Potential Loss of Toxic Elements from Slope Arable Soil Erosion into Watershed in Southwest China: Effect of Spatial Distribution and Land-Uses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Laboratory Analysis
2.3. Establishment of Threshold Background Values and Enrichment Assessment
2.4. Calculation of Soil Erosion and PTE Loss
2.5. QA/QC
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Properties and Content of PTEs in Soil
3.2. Spatial Distribution of PTEs and Effect of Land Use
3.3. The Soil Erosion and the Risk of PTE Loss
4. Discussion
4.1. Importance of Using Local Background Value for PTE Risk Assessments
4.2. Risk of PTE Loss from Soil within a Watershed
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ministry of Land and Resources, National Bureau of Statistics of China, Leading Group Office for Second National Land Survey of the State Council. Bulletin on the main data results of the second National Land Survey. Resour. Habitant Environ. 2014, 1, 16–17. [Google Scholar]
- Sharma, A.; Tiwari, K.N.; Bhadoria, P.B.S. Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environ. Monit. Assess. 2011, 173, 789–801. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, P.; Li, Z.; Yu, K.; Ren, Z.; Xu, G.; Cheng, S.; Wang, F.; Ma, Y. Distribution of soil organic carbon impacted by land-use changes in a hilly watershed of the Loess Plateau. China. Sci. Total Environ. 2019, 652, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Jarsjö, J.; Chalov, S.R.; Pietroń, J.; Alekseenko, A.V.; Thorslund, J. Patterns of soil contamination, erosion and river loading of metals in a gold mining region of northern Mongolia. Reg. Environ. Chang. 2017, 17, 1991–2005. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, G.; Shi, W.; Li, J. Soil heavy metal contamination and risk assessment around the Fenhe Reservoir, China. Bull. Environ. Contam. Toxicol. 2014, 93, 182–186. [Google Scholar] [CrossRef]
- Mehmood, A.; Raza, W.; Kim, K.H.; Raza, N.; Lee, S.S.; Zhang, M.; Lee, J.; Sarfraz, M. Spatial distribution of heavy metal in crops in a wastewater irrigated zone and health risk assessment. Environ. Res. 2019, 168, 382–388. [Google Scholar] [CrossRef]
- Stafilov, T.; Šajn, R.; Boev, B.; Cvetković, J.; Mukaetov, D.; Andreevski, M.; Lepitkova, S. Distribution of some elements in surface soil over the Kavadarci region, Republic of Macedonia. Environ. Earth Sci. 2010, 61, 1515–1530. [Google Scholar] [CrossRef]
- Song, H.Y.; Hu, K.L.; An, Y.; Chen, C.; Li, G.D. Spatial distribution and source apportionment of the heavy metals in the agricultural soil in a regional scale. J. Soils Sediments 2018, 18, 852–862. [Google Scholar] [CrossRef]
- Shi, T.; Ma, J.; Wu, X.; Ju, T.; Lin, X.; Zhang, Y.; Li, X.; Gong, Y.; Hou, H.; Zhao, L.; et al. Inventories of heavy metal inputs and outputs to and from agricultural soils: A review. Ecotoxicol. Environ. Safe 2018, 164, 118–124. [Google Scholar] [CrossRef]
- Kheir, A.M.; Ali, E.F.; Ahmed, M.; Eissa, M.A.; Majrashi, A.; Ali, O.A. Biochar blended humate and vermicompost enhanced immobilization of heavy metals, improved wheat productivity, and minimized human health risks in different contaminated environments. J. Environ. Chem. Eng. 2021, 9, 105700. [Google Scholar] [CrossRef]
- Peng, T.; Wang, S. Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena 2012, 90, 53–62. [Google Scholar] [CrossRef]
- Ma, L.; Sun, J.; Yang, Z.; Wang, L. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environ. Monit. Assess. 2015, 187, 731. [Google Scholar] [CrossRef]
- Shetaya, W.H.; Marzouk, E.R.; Mohamed, E.F.; Elkassas, M.; Bailey, E.H.; Young, S.D. Lead in Egyptian soils: Origin, reactivity and bioavailability measured by stable isotope dilution. Sci. Total Environ. 2018, 618, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.H.; Qu, S.Y.; Nel, W.; Ji, J.F. The impact of natural weathering and mining on heavy metal accumulation in the karst areas of the Pearl River Basin, China. Sci. Total Environ. 2020, 734, 139480. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.Y.; Liu, T.; Yu, Z.H.; Chen, Z.; Lei, D.; Wang, Z.W.; Zhang, H.; Li, Q.H.; Zhang, S.S. Heavy metal bioaccumulation in rice from a high geological background area in Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 2281. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, P.K.; Dall’Agnol, R.; Salomão, G.N.; Junior, J.D.S.F.; da Silva, M.S.; Martins, G.C.; Filho, P.W.M.S.; Powell, M.A.; Maurity, C.W.; Angelica, R.S.; et al. Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS-based mapping: A high density sampling survey in the Parauapebas basin, Brazilian Amazon. Environ. Geochem. Health 2020, 42, 255–282. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Dall’Agnol, R.; Salomão, G.N.; Junior, J.D.S.F.; Silva, M.S.; Filho, P.W.M.; Costa, M.F.C.; Guilherme, L.R.G.; Siqueira, J.O. Regional-scale mapping for determining geochemical background values in soils of the Itacaiúnas River Basin, Brazil: The use of compositional data analysis (CoDA). Geoderma 2020, 376, 114504. [Google Scholar] [CrossRef]
- Li, F.P.; Liu, W.; Lu, Z.B.; Mao, L.C.; Xiao, Y.H. A multi-criteria evaluation system for arable land resource assessment. Environ. Monit. Assess. 2020, 192, 79. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.M.; Xu, Z.C.; Ren, M.Z.; Guo, Q.W.; Xu, X.B.; Hu, G.C.; Wan, H.F.; Peng, P.G. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol. Environ. Safe 2012, 78, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Han, Z.; Yang, Y. Accumulation, temporal variation, source apportionment and risk assessment of heavy metals in agricultural soils from the middle reaches of Fenhe River basin, North China. RSC Adv. 2019, 9, 21893–21902. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.S.; Sun, B.Y.; Li, C.D.; Li, Z.B.; Ma, B. Runoff and soil erosion on slope Cropland: A Review. J. Resour. Ecol. 2018, 9, 461–470. [Google Scholar]
- Xia, L.Z.; Hoermann, G.; Ma, L.; Yang, L.Z. Reducing nitrogen and phosphorus losses from arable slope land with contour hedgerows and perennial alfalfa mulching in Three Gorges Area, China. Catena 2013, 110, 86–94. [Google Scholar] [CrossRef]
- Ouyang, W.; Wu, Y.; Hao, Z.; Zhang, Q.; Bu, Q.; Gao, X. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 2018, 613, 798–809. [Google Scholar] [CrossRef]
- CNEMC (China National Environmental Monitoring Center). The Soil Background Value in China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Müller, G. Index of Geoaccumulation in Sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Bhuiyan, M.A.H.; Parvez, L.; Islam, M.A.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Wang, N.; Wang, A.; Kong, L.; He, M. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Sci. Total Environ. 2018, 610, 167–174. [Google Scholar] [CrossRef]
- Andriyanto, C.; Sudarto, S.; Suprayogo, D. Estimation of soil erosion for a sustainable land use planning: RUSLE model validation by remote sensing data utilization in the Kalikonto watershed. JDMLM 2015, 3, 459–468. [Google Scholar]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); USDA Handbook No. 703; United States Government Printing Office: Washington, DC, USA, 1997; pp. 1–251.
- Fu, B.; Liu, Y.; Lu, Y.H.; He, C.S.; Zeng, Y.; Wu, B.F. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Van Rompaey, A.J.; Verstraeten, G.; Van Oost, K.; Govers, G.; Poesen, J. Modelling mean annual sediment yield using a distributed approach. Earth Surf. Process Landf. 2001, 26, 1221–1236. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, C.Y.; Wang, S.F.; Jia, Y.F. Application of the RUSLE for determining Riverine heavy metal flux in the Upper Pearl River Basin, China. Bull. Environ. Contam. Toxicol. 2020, 106, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Vente, J.D.; Poesen, J.; Verstraeten, G.; Govers, G.; Vanmaercke, M.; Rompaey, A.V.; Arabkhedri, M.; Boix-Fayos, C. Predicting soil erosion and sediment yield at regional scales: Where do we stand. Earth Sci. Rev. 2013, 127, 16–29. [Google Scholar] [CrossRef]
- Hamel, P.; Chaplin-Kramer, R.; Sim, S.; Mueller, C. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Sci. Total Environ. 2015, 524–525, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W.H. A soil erodibility nomograph for farmland and construction sites. J. Soil Conserv. 1971, 26, 189–193. [Google Scholar]
- Sharpley, A.N.; Williams, J.R. EPIC-Erosion/Productivity Impact Calculator: 1. Model Determination; U.S. Department of Agriculture: Washington, DC, USA, 1990.
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning (No. 537); Department of Agriculture, Science and Education Administration: Washington, DC, USA, 1978.
- McCool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Risse, L.M. Slope gradient effects on soil loss for steep slopes. Trans. ASAE 1994, 37, 1835–1840. [Google Scholar] [CrossRef]
- Cai, C.F.; Ding, S.W.; Shi, Z.H.; Huang, L.; Zhang, G.Y. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed. J. Soil Water Conserv. 2000, 14, 19–24, (In Chinese with English abstract). [Google Scholar]
- Chen, Z.J.; Liu, S.Q.; Yang, D.G.; Chen, G.J. Soil and water loss and its controlling countermeasures in the upper reaches of the Yangtze River. J Soil Water Conserv. 2000, 14, 1–5, (In Chinese with English abstract). [Google Scholar]
- Yang, S.H.; Qu, Y.J.; Ma, J.; Liu, L.L.; Wu, H.W.; Liu, Q.Y.; Gong, Y.W.; Chen, Y.X.; Wu, Y.H. Comparison of the concentrations, sources, and distributions of heavy metal(loid)s in agricultural soils of two provinces in the Yangtze River Delta, China. Environ. Pollut. 2020, 264, 114688. [Google Scholar] [CrossRef]
- Sun, R.G.; Yang, J.; Xia, P.H.; Wu, S.L.; Lin, T.; Yi, Y. Contamination features and ecological risks of heavy metals in the farmland along shoreline of Caohai plateau wetland, China. Chemosphere 2020, 254, 126828. [Google Scholar] [CrossRef]
- Qin, F.X.; Wei, C.F.; Zhong, S.Q.; Huang, X.F.; Pang, W.P.; Jiang, X. Soil heavy metal(loid)s and risk assessment in vicinity of a coal mining area from southwest Guizhou, China. J. Cent. South Univ. 2016, 23, 2205–2213. [Google Scholar] [CrossRef]
- Yuan, X.; Xue, N.; Han, Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. 2021, 101, 217–226. [Google Scholar] [CrossRef]
- He, M.C.; Wang, X.Q.; Wu, F.C.; Fu, Z.Y. Antimony pollution in China. Sci. Total Environ. 2012, 421, 41–50. [Google Scholar] [CrossRef]
- Zhang, G.P.; Liu, C.Q.; Liu, H.; Hu, J.; Han, G.L.; Li, L. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China. J. Environ. Monitor. 2009, 11, 1570–1578. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Zhu, Y.G.; He, J.; Li, X.; Luo, L.; Mulder, J. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: Differences in mechanisms controlling soil sequestration and uptake in rice. Environ. Sci. Technol. 2012, 46, 3155–3162. [Google Scholar] [CrossRef]
- Tu, C.L.; He, T.B.; Liu, C.Q.; Lu, X.H. Effects of Land Use and Parent Materials on Trace Elements Accumulation in Topsoil. J. Environ. Qual. 2013, 42, 103–110. [Google Scholar] [CrossRef]
- Shan, Y.S.; Tysklind, M.; Hao, F.H.; Ouyang, W.; Chen, S.Y.; Lin, C.Y. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J. Soils Sediments 2013, 13, 720–729. [Google Scholar] [CrossRef]
- Rao, E.M.; Xiao, Y.; Ouyang, Z.Y.; Yu, X.X. National assessment of soil erosion and its spatial patterns in China. Ecosyst. Health Sust. 2015, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, H.; Guo, G.; Semple, K.T.; Jones, K.C. Soil contamination in China: Current priorities, defining background levels and standards for heavy metals. J. Environ. Manag. 2019, 251, 109512. [Google Scholar] [CrossRef]
- Xia, J.; Luo, Y. Definition and three evaluation guidelines of soil contamination. J. Ecol. R. Environ. 2006, 22, 87–90. [Google Scholar]
- Stephen, G.P.; Huang, J.Z.; Li, Z.P.; Jing, C.G. Sedimentary rock-hosted Au deposits of the Dian–Qian–Gui area, Guizhou, and Yunnan Provinces, and Guangxi District, China. Ore Geol. Rev. 2007, 31, 170–204. [Google Scholar]
- Wu, W.H.; Qu, S.Y.; Nel, W.; Ji, J.F. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China. Chemosphere 2021, 262, 127897. [Google Scholar] [CrossRef]
- Quinton, J.N.; Catt, J.A. Enrichment of heavy metals in sediment resulting from soil erosion on agricultural fields. Environ. Sci. Technol. 2007, 41, 3495–3500. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhang, X.; Bi, Z.; Yu, Y.; Shi, P.; Ren, L.; Shan, Z. The impact of land use changes and erosion process on heavy metal distribution in the hilly area of the Loess Plateau, China. Sci. Total Environ. 2020, 718, 137305. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, Y.F.; Lü, Y.H.; He, C.S.; Chen, L.D.; Song, C.J. The effects of land-use combinations on soil erosion: A case study in the Loess Plateau of China. Prog. Phys. Geogr. 2009, 33, 793–804. [Google Scholar] [CrossRef]
- Mao, L.C.; Liu, L.B.; Yan, N.X.; Li, F.P.; Tao, H.; Ye, H.; Wen, H.F. Factors controlling the accumulation and ecological risk of trace metal(loid)s in river sediments in agricultural field. Chemosphere 2020, 243, 125359. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Zhang, Y.; Yu, Y.; Li, P.; Li, Z.; Xiao, L.; Xu, G.; Zhu, T. Land-use types and slope topography affect the soil labile carbon fractions in the Loess hilly-gully area of Shaanxi. China. Arch. Agron. Soil Sci. 2019, 66, 638–650. [Google Scholar] [CrossRef]
- Basta, N.T.; Pantone, D.J.; Tabatabai, M.A. Path analysis of heavy metal adsorption by soil. Agron. J. 1993, 85, 1054–1057. [Google Scholar] [CrossRef]
- Shetaya, W.H.; Huang, J.H.; Osterwalder, S.; Mestrot, A.; Bigalke, M.; Alewell, C. Sorption kinetics of isotopically labelled divalent mercury (196Hg2+) in soil. Chemosphere 2019, 221, 193–202. [Google Scholar] [CrossRef]
Cd | Co | Cu | Cr | Ni | Pb | Zn | V | As | Mo | Sb | Hg | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | 1.5 | 15 | 53 | 102 | 55 | 56 | 419 | 169 | 65 | 3.1 | 92 | 3.6 |
Min | 0.1 | 1 | 2 | 14 | 2 | 10 | 8 | 25 | 0.2 | 0.2 | 0.6 | 0.01 |
Mean | 0.4 | 5 | 14 | 33 | 13 | 20 | 67 | 51 | 11 | 1.0 | 4.3 | 0.3 |
SD | 0.22 | 2.82 | 6.87 | 11.65 | 6.86 | 6.17 | 50.14 | 18.81 | 9.79 | 0.42 | 11.03 | 0.59 |
CV | 0.59 | 0.58 | 0.50 | 0.35 | 0.53 | 0.31 | 0.75 | 0.37 | 0.89 | 0.64 | 2.58 | 1.73 |
Province-scale BVs [28] | 0.66 | 19.2 | 32 | 95.9 | 39.1 | 35.2 | 99.5 | 138.8 | 20 | 2.4 | 2.24 | 0.11 |
Local BVs | 0.32 | 4.07 | 12.36 | 31.88 | 11.6 | 19.25 | 66.53 | 47.91 | 8.2 | 0.56 | 1.60 | 0.17 |
RSVs (paddy field) * | 0.4 | - | 150 | 250 | 70 | 100 | 200 | - | 30 | - | - | 0.5 |
RSVs (other land types) * | 0.3 | - | 50 | 150 | - | 90 | - | - | 40 | - | - | 1.8 |
China [46] | 0.19 | - | 25.81 | 67.37 | 27.77 | 30.74 | 85.86 | 8.89 | 0.07 | |||
Farmland soil in China [46] | 0.18 | - | 25.73 | 66.81 | 27.67 | 30.24 | 83.87 | 8.45 | 0.07 | |||
Zhejiang Province [43] | 0.23 | - | 23.96 | 47.84 | 21.31 | 36.79 | 91.39 | - | - | - | - | 0.12 |
Jiangsu Province [43] | 0.18 | - | 29.68 | 71.49 | 29.68 | 28.8 | 75.87 | - | - | - | - | 0.07 |
Caohai Wetland [44] | 2.68 | - | 24.9 | 89.7 | - | 22.4 | 163 | - | - | - | - | 0.2 |
Soil in a coal mine zone [45] | 1.09 | - | 134.09 | 173.63 | 64.89 | 240.61 | - | - | 477.58 | - | - | 0.71 |
Dry Arable Land | Paddy Field | Forest Land | |||
---|---|---|---|---|---|
Metals | Corn Field (n = 41) | Vegetable Field (n = 9) | Tea Plantation (n = 4) | Paddy Field (n = 40) | Forest Land (n = 5) |
Cd | 0.4 (0.1–1.5) | 0.3 (0.2–0.4) | 0.2 (0.1–0.4) | 0.4 (0.1–0.8) | 0.3 (0.1–0.4) |
Co | 6 (2–15) | 3 (1–6) | 4 (2–6) | 5 (2–13) | 2 (1–3) |
Cu | 14 (6–53) | 12 (8–17) | 9 (5–13) | 14 (7–38) | 11 (2–30) |
Cr | 32 (14–71) | 33 (22–51) | 44 (26–51) | 32 (19–52) | 46 (20–102) |
Ni | 13 (6–32) | 9 (6–17) | 12 (7–17) | 13 (6–28) | 15 (2–55) |
Pb | 20 (11–40) | 19 (17–28) | 21 (10–28) | 20 (11–56) | 17 (10–28) |
Zn | 68 (15–292) | 52 (29–74) | 42 (12–63) | 73 (31–419) | 49 (8–92) |
V | 50 (25–97) | 51 (312–77) | 63 (33–77) | 48 (26–88) | 75 (38–169) |
As | 14 (3–65) | 8 (0.2–18) | 14 (5–18) | 8 (1–22) | 10 (6–17) |
Mo | 0.7 (0.2–3.2) | 0.6 (0.3–1.4) | 0.9 (0.3–1.4) | 0.5 (0.2–1.4) | 1 (0.8–1.6) |
Sb | 6.4 (0.6–92) | 2.7 (1.1–6.8) | 2.4 (0.8–3.2) | 2.9 (0.6–33.6) | 2.1 (1.4–4.0) |
Hg | 0.44 (0.02–3.62) | 0.26 (0.07–0.62) | 0.45 (0.03–0.62) | 0.26 (0.01–2.09) | 0.24 (0.05–0.42) |
Land Use Type | Area Proportion | Soil Erosion Risk | Annual Soil Loss | Potential Soil Loss | Soil Retention |
---|---|---|---|---|---|
% | t/(ha.a) | t/a | t/a | t/a | |
Paddy field | 14.2% | 0.02 | 36 | 14,173 | 14,138 |
Dry arable land (slope ≤ 6°) | 3.8% | 0.69 | 410 | 2464 | 2054 |
Dry arable land (slope > 6°) | 10.2% | 2.03 | 3235 | 11,331 | 8096 |
Forest land | 67.2% | 0.05 | 535 | 89,095 | 88,561 |
Grassland | 4.6% | 0.27 | 194 | 3241 | 3046 |
Total | 4410 | 120,305 | 115,896 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Li, F.; Mao, L.; Gu, B.; Peng, C.; Yang, Q.; Lu, L.; Chen, X.; Zhang, D.; Tao, H. Potential Loss of Toxic Elements from Slope Arable Soil Erosion into Watershed in Southwest China: Effect of Spatial Distribution and Land-Uses. Minerals 2021, 11, 1422. https://doi.org/10.3390/min11121422
Gao Y, Li F, Mao L, Gu B, Peng C, Yang Q, Lu L, Chen X, Zhang D, Tao H. Potential Loss of Toxic Elements from Slope Arable Soil Erosion into Watershed in Southwest China: Effect of Spatial Distribution and Land-Uses. Minerals. 2021; 11(12):1422. https://doi.org/10.3390/min11121422
Chicago/Turabian StyleGao, Ya, Feipeng Li, Lingchen Mao, Bihan Gu, Changkang Peng, Qiuning Yang, Longchi Lu, Xilin Chen, Daofang Zhang, and Hong Tao. 2021. "Potential Loss of Toxic Elements from Slope Arable Soil Erosion into Watershed in Southwest China: Effect of Spatial Distribution and Land-Uses" Minerals 11, no. 12: 1422. https://doi.org/10.3390/min11121422
APA StyleGao, Y., Li, F., Mao, L., Gu, B., Peng, C., Yang, Q., Lu, L., Chen, X., Zhang, D., & Tao, H. (2021). Potential Loss of Toxic Elements from Slope Arable Soil Erosion into Watershed in Southwest China: Effect of Spatial Distribution and Land-Uses. Minerals, 11(12), 1422. https://doi.org/10.3390/min11121422