineral. Soc. Pol. Spec. Pap. 2005, 26, 47–51. [Google Scholar]
- Brander, L.; Söderlund, U.; Bingen, B. Tracing the 1271–1246 Ma Central Scandinavian Dolerite Group mafic magmatism in Fennoscandia: U–Pb baddeleyite and Hf isotope data on the Moslätt and Børgefjell dolerites. Geol. Mag. 2011, 148, 632–643. [Google Scholar] [CrossRef] [Green Version]
- Torsvik, T.H.; Smethurst, M.A.; Meert, J.G.; Van der Voo, R.; McKerrow, W.S.; Brasier, M.D.; Sturt, B.A.; Walderhaug, H.J. Continental break-up and collision in the Neoproterozoic and Paleozoic—A tale of Baltica and Laurentia. Earth-Sci. Rev. 1996, 40, 229–258. [Google Scholar] [CrossRef]
- Kumpulainen, R.A.; Hamilton, M.A.; Söderlund, U.; Nystuen, J.P. U-Pb baddeleyite age for the Ottfjället Dyke Swarm, central Scandinavian Caledonides: New constraints on Ediacaran opening of the Iapetus Ocean and glaciations on Baltica. GFF 2021, 143, 40–54. [Google Scholar] [CrossRef]
- Krzemińska, E.; Poprawa, P.; Pacześna, J.; Krzemiński, L. From initiation to termination: C. 25 My long evolution of the Ediacaran Volyn Large Igneous Province (SW East European Craton) constrained by comparative geochemistry of proximal tuffs versus lavas and zircon geochronology. Precambr. Res. 2021, in press. [Google Scholar]
- Nosova, A.A.; Kuz’menkova, O.F.; Veretennikov, N.V.; Petrova, L.G.; Levsky, L.K. Neoproterozoic Volhynia-Brest magmatic province in the western East European craton: Within-plate magmatism in an ancient suture zone. Petrology 2008, 16, 105–135. [Google Scholar] [CrossRef]
- Białowolska, A.; Bakun-Czubarow, N. Neoproterozoic flood basalts of the upper beds of the Volhynian Series (East European Craton). Geol. Q. 2002, 46, 37–57. [Google Scholar]
- Juskowiakowa, M.; Juskowiak, O.; Ryka, W. Jotnian in north-eastern Poland. Petrographical-Mineralogical and Geochemical Researches in Poland. Materiale to Petrography of Poland. Biul. Inst. Geol. 1967, 197, 23–68, (In Polish with English Abstract). [Google Scholar]
- Juskowiakowa, M.; Juskowiak, O. Occurrences of Paleozoic magmatism. In Rocks of the Precambrian Platform in Poland. Part 2—Sedimentary Cover; Łaszkiewicz, A., Ed.; Polish Geological Institute: Warsaw, Poland, 1974; Volume 74, pp. 71–81, (In Polish with English Summary). [Google Scholar]
- Depciuch, T. Geochronological studies of igneous rocks. In Rocks of the Precambrian Platform in Poland. Part 2—Sedimentary Cover; Łaszkiewicz, A., Ed.; Polish Geological Institute: Warsaw, Poland, 1974; Volume 74, pp. 81–83, (In Polish with English Summary). [Google Scholar]
- Krzemiński, L.; Krzemińska, E.; Anczkiewicz, R.; Pécskay, Z. Sr and Nd systematics of the Tajno alkaline-ultramafic complex, NE Poland: Identification of depleted and enriched components in the subcontinental lithospheric mantle. Geochemistry of magmatic rocks—2010. In Proceedings of the Abstracts of XXVII International Conference School “Geochemistry of Alkaline Rocks”, Moscow, Russia, 9–16 September 2010; pp. 89–91. [Google Scholar]
- Demaiffe, D.; Wiszniewska, J.; Krzemińska, E.; Williams, I.S.; Stein, H.; Brassinnes, S.; Ohnenstetter, D.; Deloule, E. A hidden alkaline and carbonatite province of Early Carboniferous age in NE Poland: U-Pb zircon and Re-Os pyrrhotite geochronology. J. Geol. 2013, 121, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Pańczyk, M.; Nawrocki, J. Tournaisian 40Ar/39Ar age from alkaline basalts from the Lublin Basin (SE Poland). Geol. Q. 2015, 59, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Krzemińska, E.; Krzemiński, L. Geological Map of Crystalline Basement in the Polish Part of the East European Platform, 1:1,000,000; Polish Geological Institute—NRI, Ministry of Environment: Warsaw, Poland, 2017.
- Słodczyk, E.; Pietranik, A.; Glynn, S.; Wiedenbeck, M.; Breitkreuz, C.; Dhuime, B. Contrasting sources of Late Paleozoic rhyolite magma in the Polish Lowlands: Evidence from U–Pb ages and Hf and O isotope composition in zircon. Int. J. Earth Sci. (Geol. Rundsch.) 2018, 107, 2065–2081. [Google Scholar] [CrossRef] [Green Version]
- Waksmundzka, M.; Kozłowska, A.; Pańczyk, M. A putative Tournaisian and Visean volcanic-sedimentary succession in the Lublin Basin, SE Poland: Depositional processes, petrological characteristics and sequence stratigraphy. Acta Geol. Pol. 2021, 71, 305–344. [Google Scholar]
- Hamilton, M.A.; Pearson, G. Precise U-Pb Age for the Great Whin Dolerite Complex, N.E. England and Its Significance. In Dyke Swarms: Keys for Geodynamic Interpretation; Srivastava, R.K., Ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; pp. 495–507. [Google Scholar]
- Klingspor, I. Radiometric age-determination of basalts, dolerites and related syenite in Skåne, southern Sweden. GFF 1976, 98, 195–216. [Google Scholar] [CrossRef]
- Abrahamsen, N. Paleomagnetism of 4 dolerite dykes around Listen, Bornhom (Denmark). Bull. Geol. Soc. Den. 1977, 26, 245–264. [Google Scholar]
- Obst, K. Permo-Carboniferous dyke magmatism on the Danish island Bornholm. Neues Jahrb. Geol. Paläontol. Abh. 2000, 218, 243–266. [Google Scholar] [CrossRef]
- Breitkreuz, C.; Kennedy, A.; Geissler, M.; Ehling, B.-C.; Kopp, J.; Muszyński, A.; Protas, A.; Stouge, S. Far Eastern Avalonia: Its chronostratigraphic structure revealed by SHRIMP zircon ages from Upper Carboniferous to Lower Permian volcanic rocks (drill cores from Germany, Poland and Denmark). In The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision; Linnemann, U., Nance, R.D., Kraft, P., Zulauf, G., Eds.; Geological Society of America, Special Paper: Boulder, CO, USA, 2007; Volume 423, pp. 173–190. [Google Scholar]
- Krzemińska, E.; Krzemiński, L. Magmatic episodes in the Holy Cross Mountains, Poland—a new contribution from multi-age zircon populations. Biul. Państwowego Inst. Geol. 2019, 474, 43–57. [Google Scholar] [CrossRef]
- Nawrocki, J.; Salwa, S.; Pańczyk, M. New 40Ar-39Ar age constrains for magmatic and hydrothermal activity in the Holy Cross Mts. (southern Poland). Geol. Q. 2013, 57, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Migaszewski, Z. Datowanie diabazów i lamprofirów świętokrzyskich metodą K-Ar i Ar-Ar. Przegląd Geol. 2002, 50, 227–229. [Google Scholar]
- Mikulski, S.Z.; Williams, I.S.; Markowiak, M. Carboniferous-Permian magmatism and Mo-Cu (W) mineralization in the contact zone between the Małopolska and Upper Silesia Blocks (south Poland): An echo of the Baltica-Gondwana collision. Int. J. Earth Sci. 2019, 108, 1467–1492. [Google Scholar] [CrossRef] [Green Version]
- Żelaźniewicz, A.; Oberc-Dziedzic, T.; Sláma, J. Baltica and the Cadomian orogen in the Ediacaran–Cambrian: A perspective from SE Poland. Int. J. Earth Sci. 2020, 109, 1503–1528. [Google Scholar] [CrossRef] [Green Version]
- Jarmołowicz-Szulc, K. A reappraisal of K-Ar and new U-Pb age data for felsic rocks in the vicinity of the Kraków-Lubliniec Fault Zone (southern Poland). Geol. Q. 2020, 64, 754–765. [Google Scholar] [CrossRef]
- Poprawa, P. Lower Paleozoic oil and gas shale in the Baltic-Podlasie-Lublin Basin (central and eastern Europe)—A review. Geol. Q. 2020, 64, 515–566. [Google Scholar] [CrossRef]
- Pacześna, J. The evolution of the late Neoproterozoic-early Cambrian rift depocentres and facies in the Lublin-Podlasie sedimentary basin. Pr. Państwowego Inst. Geol. 2006, 186, 1–29, (In Polish with English Summary). [Google Scholar]
- Pacześna, J. The evolution of late Ediacaran riverine-estuarine system in the Lublin-Podlasie slope of the East European Craton (southeastern Poland). Pol. Geol. Inst. Spec. Pap. 2010, 27, 1–96. [Google Scholar]
- Pacześna, J. Lithostratigraphy of the Ediacaran deposits in the Lublin-Podlasie sedimentary basin (eastern and south-eastern Poland). Biul. Państwowego Inst. Geol. 2014, 460, 1–24, (In Polish with English Summary). [Google Scholar]
- Moczydłowska, M. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland. Foss. Strat. 1991, 29, 1–127. [Google Scholar]
- Modliński, Z.; Szymański, B. Lithostratigraphy of the Ordovician in the Podlasie Depression and Płock-Warsaw Trough. Biul. Państwowego Inst. Geol. 2008, 430, 97–112, (In Polish with English Summary). [Google Scholar]
- Williams, I.S. U-Th-Pb geochronology by ion microprobe. In Applications of Microanalytical Techniques to Understanding Mineralizing Processes; McKibben, M.A., Shanks III, W.C., Ridley, W.I., Eds.; Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 1998; Volume 7, pp. 1–35. [Google Scholar]
- Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.; Mundil, R.; Campbell, I.; Korsch, R.J.; Williams, I.; et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chem. Geol. 2004, 205, 115–140. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further Characterisation of the 91500 Zircon Crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/Ex 3.70. A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronological Center: Berkely, CA, USA, 2008; Special Publication; Volume 4, pp. 1–76. [Google Scholar]
- Ludwig, K.R. SQUID 2.50: A User’s Manual; Berkeley Geochronology Center: Berkeley, CA, USA, 2009; Special Publication; Volume 5, pp. 1–110. Available online: http://sourceforge.net/projects/squid2 (accessed on 20 January 2020).
- Vermeesch, P. IsoplotR: A free and open toolbox for geochronology. Geosci. Front. 2018, 9, 1479–1493. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, D.C.; Zhao, Z.D.; Guan, Q.; Zhang, X.Q.; Sui, Q.L.; Moa, X.X. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study. J. Asian Earth Sci. 2012, 53, 59–66. [Google Scholar] [CrossRef]
- Morimoto, N. The Nomenclature of Pyroxenes. Mineral. Mag. 1988, 52, 425–433. [Google Scholar] [CrossRef]
- Soesoo, A. A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallization PT-estimations. GFF 1997, 119, 55–60. [Google Scholar] [CrossRef]
- Erdmann, S.; Wang, R.C.; Huang, F.F.; Scaillet, B.; Zhao, K.; Liu, H.S.; Chen, Y.; Faure, M. Titanite: A potential solidus barometer for granitic magma systems. Comptes Rendus—Geosci. 2019, 351, 551–561. [Google Scholar] [CrossRef]
- Gros, K.; Słaby, E.; Birski, Ł.; Kozub-Budzyń, G.; Sláma, J. Geochemical evolution of a composite pluton: Insight from major and trace element chemistry of titanite. Mineral. Pet. 2020, 114, 375–401. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.; Zussmann, J. Rock-Forming Minerals. Volume 1A. Ortho-Silicates, 2nd ed.; Geological Society of London: London, UK, 1997; pp. 443–466. [Google Scholar]
- Kowallis, B.J.; Christiansen, E.H.; Griffen, D.T. Compositional variations in titanite. Geol. Soc. Am. Program Abstr. 1997, 29, 402. [Google Scholar]
- Morad, S.; El-Ghali, M.A.K.; Caja, M.A.; Al-Ramadan, K.; Mansurbeg, H. Hydrothermal alteration of magmatic titanite: Evidence from Proterozoic granitic rocks, Southeastern Sweden. Can. Mineral. 2009, 47, 801–811. [Google Scholar] [CrossRef]
- Bernau, R.; Franz, G. Crystal chemistry and genesis of Nb-, V-, and Al-rich metamorphic titanite from Egypt and Greece. Can. Mineral. 1987, 25, 695–705. [Google Scholar]
- Xirouchakis, D.; Lindsley, D.H. Equilibria among titanite, hedenbergite, fayalite, quartz, ilmenite, and magnetite: Experiments and internally consistent thermodynamic data for titanite. Am. Mineral. 1998, 83, 712–725. [Google Scholar] [CrossRef]
- Hayden, L.A.; Watson, E.B.; Wark, D.A. A thermobarometer for sphene (titanite). Contrib. Mineral. Petrol. 2008, 155, 529–540. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Krzemiński, L. Geochemical constraints on the origin of the mid-Palaeozoic diabases from the Holy Cross Mts. and Upper Silesia, southeastern Poland. Geol. Q. 2004, 48, 147–158. [Google Scholar]
- Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.-G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 2013, 14, 489–518. [Google Scholar] [CrossRef] [Green Version]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry, Volume 3: The Crust; Rudnick, R.L., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
- Watson, E.B.; Harrison, T.M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett. 1983, 64, 295–304. [Google Scholar] [CrossRef]
- Boehnke, P.; Watson, E.B.; Trail, D.; Harrison, T.M.; Schmitt, A.K. Zircon saturation re-revisited. Chem. Geol. 2013, 351, 324–334. [Google Scholar] [CrossRef]
- Shao, T.; Xia, Y.; Ding, X.; Cai, Y.; Song, M. Zircon saturation in terrestrial basaltic melts and its geologic implications. Solid Earth Sci. 2018, 4, 27–42. [Google Scholar] [CrossRef]
- Sopher, D.; Erlström, M.; Bell, N.; Juhlin, C. The structure and stratigraphy of the sedimentary succession in the Swedish sector of the Baltic Basin: New insights from vintage 2D marine seismic data. Tectonophysics 2016, 676, 90–111. [Google Scholar] [CrossRef]
- Środoń, J.; Kuzmenkova, O.; Stanek, J.J.; Petit, S.; Beaufort, D.; Gilg, H.A.; Liivamägi, S.; Goryl, M.; Marynowski, L.; Szczerba, M. Hydrothermal alteration of the Ediacaran Volyn-Brest volcanics on the western margin of the East European Craton. Precambr. Res. 2019, 325, 217–235. [Google Scholar] [CrossRef]
- Kowalska, S.; Wójtowicz, A.; Hałas, S.; Wemmer, K.; Mikołajewski, Z.; Buniak, A. Thermal history of Lower Palaeozoic rocks from the East European Platform margin of Poland based on K-Ar age dating and illite-smectite palaeothermometry. Ann. Soc. Geol. Pol. 2019, 89, 481–509. [Google Scholar] [CrossRef] [Green Version]
- Botor, D.; Mazur, S.; Anczkiewicz, A.; Dunkl, I.; Golonka, J. Thermal history of the East European Platform margin in Poland based on apatite and zircon low-temperature thermochronology. Solid Earth 2021, 12, 1899–1930. [Google Scholar] [CrossRef]
- Bergelin, I.; Obst, K.; Hamilton, M.; Söderlund, U. 40Ar/39Ar whole rock and U-Pb baddeleyite dating of Permian and Carboniferous dolerite dykes in Scania (southern Sweden), and their relation to Pangea post-collisional processes. In Proceedings of the 6th International Dyke Conference Varanasi India Program Abstracts, Varanasi, India, 4–7 February 2010. [Google Scholar]
- Williams, I.S.; Tetley, N.W.; Compston, W.; McDougall, I. A comparison of K-Ar and Rb-Sr ages of rapidly cooled igneous rocks: Two points in the Palaeozoic time scale re-evaluated. J. Geol. Soc. Lond. 1982, 139, 557–568. [Google Scholar] [CrossRef]
- Corfu, F.; Dahlgren, S. Perovskite U–Pb ages and the Pb isotopic composition of alkaline volcanism initiating the Permo–Carboniferous Oslo Rift. Earth Planet. Sci. Lett. 2008, 265, 256–269. [Google Scholar] [CrossRef]
- Kirstein, L.; Davies, G.R.; Heeremans, M. The petrogenesis of Carboniferous-Permian dyke and sill intrusions across northern Europe. Contrib. Mineral. Petrol. 2006, 152, 721–742. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Dempsey, E.D.; Holdsworth, R.E.; Selby, D.; Bird, A.; Young, B.; Le Cornu, C. A revised age, structural model and origin for the North Pennine Orefield in the Alston Block, N. England: Intrusion (Whin Sill)-related base metal (Cu-Pb-Zn-F) mineralization. J. Geol. Soc. 2021, 178, jgs2020–jgs2226. [Google Scholar] [CrossRef]
- Brassinnes, S. Relations Cumalat-Liquide Dans les Massifs Alcalins et Carbonatitiques. Le cas des Massifs de Vuoriyarvi (Peninsule de Kola, Russie) et de Tajno (NE Pologne). Ph.D. Thesis, Université Libre de Bruxelles, Bruxelles, Belgium, 2006; pp. 1–330. [Google Scholar]
- Shumlyanskyy, L.; Krzemińska, E.; Kuzmenkova, O.; Nosova, A. Geochemistry of picrites of the Ediacaran Volyn continental flood basalt province. Geology and Minerals of Ukraine. In Proceedings of the Abstracts of Scientific Conference Dedicated to the Centenaries of National Academy of Sciences of Ukraine and State Geological Survey of Ukraine, Kyiv, Ukraine, 2–4 October 2018; pp. 259–261. [Google Scholar]
- Zindler, A.; Hart, S. Chemical Geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Ben Othman, D.; White, W.M.; Patchett, J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet. Sci. Lett. 1989, 91, 1–21. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzemińska, E.; Krzemiński, L.; Poprawa, P.; Pacześna, J.; Nejbert, K. First Evidence of the Post-Variscan Magmatic Pulse on the Western Edge of East European Craton: U-Pb Geochronology and Geochemistry of the Dolerite in the Lublin Podlasie Basin, Eastern Poland. Minerals 2021, 11, 1361. https://doi.org/10.3390/min11121361
Krzemińska E, Krzemiński L, Poprawa P, Pacześna J, Nejbert K. First Evidence of the Post-Variscan Magmatic Pulse on the Western Edge of East European Craton: U-Pb Geochronology and Geochemistry of the Dolerite in the Lublin Podlasie Basin, Eastern Poland. Minerals. 2021; 11(12):1361. https://doi.org/10.3390/min11121361
Chicago/Turabian StyleKrzemińska, Ewa, Leszek Krzemiński, Paweł Poprawa, Jolanta Pacześna, and Krzysztof Nejbert. 2021. "First Evidence of the Post-Variscan Magmatic Pulse on the Western Edge of East European Craton: U-Pb Geochronology and Geochemistry of the Dolerite in the Lublin Podlasie Basin, Eastern Poland" Minerals 11, no. 12: 1361. https://doi.org/10.3390/min11121361
APA StyleKrzemińska, E., Krzemiński, L., Poprawa, P., Pacześna, J., & Nejbert, K. (2021). First Evidence of the Post-Variscan Magmatic Pulse on the Western Edge of East European Craton: U-Pb Geochronology and Geochemistry of the Dolerite in the Lublin Podlasie Basin, Eastern Poland. Minerals, 11(12), 1361. https://doi.org/10.3390/min11121361