1. Introduction
Soil contamination is defined as the presence of elements that can change the quality of the soil and its function, and the water cycle, altering the habitat of various organisms, even making it harmful for humans if found in high concentrations [
1]. Anthropogenic activities have the greatest impact on ecosystems due to emissions such as vehicular or industrial emissions, which are a source of potentially toxic elements including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn).
Residential areas near industrial land are prone to the exposure to various sources of contamination due to the emissions generated. During the 20th century, the main productive activity in the commune of Coronel was coal mining, an activity that directly generates contamination in the immediate area as a result of the waste produced. At present, Coronel is home to a large number of industries and thermoelectric plants, which could be deteriorating the soil quality and continuously exposing the population to particulate matter, given their proximity to residential sectors.
Coal mining began in the area in the mid-19th century, supplying the ships that crossed the Strait of Magellan, later expanding its market within the country when the railroad lines were extended. The use of oil and electric energy caused affected demand for this resource, generating the gradual shutdown of the coal industry [
2]. In 1987 the first group of companies was installed in the so-called Parque Empresarial Coronel, and from that point, Coronel grew into an industrial area with over 50 companies today. It is also the main seaport in the Biobío Region.
Identifying the cause of the imbalance of the natural concentrations of elements in the soil, or any other environment, is fundamental if mitigating action is to be taken. However, special care is required when working with concentrations in order to avoid errors of interpretation since, as mentioned by [
3], compositional data does not belong to Euclidean space, therefore, statistical comparison tests based on Euclidean distances may produce errors. The main reason for this is the intrinsic constant sum constraint of compositional data. Therefore, when faced with this type of data, first they must be transformed, and then the appropriate multivariate methodology for unrestricted data vectors applied [
4].
It is important to point out that only the relationships between the different parts are interpretable and not their origin or the processes that led them to have these observed concentrations. It is therefore necessary to use external variables.
Identifying the sources of emission is just one of many areas of interest when talking about contamination. We must also ask how severe the damage is and if there is a risk of exposure. To answer these questions, first we have to identify and differentiate the concentrations in the soil that are natural from those that are not. This leads to the concept of threshold or background values, which is essential in environmental geochemistry, allowing us to distinguish between natural concentrations of trace elements (TE) and anthropogenic contamination [
5]. Based on this, pollution and health risk indicators have been established and will be further developed further on.
Therefore, the objectives of this study are (a) to determine the soil contamination and to identify sources of Cd, Cu, Cr, Ni, V, and Zn in soils in the commune of Coronel and (b) to evaluate the carcinogenic and non-carcinogenic risks to children and adults of those potentially toxic elements.
3. Results and Discussion
3.1. Univariate Data Analysis
A statistical summary of the concentrations of Cd, Cr, Cu, Ni, V, and Zn is shown in
Table 1 showing the average content of the metals in the soil, the standard deviation, coefficient of variation, skewness, and median and quartiles for each element. We can see that the average concentration of V is the highest (114 mg × kg
−1). However, the coefficient of variation (CV) for this element, Cr, Cu, and Ni exceeds 80%, so the average is not representative of the data for these assemblages. Cd has a low coefficient of variation (12%), which could indicate that it is an element that is naturally present. The world soil average concentrations [
28] are shown as reference values.
The average concentrations of Cd, Ni, and V in this study are within the highest reported among those presented in
Table 2 for urban soils, while Cu presents the lowest value. Natural composition of the soil and anthropic activities carried out in the area could explain the great difference between metal concentrations.
The mean concentration of Cd in this study was higher than all the mean values shown in
Table 2. Meanwhile, Ni reports a mean value similar to the studies conducted in Talcahuano [
29], Hualpén [
30], and Concepción [
31], all coastal cities and communes belonging to the same province of this study and with the presence of industries such as fishing, steelmaking, refineries, and cement, among others. The mean Zn concentration was the lowest among those observed, with a value similar to Concepción.
In addition, an exploratory data analysis was performed by generating EDA plots for the concentrations of each element. These diagrams display the distribution of the data in the form of histograms and show the presence of outliers in boxplots and scatter plots.
Table 2.
Median concentrations (mg × kg−1) reported in publications on urban soils in Chilean cities.
Table 2.
Median concentrations (mg × kg−1) reported in publications on urban soils in Chilean cities.
City | Samples | Cd | Cr | Cu | Ni | V | Zn | Reference |
---|
Talcahuano | 76 | ND | 39.1 | 51.2 | 31.9 | ND | 246 | [29] |
Tomé | 10 | 0.3 | 24.1 | 31.6 | 10.9 | ND | 65.1 | [31] |
Concepción | 15 | 0.3 | 17.0 | 26.5 | 24.1 | ND | 50.0 | [31] |
Quintero y Puchuncaví | 565 | 0.26 | ND | 13.5 | 12.8 | 157 | 136 | [32] |
Arica | 400 | ND | 5.6 | 17 | 4.7 | 42 | 130 | [14] |
Hualpén | 51 | ND | 15 | 24 | 33 | 98 | 91.8 | [30] |
Taltal | 125 | 0.64 | 19.3 | 766.8 | 21.1 | 120.97 | 224.1 | [33] |
Coronel | 94 | 3.1 | 13.1 | 16.5 | 24.6 | 95.1 | 50.6 | This study |
As observed in
Figure S1 (see
Supplementary Materials for further details), most of the elements—with the exception of Cd—have an asymmetric, unimodal distribution, and a clear leftward bias. Cadmium, on the other hand, has lesser unimodal asymmetry and its data is more centrally distributed. It is observed in the boxplot and scatter plot the presence of atypical data for each of the elements, extreme values that are necessary to identify and avoid errors [
34].
Additionally,
Table 3 shows the descriptive statistics of the elements studied separated by soil use as residential or industrial. Vanadium stands out, with a higher mean concentration in industrial versus residential areas. In contrast, the average concentration of Zn tends to be higher in residential areas.
3.2. Multivariate Analysis
Principal component analysis is a tool that allows us to group the original variables, possibly correlated, generating new uncorrelated variables. In this way, an attempt is made to describe a data set in terms of new, uncorrelated variables (“components”). The components are ordered according to the amount of original variance they describe, making the technique useful for reducing the dimensionality of a data set. To achieve this, since we are dealing with compositional data, it was first necessary to perform the closure of the data, generating vectors of observations that maintain the sum constant and preserving the original proportions between the variables.
Table 4 shows that three components explain more than 80% of the variability. The elbow rule is a widely used graphical method to determine the number of components to be selected (
Figure S2). In addition, loading elements with absolute values higher than 0.35 were considered to describe the principal composition of each factor.
Principal component one (PC1) explains 49.3% of the variance with high loadings of Ni and Cr, both elements are usually related to the parent material so this component may be linked to a natural factor at the time of soil formation [
35,
36].
Figure 2 clearly shows how these two elements are very close to the axis of PC1, and clear isolation between Ni and the other elements can be seen. Principal component two (PC2) explains approximately 20% of the total variance, highlighting V with a negative charge and Cu and Zn with positive charges, these last two elements are also grouped in the cluster analysis
Figure 3. Finally, principal component three (PC3) represents 13.97% of the variance, with Cr and Zn having positive values and Cd, Cu, and V having similar negative charges. Chromium, Cu, V, and Zn show a high load in two PCs, indicating two sources.
The variation matrix of the closed data was transformed into a distance matrix using the ward.D method. A dendrogram was generated (
Figure 3) for the cluster analysis in which two groups composed of Cd–V–Cr and Cu–Zn can be seen at the second level. Nickel was finally incorporated in a third level, corresponding to the fact that it is the only element that had a significant loading value in only the first principal component and as seen in the biplot. Therefore, it is possible to attribute it to only one source of origin. In contrast, Cr, Cu, V, and Zn could come from more than one source.
3.3. Positive Matrix Factorization
Different runs were performed in PMF to find the best solution. It was verified that with four factors, the model reaches a good solution since with five factors the improvement of the Q value is no longer significant. The distribution of the residuals of each variable (TE concentration) of the model is normally distributed with its deviations within ±2σ, reaffirming the solution (
Figure 4).
From
Table 5, it can be seen that factor 1 mainly contributes to the presence of Ni (89.3%) and, in second place, to the presence of Cd and V (20.4% and 34.9%, respectively). The highest concentrations generated by this factor are Ni and V (
Table 6). It has been mentioned that elements such as Ni, V, Co, Cr, and Cu may have a geogenic origin [
37]. Therefore, this factor could be related to a natural source.
Copper is mainly contributed to by factor 2 (with 73.8%), followed by Zn and Cr (33.7% and 32.0%, respectively). Traffic contributes to Cr and Cu concentrations. Additionally, Cu and Zn are wear indicators for brakes and tires [
38]. Another study shows that exhaust emissions and brake wear contribute to the presence of Cu [
39]. As a result, this second factor can be interpreted as a vehicular source.
Factor 3 mainly contributes to the concentrations of Cd, Cr, and V (48.6%, 40.4%, and 44.1%, respectively) and to a minor extent to Cu (20.6%) in the soil. The predominant elements in this factor are V (78.2%) followed by Cu (11.3%). Diesel consumption and petrochemical plants are often responsible for V contamination [
40].
The chemical composition of coal ash causes high quantities of trace elements such as V, Cu, and Cr in the soil [
41]. As mentioned above, there are coal and diesel thermoelectric plants close to residential areas in the commune of Coronel. Their locations coincide with the distribution and points of highest concentration of V, so this factor could be related to the generation of energy produced by thermoelectric plants. More detailed studies are necessary to determine the source of V.
The contribution of factor 4 to the presence of Zn in the soils in Coronel is 65.5%. It also considers contributions to Cd, Cr, Ni, and V (25.7%, 13.7%, 10.7%, and 16.2%, respectively). Zinc is an element used for the coating and alloying of different materials given its versatility [
42]. Chromium is a metal widely used in metal alloys for its corrosion resistance [
43]. Similarly, vanadium is used in metallurgy as an alloying element [
44]. It was shown that compost from urban waste produces a high concentration of Zn and Cd [
45]. Consequently, factor 4 is a mixed source composed of different origins such as dockyards, workshops, landfills, dumps, and micro-dumps, among others.
3.4. Threshold Values and Ecological Indices
Three methods were used to determine the threshold and background values for each element studied. As mentioned above, the lower the threshold value, the greater the number of outliers identified and, as a precautionary principle, the higher the concentrations, the greater the risk there is to health.
Table 7 shows the results obtained from the application of each method for each element under study. Of the different values provided, the MAD method delivers the lowest threshold value in all cases.
The threshold value is not only a value used to establish a reference or limit to differentiate high concentrations from “normal” ones, considering that the natural presence of any element varies according to the type of soil under study, but is also used to calculate ecological indices, such as those presented in this article. In this way, it is possible to identify areas that could be affected by external factors.
Figure 5 shows the boxplots of each ecological index for the different elements under study, from which we can highlight the following:
The geoaccumulation index shows that Cr presents a value that indicates a highly contaminated soil, followed by elements such as Ni and V with moderate to very high contamination.
The enrichment factor shows a significant enrichment of Cd, Cr, Cu, and V, with V having the highest number of moderate values.
As for the contamination factor, Cr, Ni, and V stand out with a particularly high contamination value. Cu and V also show high values.
According to the values obtained for CDEG, four values describe considerable contamination, followed by thirteen soil samples showing moderate contamination.
3.5. Human Health Risk
Carcinogenic and non-carcinogenic risk indicators are established for both children and adults [
21].
For the non-cancer risk to children (
Figure 6a), most of the sample concentrations are below the significant risk limit, with the exception of one observation for Cr and V. The sum of the total risk for each sample is also within the limit with the exception of four samples. For the non-carcinogenic risk in adults (
Figure 6b), all elements are within the safe limit, as is the total sum risk, so there would be no non-carcinogenic risk for adults in the commune. Vanadium is the element that contributes the most to the non-carcinogenic risk, both in children and adults. Chromium presents some degree of carcinogenic risk, although not significant (
Figure 6c). Only one observation has a significant risk (>1.0 × 10
−4) for this element, but, overall, the values are below the average of the risk interval. The values for the other elements indicate that no harmful exposure is present.
In the case of carcinogenic risk in adults (
Figure 6d), it is similar to that in children, although with lower values. All elements, with the exception of Cr, are below the carcinogenic risk limits. Therefore, Cr is the element that contributes most to the total carcinogenic risk in adults and children, with all of its observations above the non-significant risk limit. Future research should determine the bioavailable fraction as the amount of chemicals that could be assimilated by the human body from the PTE in soils.
3.6. Spatial Distribution
ArcGIS is a global geographic information system platform, which uses one of the most advanced spatial interpolation techniques, Kriging, to estimate the spatial distribution and properties of the soil [
46]. The software allows the user to geographically locate each observed concentration and generate a hotspot map to compare the distribution of different elements in the studied area.
This functionality was used to present the concentrations of Cd, Cr, Cu, Ni, V, and Zn (
Figure 7) using the ordinary Kriging method in version 10.5 of ArcGIS. The ranges were divided into the 25th, 50th, 75th, 90th, and 95th percentiles.
Figure 7 shows that the distribution of Cd in the area has a higher concentration in the central coastal zone of the commune, where a large number of industries are located, such as fishing, food production, mining, landfills and/or dumps, and power generation plants (
Figure 8).
Chromium tends to have a higher concentration towards the southeast portion of the commune, while it is lower in the central coastal zone. This coincides with the predominance in the zone of sand and aggregate extraction. Copper has a similar distribution to Zn with higher concentration towards the south of the commune. The area with the highest concentration is in the southern coastal sector, corresponding to the port of Coronel, where there is a strong presence of port companies and fishing, in addition to two thermoelectric plants. The highest concentrations of Ni are found in the north of the commune where the industrial zones are located, with thermoelectric plants, shipyards, workshops, food production, and businesses related to the logistics and transport and timber industries. The granodiorite of the local rocks could include Ni [
47]. The granodiorite in Coronel has concentrations of Ni and V, as reported in [
48]. Finally, the distribution of V is concentrated in two places: the northern coast, where the industrial zones are located, and the central–south coast of the commune, where coal mining was a major activity during the last century and is today home to a range of industries including electricity generation. As noted in the geology description, the study area has coals seams and it pointed out that carbonaceous rocks have shown an accumulation of V [
49].
4. Conclusions
This study analyzed different aspects of heavy metal contamination in the commune of Coronel, Chile. The results of the statistical analysis and PMF showed that the presence of Ni in the area corresponds to a geogenic factor, while V concentrations can be attributed to two sources: (a) it could be from the presence of power generation plants or (b) of geogenic origin. In addition, anthropogenic activities influence the variation in elements such as Cd, Cr, Cu, and Zn. Four factors were determined with PMF. Factor 1 represented by a geogenic origin was composed mainly of Ni and V. Factor 2 represented by vehicular emissions with Cu, Cr, and Zn. Factor 3 could be attributed to power generation from thermoelectric plants, and Factor 4 attributed to a mixed source from various origins. The soil presented mostly moderate contamination (60.6% of the samples), with specific areas having considerable contamination, mainly attributable to the presence of vanadium and cadmium, both elements linked to emissions from industrial sources. This degree of contamination does not present a systematic or carcinogenic health risk in adults, but children are more prone to suffer from non-carcinogenic diseases. Finally, this work provides information that may be of interest to many researchers and policy makers, mainly in the implementation of public policies on the control and measurement of heavy metals.