New Geological Evidence of the 1755 Lisbon Tsunami from the Rock of Gibraltar (Southern Iberian Peninsula)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Sampling
3.2. Facies Analysis
3.3. Mineralogy
3.4. Geochemistry
3.5. Dating
4. Results
4.1. Facies
4.2. Mineralogy
4.3. Geochemistry
4.4. Chronology: Radiocarbon Dates (Kiloyears-kyr-) and History
5. Discussion
5.1. Facies and Paleoenvironments
- (i)
- (ii)
- (iii)
- Paleontological record. The presence of marine gastropods, such the intertidal and infralittoral species Calliostoma laugieri [42] or groove top shells (J. striatus), common gastropod grazers of Posidonia oceanica leaves [43], as well as a mixing of mollusk assemblages, with species indicative of a range of different source paleoenvironments (brackish Peringia ulvae and marine). The appearance of the two first species would have involved their transport from the marine environments adjacent to The Inundation lagoon by the flushing of the tsunami waves, a common feature in tsunamiites deposited in old coastal lagoons [44,45]. Consequently, this record is very important in determining tsunamiites;
- (iv)
- This abundance of molluscs is associated with an increase in calcite and aragonite, the main components of their shells, as in other tsunamiites [46];
- (v)
- (vi)
- Ba increases near the base of F3. Peaks of this element are common in tsunamiites, probably due to the presence of Ba associated with carbonates (e.g., mollusc shells) [48];
- (vii)
- An increase in ferromagnesian elements (Ni, Cr, and V), which tend to be more abundant in tsunami sediments than in pre-tsunami sediments [49].
5.2. Dating and History
5.3. The First Mineralogical and Geochemical Evidence of the 1755 Lisbon Tsunami in Gibraltar
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prizonwala, S.P.; Gandhi, D.; Bhatt, N.; Winkler, W.; Ravi, M.; Makwana, N.; Bhatt, N. Geological evidence for AD 1008 tsunami along the Kachchh coast, Western India: Implications for hazard along the Makran Subduction Zone. Sci. Rep. 2018, 8, 16816. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.N.; Johnson, F.C.; Khan, A.; Sahoo, S.; Irshad, R.; Paul, D.; Arora, S.; Baghel, P.K.; Chopra, S. Tsunami records of the last 8000 years in the Andaman Island, India, from mega and large earthquakes: Insights on recurrence interval. Sci. Rep. 2019, 9, 18463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahlburg, H.; Spiske, M. The February 27, 2010 Chile Tsunami-Sedimentology of run-up and backflow deposits at Isla Mocha. AGU Abstr. 2010, 2010, OS42B-06. [Google Scholar]
- Nentwig, V.; Bahlburg, H.; Gorecka, E.; Huber, B.; Bellanova, P.; Witkowski, A.; Encinas, A. Multiproxy analysis of tsunami deposits-The Tirúa example, central Chile. Geosphere 2018, 14, 1067–1086. [Google Scholar] [CrossRef] [Green Version]
- Ishimura, D.; Miyauchi, T. Historical and paleo-tsunami deposits during the last 4000 years and their correlation with historical tsunami events in Koyadori on the Sanriku Coast, northeastern Japan. Progr. Earth Planet. Sci. 2015, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, D.; Sawai, Y.; Tanigawa, K.; Fujiwara, O.; Nemegaya, Y.; Shishikura, M.; Kagohara, K.; Kimura, H. Tsunami deposit associated with the 2011 Tohoku-oki tsunami in the Hasunuma site of the Kujukiri coastal plain, Japan. Island ARC 2016, 25, 369–385. [Google Scholar] [CrossRef]
- Scheffers, A.; Kelletat, D. Sedimentologic and geomorphologic tsunami imprints worldwide—A review. Earth Sci. Rev. 2003, 63, 83–92. [Google Scholar] [CrossRef]
- Pilarczyk, J.E.; Horton, B.P.; Witter, R.C.; Vane, C.H.; Chagué-Goff, C.; Goff, J. Sedimentary and foraminiferal evidence of the 2011 Tohoku-oki tsunami on the Sendai coastal plain, Japan. Sed. Geol. 2012, 282, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, F.; Abad, M.; Cáceres, L.M.; Rodríguez Vidal, J.; Carretero, M.I.; Pozo, M.; González-Regalado, M.L. Ostracodes as tsunami tracers in Holocene sequences. Quat. Int. 2010, 73, 130–135. [Google Scholar]
- Dura, T.; Hemphill-Haley, E.; Saway, Y.; Horton, B.P. The application of diatoms to reconstruct the history of subduction zone earthquakes and tsunamis. Earth Sci. Rev. 2016, 152, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Chagué-Goff, C.; Szczucinski, W.; Shinozaki, T. Applications of geochemistry in tsunami research: A review. Earth Sci. Rev. 2017, 165, 203–244. [Google Scholar] [CrossRef]
- Avsar, U. Sedimentary geochemical evidence of historical tsunamis in the Eastern Mediterranean from Ölüdeniz Lagoon, SW Turkey. J. Paleolimnol. 2019, 61, 373–385. [Google Scholar] [CrossRef]
- Rodríguez Vidal, J.; Ruiz, F.; Cáceres, L.M.; Abad, M.; González-Regalado, M.L.; Pozo, M.; Carretero, M.I.; Monge, A.M.; Gómez, F. Geomarkers of the 218–209 BC Atlantic tsunami in the Roman Lacus ligustinus: A palaeogeographical approach. Quat. Int. 2011, 242, 201–212. [Google Scholar] [CrossRef]
- Donadio, C.; Paliaga, G.; Radke, J.D. Tsunamis and rapid coastal remodeling: Linking energy and fractal dimension. Progr. Phys. Geog. Earth Environ. 2019, 44, 550–571. [Google Scholar] [CrossRef]
- Font, E.; Veiga-Pires, C.; Pozo, M.; Nave, S.; Costa, S.; Ruiz, F.; Abad, M.; Simoes, N.; Duarte, S.; Rodríguez Vidal, J. Benchmarks and sediment source(s) of the 1755 tsunami deposit at Boca do Rio Estuary. Mar. Geol. 2013, 343, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kümmerar, V.; Drago, T.; Veiga-Pires, C.; Silva, P.F.; Magalhaes, V.; Mena, A.; Lopes, A.; Rodrigues, A.I.; Schmidt, S.; Terrinha, P.; et al. Exploring Offshore Sediment Evidence of the 1755 CE Tsunami (Faro, Portugal): Implications for the Study of Outer Shelf Tsunami Deposits. Minerals 2020, 10, 731. [Google Scholar] [CrossRef]
- Pozo, M.; Ruiz, F.; González-Regalado, M.L.; Carretero, M.I.; Monge, G.; Rodríguez Vidal, J.; Cáceres, L.M.; Abad, M.; Tosquella, J.; Izquierdo, T.; et al. The Origin and Evolution of Late Holocene Tsunamiites in the Doñana National Park (SW Spain): Trace Elements and Geochemical Proxies. Minerals 2020, 10, 756. [Google Scholar] [CrossRef]
- Solares, J.M.M.; Arroyo, A.L. The great historical 1755 earthquake. Effects and damage in Spain. J. Seismol. 2004, 8, 275–294. [Google Scholar] [CrossRef]
- Silva, P.G.; Gómez-Diego, P.V.; Elez, J.; Giner-Robles, J.L.; Rodríguez-Pascua, M.A.; Roquero, E.; Martínez-Graña, A.; Bardají, T.; Bautista, B. Eartquake environmental effects of the AD 1755 Lisbon tsunami in Spain. In Resúmenes IX Reunión del Cuaternario Ibérico, Faro; AEQUA: Roma, Italy, 2017; pp. 53–57. [Google Scholar]
- Solares, J.M.M. Los Efectos En España Del Terremoto De Lisboa (1 De Noviembre De 1755); Ministerio de Fomento: Madrid, Spain, 2001. [Google Scholar]
- Baptista, M.A.; Miranda, J.M. Revision of the Portuguese catalog of tsunamis. Nat. Hazards Earth Syst. Sci. 2009, 9, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Omira, R.; Baptista, M.A.; Mellas, S.; Leone, F.; Meschinet de Richemond, N.; Zourarah, B.; Cherel, J.-P. The November 1st, 1755 Tsunami in Morocco: Can Numerical Modeling Clarify the Uncertainties of Historical Reports? In Tsunami—Analysis of a Hazards—From Physical Interpretation to Human Impact; López, G., Ed.; IntechOpen: London, UK, 2012; pp. 61–76. [Google Scholar]
- Baptista, M.A.; Heitor, S.; Miranda, J.M.; Miranda, M.A.; Victor, L.M. The 1755 Lisbon tsunami: Evaluation of the tsunami parameters. J. Geodyn. 1998, 25, 143–157. [Google Scholar] [CrossRef]
- Roger, J.; Baptista, M.A.; Sahal, A.; Accary, F.; Allgeyer, S.; Hebert, H. The Transoceanic 1755 Lisbon Tsunami in Martinique. Pure Appl. Geophys. 2010, 168, 1015–1031. [Google Scholar] [CrossRef] [Green Version]
- Dabrio, C.J.; Goy, J.L.; Zazo, C. The record of the tsunami produced by the 1755 Lisbon earthquake in Valdelagrana spit (Gulf of Cádiz, southern Spain). Geogaceta 1998, 23, 31–34. [Google Scholar]
- Whelan, F.; Kelletat, D. Boulder Deposits on the Southern Spanish Atlantic Coast: Possible Evidence for the 1755 AD Lisbon Tsunami? Sci. Tsun. Hazards 2005, 23, 25–38. [Google Scholar]
- Cuven, S.; Paris, R.; Falvard, S.; Miot-Noirault, E.; Benbakkar, M.; Schneider, J.-L.; Billy, I. High-resolution analysis of a tsunami deposit: Case-study from the 1755 Lisbon tsunami in southwestern Spain. Mar. Geol. 2013, 337, 98–111. [Google Scholar] [CrossRef]
- Schultz, L.G. Quantitative Interpretation of Mineral Composition from X-ray and Chemical Data for the Pierre Shale. 1964. Available online: https://pubs.er.usgs.gov/publication/pp391C (accessed on 3 September 2021).
- Vidihna, J.M.; Rocha, F.; Andrade, C.; Gomez, C.; Freitas, C. Clay Minerals—A Mineralogical Tool to Distinguish Beach from Dune Sediments. J. Coast. Res. 2007, S150, 216–220. [Google Scholar]
- Sivasamandy, R.; Ramesh, R. Clay Mineralogy of Surface Sediments of Kolakkudi Lake, Musiri Taluk, Tiruchirapalli District. Tamil Nadu, India. Int. J. Res. 2015, 2, 646–657. [Google Scholar]
- Reimer, P.J.; Baillie, M.G.L.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Bronk Ramsey, C.; Buck, C.E.; Burr, G.S.; Edwards, R.L.; et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 2009, 51, 1111–1150. [Google Scholar] [CrossRef] [Green Version]
- Wilke, T.; Rolán, E.; Davis, G.M. The mudsnail genus Hydrobia s.s. in the northern Atlantic and western Mediterranean: A phylogenetic hypothesis. Mar. Biol. 2000, 137, 827–833. [Google Scholar] [CrossRef]
- Ware, F. Scottish Invertebrate Discoveries: The hardy invertebrates thriving in Scotland’s saline lagoons. Scott. Invertebr. News 2014, 5, 5–6. [Google Scholar]
- Kelaart, E.F. Flora Calpensis. Contributions to the Botany and Topography of Gibraltar and Its Neighbourhoud: With Plan, and Views of the Rock; John Van Voorst: London, UK, 1846. [Google Scholar]
- Dawson, A.G.; Shi, S. Tsunami deposits. Pur. Appl. Geophys. 2000, 157, 875–897. [Google Scholar] [CrossRef]
- Garrison-Laney, C.E. Diatom Evidence for Tsunami Inundation from Lagoon Creek, a Coastal Freshwater Pond, Del Norte County, Carolina. Ph.D. Thesis, Humboldt State University, Arcata, CA, USA, 1998. [Google Scholar]
- Kempf, P.; Moernaaut, J.; Van Daele, M.; Vandoorne, W.; Pino, M.; Urrutia, R.; De Batist, M. Coastal lake sediments reveal 5500 years of tsunami history in south central Chile. Quat. Sci. Rev. 2017, 161, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Goff, J.; Nichol, S.; Kennedy, D. Development of a tsunami database for New Zealand. Nat. Hazards 2010, 54, 193–208. [Google Scholar] [CrossRef]
- Naruse, H.; Arai, K.; Matsumoto, D.; Takahashi, H.; Yamashita, S.; Tanaka, G.; Murayama, M. Sedimentary features observed in the tsunami deposits at Rikuzentakata City. Sed. Geol. 2012, 282, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, G. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat. Hazards 2012, 63, 5–30. [Google Scholar] [CrossRef]
- Higman, B.; Jaffe, B.E. A comparison of grading in deposits from five tsunamis: Does tsunami wave duration affect grading patterns? EOS Trans. Am. Geophys. Union 2005, 86, T11A-0362. [Google Scholar]
- Huc, S. The first documented finds of Calliostoma laugieri (Payraudeau, 1826) (Gastropoda: Calliostomatidae) on the coastal mollusc shell deposit at Ankaran. Nat. Slov. 2019, 21, 55–56. [Google Scholar]
- Donnarumma, L.; Bruno, R.; Terlizzi, A.; Russo, G.F. Population ecology of Jujubinus striatus and Jujubinus exasperatus (Gastropoda: Trochidae) in a Posidonia oceanica seagrass bed. Eur. Zool. J. 2018, 85, 17–25. [Google Scholar] [CrossRef]
- Ruiz, F.; Rodríguez Ramírez, A.; Cáceres, L.M.; Rodríguez Vidal, J.; Carretero, M.I.; Abad, M.; Olías, M.; Pozo, M. Evidence of high-energy events in the geological record: Mid-Holocene evolution of the southwestern Doñana National Park (SW Spain). Palaeogeog. Palaeoclimat. Palaeoecol. 2005, 229, 212–229. [Google Scholar] [CrossRef]
- Donato, S.V.; Reinhart, E.; Boyce, J.I.; Rothaus, R.; Vosmer, T. Identifying tsunami deposits using bivalve shell taphonomy. Geology 2008, 36, 199–202. [Google Scholar] [CrossRef]
- Smit, J.; Laffra, C.; Meulenaars, K.; Montanari, A. Probable late Messinian tsunamiites near Monte Dei Corvi, Italy, and the Nijar Basin, Spain: Expected architecture of offshore tsunami deposits. Nat. Hazards 2012, 63, 241–266. [Google Scholar] [CrossRef] [Green Version]
- Jagodzinski, R.; Sternal, B.; Szczucinski, W.; Lorend, S. Heavy Minerals in 2004 Tsunami Deposits on Kho Khao Island, Thailand. Polish. J. Environ. Stud. 2009, 18, 103–110. [Google Scholar]
- Ramírez-Herrera, M.T.; Lagos, M.; Hutchinson, I.; Kostoglodov, V.; Machain, M.L.; Caballero, M.; Goguitchaichvili, A.; Aguilar, B.; Chagué-Goff, C.; Goff, J.; et al. Extreme wave deposits on the Pacific coast of Mexico: Tsunamis or storms?—A multi-proxy approach. Geomorphology 2012, 139–140, 360–371. [Google Scholar] [CrossRef]
- Jayawardana, D.T.; Ishiga, H.; Pitawala, H.M.T.G.A. Geochemistry of surface sediments in tsunami-affected Sri Lankan lagoons regarding environmental implications. Int. J. Environ. Sci. Technol. 2012, 9, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, A.; Cárcaba, A.; Porras, A.; Arrébola, J.R. Caracoles Terrestres De Andalucía. Guía Y Manual De Identificación; Junta de Andalucía: Seville, Spain, 2006; p. 304. [Google Scholar]
- Zubala, T.; Patro, M.; Boguta, P. Variability of zinc, copper and lead contents in sludge of the municipal storwater treatment plant. Environ. Sci. Pollut. Res. Int. 2017, 24, 17145–17152. [Google Scholar] [CrossRef] [Green Version]
- Emmons, A.M.; Bizimis, M.; Lang, S.Q.; Stangler, W.; Geidel, G.; Baalousha, M.; Wanamaker, E.; Rothenberg, S.E. Enrichments of metals, including methylmercury, in sewage spills in south Carolina, USA. J. Environ. Qual. 2018, 47, 1258–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grenville, R.T.N.B.C. The Private Diary of Richard, Duke of Buckingham and Chandos; Hurst & Blackett: London, UK, 1856; Volume 1, p. 341. [Google Scholar]
- Lt. Col. Wilkie. The British Colonies considered as Military Posts. United Serv. Mag. 1840, 33, 381. [Google Scholar]
- Abad, M.; López González, N.M.; Delgado, J.; Rodríguez-Vidal, J.; Chamorro, S.; Cáceres, L.M. Análisis y cartografía de peligrosidad geológica en el litoral de Ceuta. Rev. Soc. Geol. España 2010, 23, 35–53. [Google Scholar]
- Kaabouben, F.; Baptista, M.A.; Iben Brahim, A.; El Mouraouah, A.; Toto, A. On the Moroccan tsunami catalogue. Nat. Hazards Earth Syst. Sci. 2009, 9, 1227–1236. [Google Scholar] [CrossRef]
Facies | Sediment | Mean (phi) | Sorting | Skewness |
---|---|---|---|---|
F3b (top) | Medium sand | 1.84 | 0.98 (poorly sorted) | Symmetrical |
F3b (base) | Medium sand | 1.9 | 1.05 (poorly sorted) | Fine skewed |
F3a | Fine sand | 2.56 | 1.11 (poorly sorted) | Fine skewed |
F2 (top) | Fine sand | 2.53 | 1.4 (poorly sorted) | Symmetrical |
F2 (base) | Fine sand | 2.49 | 1.51 (poorly sorted) | Coarse skewed |
SAMPLE | DEPTH (cm) | FACIES | ELEMENT (μg/kg) | Ag | As | Ba | Be |
Analytical Error (μg/kg) | 0.1 | 0.1 | 0.1 | 0.1 | |||
GB-12 | 170 | F4 | 0.6 | 4.9 | 90.4 | 0.44 | |
GB-9 | 210 | F3 | 0.12 | 6.46 | 101 | 0.52 | |
GB-8 | 215 | F3 | <0.1 | 12.3 | 81.9 | 0.42 | |
GB-7 | 220 | F2 | <0.1 | 11.4 | 56.7 | 0.25 | |
GB-1 | 300 | F1 | <0.1 | 1.92 | 37.5 | 0.15 | |
SAMPLE | DEPTH (cm) | FACIES | ELEMENT (μg/kg) | Co | Cr | Cu | Mo |
Analytical Error (μg/kg) | 0.2 | 0.1 | 0.2 | 0.1 | |||
GB-12 | 170 | F4 | 4.4 | 124 | 18.5 | 0.65 | |
GB-9 | 210 | F3 | 6.93 | 242 | 6.99 | < 0.1 | |
GB-8 | 215 | F3 | 9.62 | 108 | 4.5 | 3.59 | |
GB-7 | 220 | F2 | 6.78 | 108 | 4.86 | 3.38 | |
GB-1 | 300 | F1 | 1.99 | 99.5 | 8.27 | 3.23 | |
SAMPLE | DEPTH (cm) | FACIES | ELEMENT (μg/kg) | Ni | Pb | Sb | Th |
Analytical Error (μg/kg) | 0.1 | 2 | 0.1 | 0.05 | |||
GB-12 | 170 | F4 | 35.7 | 181 | 0.88 | 1.76 | |
GB-9 | 210 | F3 | 92.2 | 20.3 | 0.42 | 2.05 | |
GB-8 | 215 | F3 | 90.8 | 11.6 | 0.75 | 1.56 | |
GB-7 | 220 | F2 | 69.1 | 11.2 | 0.57 | 1.29 | |
GB-1 | 300 | F1 | 17.3 | 4.06 | 0.18 | 0.83 | |
SAMPLE | DEPTH (cm) | FACIES | ELEMENT (μg/kg) | Tl | U | V | Zn |
Analytical Error (μg/kg) | 0.05 | 0.1 | 0.2 | 0.3 | |||
GB-12 | 170 | F4 | 0.2 | 0.58 | 24 | 34.1 | |
GB-9 | 210 | F3 | 0.16 | 0.42 | 30.3 | 21.1 | |
GB-8 | 215 | F3 | 0.45 | 1 | 31.5 | 17 | |
GB-7 | 220 | F2 | 0.55 | 1.16 | 18.2 | 11.5 | |
GB-1 | 300 | F1 | 0.06 | 0.58 | 15 | 8.6 |
Core Depth (cm) | Laboratory Code | Sample | 14C age yr BP | ∂13C 0/00 | Calibrated yr BP (2σ) |
---|---|---|---|---|---|
215 | Beta-290903 | peat | 2680 ± 30 | −28.0 | 2750–2850 |
300 | Beta-290904 | peat | 3770 ± 40 | −27.9 | 3980–4290 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, F.; Pozo, M.; González-Regalado, M.L.; Rodríguez Vidal, J.; Cáceres, L.M.; Abad, M.; Izquierdo, T.; Prudencio, M.I.; Dias, M.I.; Marques, R.; et al. New Geological Evidence of the 1755 Lisbon Tsunami from the Rock of Gibraltar (Southern Iberian Peninsula). Minerals 2021, 11, 1397. https://doi.org/10.3390/min11121397
Ruiz F, Pozo M, González-Regalado ML, Rodríguez Vidal J, Cáceres LM, Abad M, Izquierdo T, Prudencio MI, Dias MI, Marques R, et al. New Geological Evidence of the 1755 Lisbon Tsunami from the Rock of Gibraltar (Southern Iberian Peninsula). Minerals. 2021; 11(12):1397. https://doi.org/10.3390/min11121397
Chicago/Turabian StyleRuiz, Francisco, Manuel Pozo, María Luz González-Regalado, Joaquín Rodríguez Vidal, Luis Miguel Cáceres, Manuel Abad, Tatiana Izquierdo, María Isabel Prudencio, María Isabel Dias, Rosa Marques, and et al. 2021. "New Geological Evidence of the 1755 Lisbon Tsunami from the Rock of Gibraltar (Southern Iberian Peninsula)" Minerals 11, no. 12: 1397. https://doi.org/10.3390/min11121397
APA StyleRuiz, F., Pozo, M., González-Regalado, M. L., Rodríguez Vidal, J., Cáceres, L. M., Abad, M., Izquierdo, T., Prudencio, M. I., Dias, M. I., Marques, R., Muñoz-Pichardo, J. M., Tosquella, J., Gómez, P., Toscano, A., Romero, V., & Arroyo, M. (2021). New Geological Evidence of the 1755 Lisbon Tsunami from the Rock of Gibraltar (Southern Iberian Peninsula). Minerals, 11(12), 1397. https://doi.org/10.3390/min11121397