Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Preparation and the Determination of Its Characteristics
2.2. Chemical Washing Procedures for Natural Fluorine-Enriched Soil
2.3. Determination of the Total Fluorine Concentration in Soil
2.4. Sequential Extraction Procedures for Fluorine in Soil
3. Results
3.1. Characteristics of Fluorine-Natural Enriched Soil
3.2. Chemical Washing Efficiency
3.3. Origin of Fluorine in Soil
3.3.1. X-Ray Diffraction Analysis
3.3.2. Sequential Extraction Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Major Element | Composition (%) |
---|---|
SiO2 | 52.85 |
Al2O3 | 24.63 |
Fe2O3 | 11.03 |
K2O | 4.25 |
MgO | 2.41 |
TiO2 | 1.85 |
CaO | 1.55 |
Na2O | 0.44 |
P2O5 | 0.43 |
SO3 | 0.14 |
pH | Organic Matter Content (%) | CEC (cmol/kg) | Fe Oxides (mg/kg) | Al Oxides (mg/kg) | Mn Oxides (mg/kg) |
---|---|---|---|---|---|
7.4 | 0.6 | 11.8 | 26,655 | 2584 | 374 |
References
- An, J.; Kim, J.-A.; Yoon, H.-O. A review on the analytical techniques for the determination of fluorine contents in soil and solid phase samples. J. Soil Groundw. Environ. 2013, 18, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Kabir, H.; Gupta, A.K.; Tripathy, S. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1116–1193. [Google Scholar] [CrossRef]
- Luo, K.; Ren, D.; Xu, L.; Dai, S.; Cao, D.; Feng, F.; Tan, J.A. Fluorine content and distribution pattern in Chinese coals. Int. J. Coal Geol. 2004, 57, 143–149. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environ. Geochem. Health 2018, 60, 2259–2301. [Google Scholar] [CrossRef]
- Deshmukh, A.N.; Wadaskar, P.M.; Malpd, D.B. Fluorine in environment: A review. Gondwana Geol. Mag. 1995, 9, 1–20. [Google Scholar]
- Fuge, R.; Andrews, M.J. Fluorine in the UK environment. Environ. Geochem. Health 1988, 10, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Berger, T.; Peltola, P.; Drake, H.; Åström, M. Impact of a fluorine-rich granite intrusion on levels and distribution of fluoride in a small boreal catchment. J. Aquat. Geochem. 2012, 18, 77–94. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jeong, J.-O.; Kim, K.-K.; Lee, S.-W.; Kim, S.-O. Geochemical study on the naturally originating fluorine distributed in the area of Yongyudo and Sammokdo, Incheon. Econ. Environ. Geol. 2019, 52, 275–290. [Google Scholar] [CrossRef]
- Noda, T.; Roy, R. OH-F exchange in fluorine phlogopite. Am. Mineral. 1956, 41, 929–932. [Google Scholar]
- Oh, H.-J.; Lee, J.-Y. A Study on the characteristical evaluation of metals and fluorine concentrations in the southern part of Seoul. J. Soil Groundw. Environ. 2003, 8, 68–73. [Google Scholar]
- Rao, C.R.N. Fluoride and Environment—A Review. In Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15–17 December 2003; pp. 386–399. [Google Scholar]
- Sen Gupta, J.G. Determination of fluorine in silicate and phosphate rocks, micas and stony meteorites. Anal. Chim. Acta. 1968, 42, 119–125. [Google Scholar] [CrossRef]
- Czerwinski, E.; Nowak, J.; Dabrowska, D.; Skolarczyk, A.; Kita, B.; Ksiezyk, M. Bone and joint pathology in fluoride-exposed workers. Arch. Environ. Health 1988, 43, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Hodge, H.C.; Smith, F.A. Occupational fluoride exposure. J. Occup. Med. 1977, 19, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P. Classical syndromes in occupational medicine occupational fluorosis through 50 years: Clinical and epidemiological experiences. Am. J. Ind. Med. 1982, 3, 227–236. [Google Scholar] [CrossRef] [PubMed]
- WHO. Preventing Disease through Healthy Environments: Inadequate or Excess Fluoride: A Major Public Health Concern. License: CC BY-NC-SA 3.0 IGO World Health Organization. 2019. Available online: https://apps.who.int/iris/handle/10665/329484 (accessed on 11 November 2020).
- Moon, D.H.; Jo, R.; Koutsospyros, A.; Cheong, K.H.; Park, J.-H. Soil washing of fluorine contaminated soil using various washing solutions. Bull. Environ. Contam. Toxicol. 2015, 94, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Korean Ministry of Environment. The Korean Standard Test (KST) Methods for Soils; Korean Ministry of Environment: Gwachun-si, Korea, 2010.
- Reed, B.E.; Carriere, P.C.; Moore, R. Flushing of a Pb(II) contaminated soil using HCl and CaCl2. J. Environ. Eng. 1996, 122, 48–50. [Google Scholar] [CrossRef]
- Moutsatsou, A.; Gregou, M.; Matsas, D.; Protonotarios, V. Washing as a remediation technology applicable in soils heavily polluted by mining–metallurgical activities. Chemosphere 2006, 63, 1632–1640. [Google Scholar] [CrossRef]
- Tokunaga, S.; Hakuta, T. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere 2002, 46, 31–38. [Google Scholar] [CrossRef]
- Abumaizar, R.J.; Smith, E.H. Heavy metal contaminants removal by soil washing. J. Hazard. Mater. 1999, 70, 71–86. [Google Scholar] [CrossRef]
- Alaboudi, K.A.; Ahmed, B.; Brodie, G. Soil washing technology for removing heavy metals from a contaminated soil: A case study. Pol. J. Environ. Stud. 2020, 29, 1029–1036. [Google Scholar] [CrossRef]
- Ye, M.; Sun, M.M.; Kengara, F.O.; Wang, J.T.; Ni, N.; Wang, L.; Song, Y.; Yang, X.L.; Li, H.X.; Hu, F.; et al. Evaluation of soil washing process with carboxymethyl-β-cyclodextrin and carboxymethyl chitosan for recovery of PAHs/heavy metals/fluorine from metallurgic plant site. J. Environ. Sci. 2014, 26, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Pandi, K.; Cho, D.-W.; Choi, J. Feasibility of soil washing agents to remove fluoride and risk assessment of fluoride-contaminated soils. J. Soils Sediments 2020, 1–8. [Google Scholar] [CrossRef]
- Kitsopoulos, K.P. Cation-exchange capacity (CEC) of zeolitic volcaniclastic materials: Applicability of the ammonium acetate saturation (AMAS) method. Clays Clay Miner. 1999, 47, 688–696. [Google Scholar] [CrossRef]
- Robinson, G.W. A new method for the mechanical analysis of soils and other dispersions. J. Agric. Sci. 1922, 12, 306–321. [Google Scholar] [CrossRef] [Green Version]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnson, C.T.; Sumner, M.E. Methods of Soil Analysis, Part 3; Chemical Methods ASA-SSSA: Madison, WI, USA, 1996. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–37. [Google Scholar] [CrossRef]
- McQuaker, N.R.; Gurney, M. Determination of total fluoride in soil and vegetation using an alkali fusion-selective ion electrode technique. Anal. Chem. 1977, 49, 53–56. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Z.; Wan, X. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants. Environ. Geochem. Health. 2012, 34, 551–562. [Google Scholar] [CrossRef]
- Yi, X.; Qiao, S.; Ma, L.; Wang, J.; Ruan, J. Soil fluoride fractions and their bioavailability to tea plants (Camellia sinensis L.). Environ. Geochem. Health. 2017, 39, 1005–1016. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta. 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Davison, C.M.; Thomas, R.P.; McVey, S.E.; Perala, R.; Littlejohn, D.; Ure, A.M. Evaluation of a sequential extraction procedure for the speciation of heavy metals in sediments. Anal. Chim. Acta. 1994, 291, 277–286. [Google Scholar] [CrossRef]
- Chen, W.; Pang, X.-F.; LI, J.-H.; Hang, X. Effect of oxalic acid and humic acid on the species distribution and activity of fluoride in soil. Chem. Asian. J. 2013, 25, 469–474. [Google Scholar] [CrossRef]
- FÖrstner, U. Trace metal analysis of polluted sediments, Part 1. Assessment of sources and intensities. Environ. Technol. Lett. 1980, 1, 494–505. [Google Scholar] [CrossRef]
- Haque, M.A.; Subramanian, V. Cu, Pb and Zn pollution of soil environment. CRC Crit. Rev. Environ. Contr. 1982, 12, 13–90. [Google Scholar] [CrossRef]
- Bassett, W.A. Role of hydroxyl orientation in mica alteration. Geol. Soc. Am. Bull. 1960, 71, 449–456. [Google Scholar] [CrossRef]
- Kalinowski, B.E.; Schweda, P. Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature. Geochim. Cosmochim. Acta 1995, 60, 367–385. [Google Scholar] [CrossRef]
Soil | Contaminant | Concentration (mg/kg) | Washing Conditions | Removal Efficiency (%) | Reference | ||
---|---|---|---|---|---|---|---|
Washing Agents | Washing Conditions | ||||||
Erie County, N.Y. (pH 5.5) | Pb | 500–600 | 0.1 N HCl, 0.01 M EDTA, 1 M CaCl2 | 900 g soil, acrylic column (upflow 10 mL/min, 24 h) | HCl—85 EDTA—100 CaCl2—78 | [19] | |
Lavrion Technology and Cultural Park (LTCP)—mine, refinery, industrial park (pH 7.0) | Fe Pb Zn As Mn Cu | 223,600 64,195 55,900 7540 6500 4100 | 1 M HCl, 0.1 M Na2EDTA | Soil/solution = 30 g/L, 150 rpm, 4 h for 1 M HCl, 1 h for 0.1 M Na2EDTA | HCl 45 44 82 77 80 61 | Na2EDTA 14 44 38 13 42 41 | [20] |
Ibaraki of Kuroboku, Japan—forest area soil (pH 5.94) | As | 2830 | 9.4% H3PO4, 11% H2SO4 | 1 g soil: 25 mL solution, 20 °C, 2 h | H3PO4—97.9 H2SO4—87.7 | [21] | |
Construction site in University Park, TX (pH 7.9) | Pb Cd Zn | 742 603 624 | 0.01 M Na2EDTA + 0.1 M Na2S2O5 | 1 g soil: 12.5 mL solution, Shaker table operated at 175 rpm for 2 h | 56.1 92.3 71.0 | [22] | |
Burnley campus garden at Melbourne University, Australia (pH 6.14) | Pb Cd Cr | 200 400 600 | 0.5 M FeCl3 | Shaker table operated at 180 rpm for 1 h | 93.8 97.4 81.8 | [23] | |
Fluoride contaminated soil from a chemical company in Changwon, Gyeongsangnam-do, Korea (pH 3.7) | F | 740 | 3 M HCl 2 M NaOH 3 M HNO3 3 M H2SO4 3 M C4H6O6 | 5 g soil: 50 mL solution, Shaking incubator at 200 rpm, 20 °C for 1 h | 97 71 91 88 64 | [17] | |
Abandoned metallurgic plant located in Wubu, an old city district of Anhui Province, China (pH 6.7) | PAH Pb Cd Cr Ni F | 352.8 839.7 23.7 622.4 432.8 2376.5 | carboxymethyl-β-cyclodextrin (CMCD) carboxymethyl chitosan (CMC) | 50 g/L CMCD + 5 g/L CMC solution Shaking at 100 rpm, 25 °C for 60 min and centrifugation at 1000 rpm for 30 min, multi-stage washing (3 cycle) | 94.3 93.2 85.8 93.4 83.2 97.3 | [24] | |
Fluorine-contaminated soil from Incheon City, South Korea (pH 6.4), No source information provided | F | 488 | 1 M HNO3 1 M H2SO4 1 M NaOH 2 M H2SO4 | 30 g soil: 270 mL solution, Shaking at 25 °C for 30 min | 19.5 26.7 10.2 40.1 | [25] |
Fraction of Fluorine in Soil | Extractant | Experimental Conditions | ||
---|---|---|---|---|
Temperature (°C) | Incubation time (h) | Agitation speed (rpm) | ||
Water soluble (F1) | Deionized water | 70 | 0.5 | 30–40 a |
Exchangeable (F2) | 1 mol/L MgCl2 (pH 7) | 25 | 1 | |
Bound to Mn and Fe oxides (F3) | 0.04 mol/L NH2OH·HCl dissolved in 20% acetic acid | 60 | 1 | |
Bound to organic matter (F4) | 0.02 mol/L HNO3 + 30% H2O2 + 3.2 mol/L and ammonium acetate b | 25 | 0.5 | |
Residual (F5) | Alkali fusion with NaOH | 600 | 1.5 | None |
Particle Size (mm) | Weight Composition (%) | Total Fluorine Concentration (mg/kg) |
---|---|---|
<2 | 100 | 1078 ± 178 |
0.5–2 | 26.3 | 1126 ± 272 |
0.15–0.5 | 26.8 | 1036 ± 34 |
0.075–0.15 | 10.2 | 1564 ± 159 |
<0.075 | 36.7 | 1594 ± 42 |
Washing Reagent (1 M) | Extracted Fluorine Concentration (mg/kg) | Washing Efficiency (%) |
---|---|---|
H2SO4 | 16.2 ± 1.5 | 1.5 |
H3PO4 | 6.8 ± 0.6 | 0.6 |
NaOH | 20.3 ± 1.9 | 1.9 |
KOH | 20.2 ± 1.9 | 1.9 |
H2C2O4 | 6.2 ± 0.6 | 0.6 |
HNO3 | 30.3 ± 2.8 | 2.8 |
HClO4 | 27.2 ± 2.5 | 2.5 |
HCl | 32.7 ± 3.0 | 3.0 |
Washing Conditions | Extracted Fluorine Concentration (mg/kg) | Washing Efficiency (%) | |
---|---|---|---|
Solid–liquid ratio (g:mL) | 1:2 | 18.2 ± 1.1 | 1.7 |
1:3 | 24.4 ± 1.8 | 2.3 | |
1:5 | 32.8 ± 1.1 | 3.0 | |
Reaction time (min) | 10 | 58.7 ± 2.5 | 5.4 |
30 | 36.8 ± 0.6 | 3.4 | |
60 | 32.8 ± 1.1 | 3.0 | |
120 | 30.3 ± 1.6 | 2.8 | |
240 | 24.9 ± 0.0 | 2.3 | |
Agitation speed (rpm) | 100 | 34.5 ± 0.3 | 3.2 |
150 | 36.6 ± 0.9 | 3.4 | |
200 | 58.7 ± 2.5 | 5.4 | |
Concentration of HCl (mol/L) | 0 | 1.5 ± 0.0 | 0.1 |
1 | 32.8 ± 1.1 | 3.0 | |
2 | 26.8 ± 0.2 | 2.5 | |
2.5 | 24.8 ± 1.8 | 2.3 | |
Aeration time (min) | 10 | 49.6 ± 4.1 | 4.6 |
30 | 62.3 ± 0.3 | 5.8 | |
60 | 66.7 ± 5.3 | 6.2 | |
Ultrasonicating time (min) | 10 | 37.7 ± 0.3 | 3.5 |
30 | 43.4 ± 0.7 | 4.0 | |
60 | 41.9 ± 0.7 | 3.9 | |
Multi-stage washing (cycle) | 1 | 35.3 ± 2.1 | 3.3 |
2 | 14.3 ± 1.1 | 1.3 | |
3 | 6.1 ± 0.3 | 0.6 | |
4 | 2.8 ± 0.4 | 0.3 |
Fraction of Fluorine in Soil | Soil Sample (<2 mm) | Sample of Crushed Mica Selected by Hand from Gravel (>2 mm) | ||
---|---|---|---|---|
Extracted Fluorine Concentration (mg/kg) | Extraction Efficiency (%) | Extracted Fluorine Concentration (mg/kg) | Extraction Efficiency (%) | |
Water soluble (F1) | 7.19 ± 0.17 | 0.57 | 2.31 ± 0.01 | 0.09 |
Exchangeable (F2) | 0.58 ± 0.04 | 0.05 | 0.34 ± 0.34 | 0.01 |
Bound to Mn and Fe oxides (F3) | 0.09 ± 0.01 | 0.01 | 0.08 ± 0.01 | 0.00 |
Bound to organic matter (F4) | 1.99 ± 0.30 | 0.16 | 1.86 ± 0.12 | 0.07 |
Residual fraction (F5) | 1253 ± 85 | 99.21 | 2647 ± 11.55 | 99.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, D.-J.; Kim, Y.-E.; Jung, M.-Y.; Yoon, H.-O.; An, J. Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica. Minerals 2021, 11, 134. https://doi.org/10.3390/min11020134
Baek D-J, Kim Y-E, Jung M-Y, Yoon H-O, An J. Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica. Minerals. 2021; 11(2):134. https://doi.org/10.3390/min11020134
Chicago/Turabian StyleBaek, Dong-Jun, Ye-Eun Kim, Moon-Young Jung, Hye-On Yoon, and Jinsung An. 2021. "Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica" Minerals 11, no. 2: 134. https://doi.org/10.3390/min11020134
APA StyleBaek, D. -J., Kim, Y. -E., Jung, M. -Y., Yoon, H. -O., & An, J. (2021). Feasibility of a Chemical Washing Method for Treating Soil Enriched with Fluorine Derived from Mica. Minerals, 11(2), 134. https://doi.org/10.3390/min11020134