Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
3.1. Samples
3.2. Methods
3.2.1. X-ray Diffraction (XRD)
3.2.2. Major and Trace Elements Analysis
3.2.3. Scanning Electron Microscopy (SEM) and EDS Analysis
4. Results
4.1. Mineral Composition
4.2. Geochemistry
5. Discussion
5.1. Mineral Differences and Implications
5.1.1. Clay Minerals and Ferromanganese Hydroxides
5.1.2. Hematite, Magnetite and Pyrrhotite
5.2. Geochemistry Differences and Implications
5.2.1. CaOcarbonate, SiO2(bio) Content Evaluation
5.2.2. Trace Element Geochemistry and Their Significance
5.2.3. REY Element Geochemistry and Their Significances
5.3. Sediment Discrimination
5.3.1. Cluster Analysis in Major Element
5.3.2. Element Differentiation for Sample Type on SWIR
5.3.3. Element Differentiation for Peridotite- and Basalt-Hosted
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Collected Data from Other Researchers | ⅀REE (ppm) | LREE*/HREE* | δCe | (La/Sm)N | δEu | HREE (ppm) | (Er/Lu)N | Reference |
---|---|---|---|---|---|---|---|---|
SWIR 49.6° E basalt | 60.6 | 1.36 | 0.98 | 0.50 | 0.92 | 9.04 | 1.07 | [14] |
SWIR 50.5° E basalt | 25.0 | 1.26 | 0.95 | 0.59 | 1.17 | 4.53 | 1.03 | [93] |
SWIR 51.7° E basalt | 42.56 | 1.04 | 0.96 | 0.40 | 0.96 | 8.42 | 1.09 | [76] |
SWIR 55.7° E basalt | 57.1 | 1.69 | 0.89 | 0.61 | 1.12 | 8.36 | 1.01 | [76] |
SWIR 63° E basalt | 131.5 | 3.36 | 0.94 | 1.37 | 1.24 | 11.63 | 1.04 | [94] |
N-MORB | 39.1 | 1.32 | 0.95 | 0.60 | 1.00 | 6.94 | 0.99 | [71] |
E-MORB | 49.1 | 2.71 | 0.98 | 1.53 | 1.00 | 5.39 | 1.00 | [71] |
OIB | 199.0 | 8.58 | 0.97 | 2.33 | 1.01 | 5.43 | 1.34 | [71] |
Average continental crust | 86.9 | 5.49 | 0.96 | 2.88 | 0.97 | 5.02 | 1.12 | [61] |
Lower continental crust | - | 4.11 | 1.00 | 2.18 | 1.12 | 5.01 | 1.16 | [61] |
Upper continental crust | - | 9.54 | 0.95 | 4.20 | 0.63 | 5.15 | 1.10 | [61] |
SWIR 57.26° E gabbro | 17.98 | 1.35 | 0.98 | 0.63 | 1.60 | 3.19 | 1.01 | [95] |
SWIR 53° E peridotite | 0.67 | 0.54 | - | 2.34 | 0.83 | 0.25 | 0.68 | [75] |
SWIR 65° E peridotite | 1.78 | 0.85 | 0.86 | 0.65 | 0.85 | 0.43 | 0.92 | [96] |
Average depleted-MORB Mantle (DMM) | - | 0.97 | 0.88 | 0.51 | 1.00 | 0.77 | 0.92 | [97] |
2σ-depleted DMM | - | 0.84 | 0.88 | 0.40 | 1.00 | 0.73 | 0.90 | [97] |
2σ-enriched DMM | - | 1.13 | 0.92 | 0.58 | 1.00 | 0.81 | 0.94 | [97] |
Fresh Fe-rich sulfides in active Longqi Vent Field | 0.11 | 8.13 | 0.96 | 2.75 | 1.06 | 4 × 10−3 | 1.07 | [92] |
Fresh Zn-rich sulfides in active Longqi Vent Field | 0.09 | 7.53 | 0.91 | 2.52 | 1.10 | 3.93 × 10−3 | 0.93 | [92] |
Hydrothermal Fe–Mn deposits in active Longqi Vent Field | 2.18 | 2.99 | 0.80 | 1.61 | 5.45 | 0.23 | 0.74 | [14] |
Hydrothermal Fe-rich oxides in active Longqi Vent Field | 5.58 | 3.41 | 0.66 | 2.23 | 2.34 | 0.44 | 1.12 | [92] |
Hydrogenetic Fe–Mn deposits in 50.38–55.71°E SWIR | 1178.82 | 7.90 | 1.34 | 3.67 | 0.62 | 37.539 | 1.20 | [98] |
Hydrothermal anhydrite from porphyry copper deposits in Sierrita Pit | 324.79 | 12.95 | 0.75 | 3.83 | - | 15.29 | - | [80] |
Hydrothermal barite from Bulldog Mountain Vein in Creede | 1.39 | 21.0 | - | - | - | 0.063 | - | [80] |
Hydrothermal galena from OH vein in Creede | 0.054 | 2.07 | - | 6.29 | - | 0.016 | - | [80] |
Siderite from Tyrol in Austria | 0.937 | 0.20 | - | 0.22 | - | 0.747 | - | [80] |
Fe–Si oxyhydroxide flocs (isolated from sulfides) from Lilliput Hydrothermal Field | - | 0.82 | 0.60 | - | - | 1.58 | - | [86] |
Atlantic seawater in 3400 m depth | - | 2.03 | - | 3.59 | 0.63 | - | 0.91 | [90] |
Bottom seawater from Juan de Fuca Ridge | - | - | - | - | - | - | 0.82 | [91] |
Average hydrothermal fluid | - | 15.19 | 0.82 | 3.48 | 15.13 | - | - | [78] |
Hydrothermal fluid of TAG black smoker | - | 9.11 | 1.00 | 1.91 | 9.13 | - | 1.71 | [78] |
Hydrothermal fluid of TAG white smoker | - | 40.51 | 0.82 | 5.98 | 127.16 | - | 1.51 | [78] |
Monospecific planktonic foraminifera from Atlantic Ocean | - | 4.43 | 0.55 | 3.88 | 0.69 | 0.047 | 1.05 | [99] |
Hydrothermal nontronite from TAG | - | 8.56 | 0.72 | - | 5.42 | 0.06 | 1.00 | [86] |
Fresh sulfides (δCe = 0.96) in peridotite-hosted Rainbow Vent Field | 0.94 | - | 0.96 | - | 1.18 | 0.01 | 0.77 | [10] |
Weathered sulfides (δCe = 0.63~0.70, average 0.67) in Rainbow Vent Field | 24.34 | - | 0.67 | - | 3.02 | 0.14 | 1.03 | [10] |
Fresh sulfides (δCe = 0.95) in basalt-hosted TAG Vent Field | 1.51 | - | 0.95 | - | 1.40 | 0.02 | 0.57 | [100,101] |
Weathered sulfides (δCe = 0.43~0.89, average 0.57) in TAG Vent Field | 1.43 | - | 0.57 | - | 2.03 | 0.034 | 0.57 | [100,101] |
Fresh sulfides (δCe = 1.01) in peridotite-hosted Kairei Vent Field | - | 9.81 | 1.01 | - | - | 0.06 | - | [102] |
Weathered sulfides (δCe = 0.50) in peridotite-hosted Kairei Vent Field | - | 5.11 | 0.50 | - | - | 0.17 | - | [102] |
Talc from peridotite-hosted talc deposits in the southern part of the Sivas Basin | - | - | 0.60 | - | - | 0.069 | 2.04 | [103] |
Serpentine from peridotite-hosted talc deposits in the southern part of the Sivas Basin | - | 2.18 | 0.93 | - | - | 0.129 | 0.77 | [103] |
Smectite derived from basaltic debris alteration in Ross Sea | - | 1.55 | 1.03 | - | - | 2.625 | 0.93 | [104] |
Hydrothermal fluid from peridotite-hosted Logatchev Vent Field | - | 5.26 | 0.65 | - | - | - | - | [69] |
Hydrothermal fluid from peridotite-hosted Rainbow Vent Field | - | 8.52 | 0.35 | - | - | - | - | [69] |
Hydrothermal fluid from basalt-hosted Snake Pit Vent Field | - | 2.37 | 1.01 | - | - | - | - | [90] |
Hydrothermal fluid from basalt-hosted TAG Vent Field | - | 2.39 | 0.80 | - | - | - | - | [90] |
References
- Mitchell, N.C. Diffusion transport model for pelagic sediments on Mid-Atlantic Ridge. J. Geophys. Res. 1995, 100, 19991–20009. [Google Scholar] [CrossRef]
- Mascarenhas-Pereira, M.B.L.; Nath, B.N. Selective leaching studies of sediments from a seamount flank in the Central Indian Basin: Resolving hydrothermal, volcanogenic and terrigenous sources using major, trace and rare-earth elements. Mar. Chem. 2010, 121, 49–66. [Google Scholar] [CrossRef]
- Hrischeva, E.; Scott, S.D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2007, 71, 3476–3497. [Google Scholar] [CrossRef]
- Cave, R.R.; German, C.R.; Thomson, J.; Nesbitt, R.W. Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14′ N on the Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2002, 66, 1905–1923. [Google Scholar] [CrossRef]
- Liao, S.; Tao, C.; Dias, Á.; Su, X.; Yang, Z.; Ni, J.; Liang, J.; Yang, W.; Liu, J.; Li, W.; et al. Surface sediment composition and distribution of hydrothermal derived elements at the Duanqiao-1 hydrothermal field, Southwest Indian Ridge. Mar. Geol. 2019, 416, 1–11. [Google Scholar] [CrossRef]
- Huang, R.; Sun, W.; Ding, X.; Wang, Y. Mechanism for serpentinization of mafic and ultramafic rocks and the potential of mineralization. Acta Petrol. Sin. 2013, 29, 4336–4348, (In Chinese with English abstract). [Google Scholar]
- Zhou, H.; Dick, H.J.B. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature 2013, 494, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Delacour, A.; Früh-Green, G.L.; Bernasconi, S.M.; Kelley, D.S. Sulfur in peridotites and gabbros at Lost City (30° N, MAR): Implications for hydrothermal alteration and microbial activity during serpentinization. Geochim. Cosmochim. Acta 2008, 72, 5090–5110. [Google Scholar] [CrossRef]
- Augustin, N.; Paulick, H.; Lackschewitz, K.S.; Eisenhauer, A.; Garbe-Schönberg, D.; Kuhn, T.; Botz, R.; Schmidt, M. Alteration at the ultramafic-hosted Logatchev hydrothermal field: Constraints from trace element and Sr-O isotope data. Geochem. Geophys. Geosyst. 2012, 13, 1–20. [Google Scholar] [CrossRef]
- Marques, A.F.A.; Barriga, F.; Chavagnac, V.; Fouquet, Y. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge. Miner. Depos. 2006, 41, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Dias, Á.S.; Barriga, F.J. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36 34′ N; 33 26′ W) at MAR. Mar. Geol. 2006, 225, 157–175. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, B.; Su, X.; Yu, M. Mineralogical and geochemical characteristics of the calcareous sediments in Southwest Indian ridge. Geol. Sci. Technol. Inf. 2013, 32, 107–113, (In Chinese with English abstract). [Google Scholar]
- Liao, S.; Tao, C.; Li, H.; Zhang, G.; Liang, J.; Yang, W.; Wang, Y. Surface sediment geochemistry and hydrothermal activity indicators in the Dragon Horn area on the Southwest Indian Ridge. Mar. Geol. 2018, 398, 22–34. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, G.; Han, C. Geochemical characteristics of hydrothermal deposits and basalts at 49.6° E on the Southwest Indian Ridge. J. Mar. Sci. 2014, 32, 64–73, (In Chinese with English abstract). [Google Scholar]
- Cao, H.; Sun, Z.; Liu, C.; Jiang, X.; Huang, W.; Xu, C.; Liu, L.; He, Y. Mineralogical composition and its significance of hydrothermal sulfides from the Longqi hydrothermal field on the Southwest Indian Ridge. Mar. Geol. Quat. Geol. 2018, 38, 179–192. [Google Scholar]
- Tao, C.; Li, H.; Huang, W.; Han, X.; Wu, G.; Su, X.; Zhou, N.; Lin, J.; He, Y.; Zhou, J. Mineralogical and geochemical features of sulfide chimneys from the 49°39′ E hydrothermal field on the Southwest Indian Ridge and their geological inferences. Chin. Sci. Bull. 2011, 56, 2828–2838. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.; Wu, Z.; Sun, X.; Lin, X. Mineralogical and Geochemical characteristics of Al-rich Clays from the Longqi Hydrothermal Field, Southwest Indian Ridge. Rock Miner. Anal. 2018, 37, 607–618, (In Chinese with English abstract). [Google Scholar]
- Münch, U.; Lalou, C.; Halbach, P.; Fujimoto, H. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′ E—Mineralogy, chemistry and chronology of sulfide samples. Chem. Geol. 2001, 177, 341–349. [Google Scholar] [CrossRef]
- Yang, W. Study of Hydrothermal Mineralization of Duanqiao Hydrothermal Field in Southwest Indian Ridge. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2017; pp. 32–108, (In Chinese with English abstract). [Google Scholar]
- Münch, U.; Halbach, P.; Fujimoto, H. Sea-floor hydrothermal mineralization from the Mt. Jourdanne, Southwest Indian Ridge. JAMSTEC J. Deep Sea Res. 2000, 16, 125–132. [Google Scholar]
- Wang, Y.; Sun, X.; Wu, Z.; Deng, X.; Xu, L.; Liang, Y. A preliminary study on the characteristics of Fe-Cu-Zn isotopic composition of polymetallic sulfides from the hydrothermal field on SWIR. Acta Mineral. Sin. 2013, 2, 683. (In Chinese) [Google Scholar]
- Liao, S.; Tao, C.; Li, H.; Barrigac, F.J.A.S.; Liang, J.; Yang, W.; Yu, J.; Zhu, C. Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geol. Rev. 2018, 96, 13–27. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Z.; Sun, X.; Deng, X.; Guan, Y.; Xu, L.; Huang, Y.; Cao, K. He-Ar-S Isotopic compositions of polymetallic sulphides from hydrothermal vent fields along the ultraslow-spreading Southwest Indian Ridge and their geological implications. Minerals 2018, 8, 512. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, X.; Wu, Z.; Deng, X.; Dai, Y.; Lin, Z. The enrichment characteristic and mechanism of gold-silver minerals in submarine hydrothermal sulfides from the ultra-slow spreading SWIR. Spectrosc. Spectr. Anal. 2014, 34, 3327–3332, (In Chinese with English abstract). [Google Scholar]
- Yang, W.; Zhang, X.; Chen, M.; Qiu, Y. Unusually low 234Th in a hydrothermal effluent plume over the Southwest Indian Ridge. Geochem. Geophys. Geosyst. 2016, 17, 3815–3824. [Google Scholar] [CrossRef]
- Zhou, J. Stable Carbon and Oxygen Isotopic Compositions of Biogenic Shells from the Southwest Indian Ridge and Santa Monica Basin. Master’s Thesis, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China, 2012; pp. 23–44, (In Chinese with English abstract). [Google Scholar]
- Zhang, X.; Zhang, W.; Tian, Y.; Sun, X.; Fan, D. Grain size composition of biogenic sediments in Southwest Indian Ridge and its influence factors. Trans. Oceanol. Limnol. 2016, 3, 39–45, (In Chinese with English abstract). [Google Scholar]
- Pan, A.; Yang, Q.; Zhou, H.; Ji, F.; Wang, H.; Pancost, R.D. Geochemical impacts of hydrothermal activity on surface deposits at the Southwest Indian Ridge. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 139, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, D.; Roy, P.; Prakash, L.; Kurian, P.J. Hydrothermal signatures in sediments from eastern Southwest Indian Ridge 63° E to 68° E. Mar. Chem. 2020, 218, 103732. [Google Scholar] [CrossRef]
- Pan, A.; Yang, Q.; Zhou, H.; Ji, F.; Wang, H.; Pancost, R.D. A diagnostic GDGT signature for the impact of hydrothermal activity on surface deposits at the Southwest Indian Ridge. Org. Geochem. 2016, 99, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Chu, F.; Yu, X.; Li, X.; Tao, C. Lipid biomarkers reveal microbial communities in hydrothermal chimney structures from the 49.6°E hydrothermal vent field at the Southwest Indian Ocean Ridge. Geomicrobiol. J. 2016, 34, 557–566. [Google Scholar] [CrossRef]
- Lei, J.; Chu, F.; Yu, X.; Li, X.; Tao, C.; Ge, Q. Composition and genesis implications of hydrocarbons in 49.6°E hydrothermal area, Southwest Indian Ocean Ridge. Earth Sci. Front. 2015, 22, 281–290, (In Chinese with English abstract). [Google Scholar]
- Slack, J.F.; Grenne, T.; Bekker, A. Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere 2009, 5, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. J. Geophys. Res. 2008, 113, B08S14. [Google Scholar] [CrossRef] [Green Version]
- Rubin, K.H. Mid-ocean ridge magmatism and volcanism. In Encyclopedia of Marine Geosciences; Harff, J., Meschede, M., Petersen, S., Thiede, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 1–21. [Google Scholar]
- Sauter, D.; Cannat, M.; Meyzen, C.; Bezos, A.; Patriat, P.; Humler, E.; Debayle, E. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46° E and 52°20′ E: Interaction with the Crozet hotspot? Geophys. J. Int. 2009, 179, 687–699. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.R.; Minshull, T.A.; White, R.S. Segmentation and melt supply at the Southwest Indian Ridge. Geology 1999, 27, 867–870. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, J.; Gao, J. Interactions between hotspots and the Southwest Indian Ridge during the last 90 Ma: Implications on the formation of oceanic plateaus and intra-plate seamounts. Sci. China Earth Sci. 2010, 54, 1177–1188. [Google Scholar]
- Zhang, T.; Lin, J.; Gao, J. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge. Sci. China Earth Sci. 2013, 56, 2186–2197. [Google Scholar] [CrossRef]
- Bach, W.; Banerjee, N.R.; Dick, H.J.B.; Baker, E.T. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading southwest Indian ridge 10°–16° E. Geochem. Geophys. Geosyst. 2002, 3, 1–14. [Google Scholar] [CrossRef]
- Tao, C.; Wu, G.; Ni, J.; Zhao, H.; Su, X.; Zhou, N.; Li, J.; Chen, Y.J.; Cui, R.; Deng, X.; et al. New hydrothermal fields found along the SWIR during the Legs 5–7 of the Chinese DY115-20 expedition. In Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 13–18 December 2009. [Google Scholar]
- Tao, C.; Lin, J.; Guo, S.; John Chen, Y.; Wu, G.; Han, X.; German, C.R.; Yoerger, D.R.; Zhou, N.; Li, H.; et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology 2012, 40, 47–50. [Google Scholar]
- Tao, C.; Li, H.; Jin, X.; Zhou, J.; Wu, T.; He, Y.; Deng, X.; Gu, C.; Zhang, G.; Liu, W. Seafloor hydrothermal activity and polymetallic sulfide exploration on the southwest Indian ridge. Chin. Sci. Bull. 2014, 59, 2266–2276. [Google Scholar] [CrossRef]
- Liao, G.; Zhou, B.; Liang, C.; Zhou, H.; Ding, T.; Yuan, W.; Dong, C. Moored observation of abyssal flow and temperature near a hydrothermal vent on the Southwest Indian Ridge. J. Geophys. Res. Oceans. 2015, 121, 836–860. [Google Scholar] [CrossRef] [Green Version]
- Mantyla, A.W.; Reid, J.L. On the origins of deep and bottom waters of the Indian Ocean. J. Geophy. Res. 1995, 100, 2417–2439. [Google Scholar] [CrossRef]
- Georgen, J.E.; Kurz, M.D.; Dick, H.J.B.; Lin, J. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°–24° E). Earth Planet. Sci. Lett. 2003, 206, 509–528. [Google Scholar] [CrossRef]
- Mendel, V.; Sauter, D.; Parson, L.; Vanney, J.R. Segmentation and morphotectonic variations along a super slow-spreading center: The southwest Indian ridge (57° E–70° E). Mar. Geophys. Res. 1997, 19, 505–533. [Google Scholar] [CrossRef]
- Tao, C.; Seyfried, W.E.; Lowell, R.P.; Liu, Y.; Liang, J.; Guo, Z.; Ding, K.; Zhang, H.; Liu, J.; Qiu, L.; et al. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat. Commun. 2020, 11, 1300. [Google Scholar] [CrossRef] [Green Version]
- Cannat, M.; Sauter, D.; Mendel, V.; Ruellan, E.; Okino, K.; Escartin, J.; Combier, V.; Baala, M. Modes of seafloor generation at a melt-poor ultraslow-spreading ridge. Geology 2006, 34, 605–608. [Google Scholar] [CrossRef]
- Boström, K.; Peterson, M.N.A.; Joensuu, O.; Fisher, D.E. Aluminum-poor ferro-manganoan sediments on active oceanic ridges. J. Geophys. Res. Atmos. 1969, 74, 3261–3270. [Google Scholar] [CrossRef]
- Banerjee, R.; Dick, J.B.H.; Wolfgang, B.; Baker, E.T. Discovery of peridotite-hosted hydrothermal deposits along the ultraslow-spreading Southwest Indian Ridge. In Proceedings of the Geological Society of America Annual Meeting, Boston, MA, USA, 5–8 November 2001. [Google Scholar]
- Perritt, S.; Watkeys, M.K. The effect of environmental controls on the metal content in ferromanganese crusts and nodules from the Mozambique Ridge and in the Mozambique Basin, southwestern Indian Ocean. S. Afr. J. Geol. 2007, 110, 295–310. [Google Scholar]
- Templeton, A.S.; Knowles, E.J.; Eldridge, D.L.; Arey, B.W.; Dohnalkova, A.C.; Webb, S.M.; Bailey, B.E.; Tebo, B.M.; Staudigel, H. A seafloor microbial biome hosted within incipient ferromanganese crusts. Nat. Geosci. 2009, 2, 872–876. [Google Scholar]
- Oufi, O.; Cannat, M.; Horen, H. Magnetic properties of variably serpentinized abyssal peridotites. J. Geophys. Res. 2002, 107, 2095–2115. [Google Scholar] [CrossRef]
- Bach, W.; Paulick, H.; Garrido, C.J.; Ildefonse, B.; Meurer, W.P.; Humphris, S.E. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15° N (ODP Leg 209, Site 1274). Geophys. Res. Lett. 2006, 33, L13306. [Google Scholar] [CrossRef] [Green Version]
- Malvoisin, B.; Carlut, J.; Brunet, F. Serpentinization of oceanic peridotites: A high-sensitivity method to monitor magnetite production in hydrothermal experiments. J. Geophys. Res. 2012, 117, B01104. [Google Scholar] [CrossRef]
- Frost, B.R.; Beard, J.S. On silica activity and serpentinization. J. Petrol. 2007, 48, 1351–1368. [Google Scholar] [CrossRef] [Green Version]
- Melekestseva, I.Y.; Tret’Yakov, G.A.; Nimis, P.; Yuminov, A.M.; Maslennikov, V.V.; Maslennikova, S.P.; Kotlyarov, V.A.; Beltenev, V.E.; Danyushevsky, L.V.; Large, R. Barite-rich massive sulfifides from the Semenov-1 hydrothermal fifield (MidAtlantic Ridge, 13°30.87′ N): Evidence for phase separation and magmatic input. Mar. Geol. 2014, 349, 37–54. [Google Scholar] [CrossRef]
- Fouquet, Y.; Cambon, P.; Etoubleau, J.; Charlou, J.L.; OndréAs, H.; Barriga, F.J.A.S.; Cherkashov, G.; Semkova, T.; Poroshina, I.; Bohn, M.; et al. Geodiversity of hydrothermal processes along the MidAtlantic Ridge-Ultramafific-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfifide deposit. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; Rona, P.A., Devey, C.W., Dyment, J., Murton, B.J., Eds.; American Geophysical Union: Washington, DC, USA, 2010; p. 440. [Google Scholar]
- McLennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publication: Oxford, UK, 1985; p. 312. [Google Scholar]
- Haskin, L.A.; Wildeman, T.R.; Haskin, M.A. An accurate procedure for the determination of the rare earths by neutron activation. J. Radioanal. Chem. 1968, 4, 337–348. [Google Scholar] [CrossRef]
- Bischoff, J.L.; Piper, D.Z. Marine Geology and Oceanography of the Pacific Manganese Nodule Province; Plenum Press: New York, NY, USA, 1979; pp. 397–436. [Google Scholar]
- Dugdale, R.C.; Wilkerson, F.P.; Minas, H.J. The role of a silicate pump in driving new production. Deep Sea Res. Part I Oceanogr. Res. Pap. 1995, 42, 697–719. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, X.; Zhang, G.; Tao, C.; Li, H. Geochemical characteristics of sediments in southwest Indian ridge 48.6°–51.7°E. Geol. Sci. Technol. Inf. 2016, 35, 22–29, (In Chinese with English abstract). [Google Scholar]
- Li, Z.; Chu, F.; Jin, L.; Li, X.; Dong, Y.; Chen, L.; Zhu, J. Major and trace element composition of surface sediments from the Southwest Indian Ridge: Evidence for the incorporation of a hydrothermal component. Acta Oceanol. Sin. 2016, 35, 101–108. [Google Scholar]
- Grant, H.L.J.; Hannington, M.D.; Petersen, S.; Frische, M.; Fuchs, S.H. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite. Chem. Geol. 2018, 498, 45–71. [Google Scholar]
- Chen, L.; Chu, F.; Zhu, J.; Dong, Y.; Yu, X.; Li, Z.; Tang, L. Major and trace elements of abyssal peridotites: Evidence for melt refertilization beneath the ultraslow-spreading Southwest Indian Ridge (53° E segment). Int. Geol. Rev. 2015, 57, 1715–1734. [Google Scholar] [CrossRef]
- Schmidt, K.; Koschinsky, A.; Garbe-Schönberg, D.; de Carvalho, L.M.; Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15° N on the Mid-Atlantic Ridge: Temporal and spatial investigation. Chem. Geol. 2007, 242, 1–21. [Google Scholar] [CrossRef]
- Cao, H.; Sun, Z.; Liu, C.; Jiang, X.; He, Y.; Huang, W.; Shang, L.; Wang, L.; Zhang, X.; Geng, W.; et al. The metallogenic mechanism and enlightenment of hydrothermal sulfide from the ultramafic-hosted hydrothermal systems at ultra-slow spreading ridge. Acta Oceanol. Sin. 2018, 90, 61–75. [Google Scholar]
- Sun, S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. London Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Golightly, J.P.; Arancibia, O.N. The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine from a nickeliferous laterite profile, Soroako, Indonesia. Can. Mineral. 1979, 17, 719–728. [Google Scholar]
- Mével, C. Serpentinization of abyssal peridotites at mid-ocean ridges. Collect. C. R. Geosci. 2003, 335, 825–852. [Google Scholar]
- Kodolányi, J.; Pettke, T.; Spandler, C.; Kamber, B.S.; Gméling, K. Geochemistry of ocean floor and fore-arc serpentinites: Constraints on the ultramafic input to subduction zones. J. Petrol. 2012, 53, 235–270. [Google Scholar] [CrossRef] [Green Version]
- Chen, L. Element Geochemistry of Peridotite from the Southwest Indian Ridge: Implications for Mantle Dynamics. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2016; pp. 32–67, (In Chinese with English abstract). [Google Scholar]
- Li, W. Petrogeochemical Characteristics of Basalts from Southwest Indian Ridge: Implications for Magmatic Processes at Ultra-Slow Spreading Ridge. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2017; pp. 38–76, (In Chinese with English abstract). [Google Scholar]
- Alt, J.C. The chemistry and sulfur isotope composition of massive sulfide and associated deposits on Green Seamount, eastern Pacific. Econ. Geol. 1988, 83, 1026–1033. [Google Scholar] [CrossRef]
- Mitra, A.; Elderfield, H.; Greaves, M. Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. Mar. Chem. 1994, 46, 217–235. [Google Scholar] [CrossRef]
- Terakado, Y.; Fujitani, T. Behavior of the rare earth elements and other trace elements during interactions between acidic hydrothermal solutions and silicic volcanic rocks, southwestern Japan. Geochim. Cosmochim. Acta 1998, 62, 1903–1917. [Google Scholar] [CrossRef]
- Morgan, J.W.; Wandless, G.A. Rare earth element distribution in some hydrothermal minerals: Evidence for crystallographic control. Geochim. Cosmochim. Acta 1980, 44, 973–980. [Google Scholar] [CrossRef]
- Seyler, M.; Lorand, J.P.; Toplis, M.J.; Godard, G. Asthenospheric metasomatism beneath the mid-ocean ridge: Evidence from depleted abyssal peridotites. Geology 2004, 32, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, J.; Roex, A.P.L.; Peng, Z.; Fisher, R.L.; Natland, J.H. Southwestern limits of Indian ocean ridge mantle and the origin of low 206Pb/204Pb mid-ocean ridge basalt: Isotope systematics of the central southwest Indian ridge (17°–50° E). J.Geophys. Res. Solid Earth 1992, 97, 19771–19790. [Google Scholar] [CrossRef]
- Escrig, S.; Capmas, F.; Dupré, B.; Allègre, C.J. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature 2004, 431, 59–63. [Google Scholar] [CrossRef]
- Meyzen, C.M.; Ludden, J.N.; Humler, E.; Luais, B.; Toplis, M.J.; Mével, C.; Storey, M. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochem. Geophys. Geosyst. 2005, 6, 145–160. [Google Scholar] [CrossRef]
- Wang, W.; Chu, F.; Zhu, J.; Dong, Y.; Yu, X.; Chen, L.; Li, Z. Mantle melting beneath the Southwest Indian Ridge: Signals from clinopyroxene in abyssal peridotites. Acta Oceanol. Sin. 2013, 32, 50–59. [Google Scholar] [CrossRef]
- Dekov, V.M.; Kamenov, G.D.; Stummeyer, J.; Thiry, M.; Savelli, C.; Shanks, W.C.; Fortin, D.; Kuzmann, E.; Vértes, A. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea). Chem. Geol. 2007, 245, 103–119. [Google Scholar] [CrossRef]
- Humphris, S.E. Rare earth element composition of anhydrite: Implications for deposition and mobility within the TAG hydrothermal mound. Proc. ODP Sci. Results 1998, 158, 143–159. [Google Scholar]
- De Baar, H.J.W.; Bacon, M.P.; Brewer, P.G.; Bruland, K.W. Rare earth elements in the Pacific and Atlantic Oceans. Geochim. Cosmochim. Acta 1985, 49, 1943–1959. [Google Scholar]
- Elderfield, H.; Pagett, R. Rare earth elements in ichthyoliths: Variations with redox conditions and depositional environment. Sci. Total Environ. 1986, 49, 175–197. [Google Scholar] [CrossRef]
- Douville, E.; Bienvenu, P.; Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Appriou, P.; Gamo, T. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim. Cosmochim. Acta 1999, 63, 627–643. [Google Scholar] [CrossRef]
- Wheat, C.G.; Mottl, M.J.; Rudnicki, M. Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring. Geochim. Cosmochim. Acta 2002, 66, 3693–3705. [Google Scholar] [CrossRef]
- Ye, J. Mineralization of Polymetallic Sulfides on Ultra-Slow Spreading Southwest Indian Ridge at 49.6° E. Ph.D. Thesis, Graduate University of Chinese Academy of Sciences, Qingdao, China, 2010; pp. 47–63, (In Chinese with English abstract). [Google Scholar]
- Yu, M. Petrology and Geochemistry Differences of MORB and Their Significance between Fast and Slow Spreading Ridge. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2013; pp. 26–85, (In Chinese with English abstract). [Google Scholar]
- Cao, H. Mineralization of Hydrothermal Sulfide on the Southwest and Central Indian Ridge. Ph.D. Thesis, China University of Ocean, Qingdao, China, 2015; pp. 27–89, (In Chinese with English abstract). [Google Scholar]
- Jin, Y. An Approach to the Gabbros from the Upper Part of ODP 735B Hole at the Southwest Indian Ridge. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2013; pp. 54–79, (In Chinese with English abstract). [Google Scholar]
- Zeng, Z.; Wang, Q.; Wang, X.; Chen, S.; Yin, X.; Li, Z. Geochemistry of abyssal peridotites from the super slow-spreading Southwest Indian Ridge near 65° E: Implications for magma source and seawater alteration. J. Earth Syst. Sci. 2012, 121, 1317–1336. [Google Scholar] [CrossRef] [Green Version]
- Workman, R.K.; Hart, S.R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 2005, 231, 53–72. [Google Scholar] [CrossRef]
- Yu, Z. Research on Geochemistry and Mineralogy of Co-rich crust from the Southwest Indian Ridge. Ph.D. Thesis, China University of Ocean, Qingdao, China, 2013; pp. 26–76, (In Chinese with English abstract). [Google Scholar]
- Palmer, M.R. Rare earth elements in foraminifera tests. Earth Planet. Sci. Lett. 1985, 73, 285–298. [Google Scholar]
- Zeng, Z.; Zhai, S.; Zhao, Y.; Qin, Y. Rare earth element geochemistry of hydrothermal sediment from the TAG hydrothermal field, mid-Atlantic Ridge. Mar. Geol. Quat. Geol. 1999, 19, 59–66, (In Chinese with English abstract). [Google Scholar]
- Mills, R.A.; Elderfield, H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26°N Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 1995, 59, 3511–3524. [Google Scholar] [CrossRef]
- Wang, Y. Comparison study of mineralization of Kairei and Edmond active hydrothermal fields in Central Indian Ridge. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2012; pp. 21–50, (In Chinese with English abstract). [Google Scholar]
- Yalcin, H.; Bozkaya, O. Mineralogy and geochemistry of Paleocene ultramafic- and sedimentary-hosted talc deposits in the southern part of the Sivas Basin, Turkey. Clays Clay Miner. 2006, 54, 333–350. [Google Scholar] [CrossRef]
- Setti, M.; Marinoni, L.; Lopez-Galindo, A. Mineralogical and geochemical characteristics (major, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica. Clay Miner. 2004, 39, 405–421. [Google Scholar] [CrossRef]
- Chavagnac, V.; German, C.R.; Milton, J.A.; Palmer, M.R. Sources of REE in sediment cores from the Rainbow vent site (36°14′ N, MAR). Chem. Geol. 2005, 216, 329–352. [Google Scholar] [CrossRef]
- Dias, Á.S.; Früh-Green, G.L.; Bernasconi, S.M.; Barriga, F.J.A.S. Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Mar. Geol. 2011, 279, 128–140. [Google Scholar]
- German, C.R. Hydrothermal activity on the eastern SWIR (50°–70° E): Evidence from core-top geochemistry, 1887 and 1998. Geochem. Geophys. Geosyst. 2003, 4, 9102. [Google Scholar] [CrossRef]
- Peng, X.; Li, J.; Zhou, H.; Wu, Z.; Li, J.; Chen, S.; Yao, H. Characteristics and source of inorganic and organic compounds in the sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges. J. Asian Earth Sci. 2011, 41, 355–368. [Google Scholar] [CrossRef]
- He, Y. Geochemistry of Modern Seafloor Hydrothermal System of the Southwest Indian Ridge. Master’s Thesis, China University of Geosciences, Beijing, China, 2011; pp. 26–36, (In Chinese with English abstract). [Google Scholar]
- Cao, H. Hydrothermal Mineralization and Geological and Geochemical Characteristics of SWIR. Master’s Thesis, China University of Ocean, Qingdao, China, 2010; pp. 22–53, (In Chinese with English abstract). [Google Scholar]
- Zeng, Z.; Chen, D.; Yin, X.; Wang, X.; Zhang, G.; Wang, X. Elemental and isotopic compositions of the hydrothermal sulfide on the East Pacific Rise near 13ºN. Sci. China Ser. D Earth Sci. 2009, 39, 1780–1794, (In Chinese with English abstract). [Google Scholar]
- Wu, Z. A Comparative Study on the Mineralization and Enrichment Mechanisms of Precious Metals in Southwest and Central Indian Ridge Hydrothermal Fields. Ph.D. Dissertation, Sun Yat-sen University of China, Guangzhou, China, 2014; pp. 46–66, (In Chinese with English abstract). [Google Scholar]
- Nayak, B.; Halbach, P.; Pracejus, B.; Münch, U. Massive sulfides of Mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis. Ore Geol. Rev. 2014, 63, 115–128. [Google Scholar]
- Marques, A.F.A.; Barriga, F.; Scott, S.D. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides. Mar. Geol. 2007, 245, 20–39. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, X.; Zhang, G.; Yin, X.; Chen, D.; Wang, X. Formation of Fe-oxyhydroxides from the East Pacific Rise near latitude 13°N: Evidence from mineralogical and geochemical data. Sci. China Ser. D-Earth Sci. 2008, 51, 206–215. [Google Scholar] [CrossRef]
- Bogdanov, Y.A.; Vikent’ev, I.V.; Lein, A.Y.; Bogdanova, O.Y.; Sagalevich, A.M.; Sivtson, A.V. Low-temperature hydrothermal deposits in the rift zone of the Mid-Atlantic Ridge. Geol. Ore Depos. 2008, 50, 119–134. [Google Scholar] [CrossRef]
- Peng, X.; Chen, S.; Zhou, H.; Zhang, L.; Wu, Z.; Li, J.; Li, J.; Xu, H. Diversity of biogenic minerals in low-temperature Si-rich deposits from a newly discovered hydrothermal field on the ultraslow spreading Southwest Indian Ridge. J. Geophys. Res. 2011, 116, G03030. [Google Scholar] [CrossRef] [Green Version]
- Dekov, V.M.; Petersen, S.; Garbe-Schönberg, C.D.; Kamenov, G.D.; Perner, M.; Kuzmann, E.; Schmidt, M. Fe-Si-oxyhydroxide deposits at a slow-spreading centre with thickened oceanic crust: The Lilliput hydrothermal field (9°33′ S, Mid-Atlantic Ridge). Chem. Geol. 2010, 278, 186–200. [Google Scholar]
- Zeng, Z.; Ouyang, H.; Yin, X.; Chen, S.; Wang, X.; Wu, L. Formation of Fe-Si-Mn oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin: Mineralogical and geochemical evidence. J. Asian Earth Sci. 2012, 60, 130–146. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, H.; Yang, Q.; Sun, Z.; Bao, S.; Yao, H. Hydrothermal Fe-Si-Mn oxide deposits from the Central and South Valu Fa Ridge, Lau Basin. Appl. Geochem. 2011, 26, 1192–1204. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Z.; Liu, C.; Chen, J.; Yin, X.; Wang, X.; Chen, D.; Zhang, G.; Chen, S.; Li, K.; et al. Talc-bearing serpentinized peridotites from the southern Mariana forearc: Implications for aseismic character within subduction zones. Chin. J. Ocean. Limnol. 2009, 27, 667–673. [Google Scholar] [CrossRef]
- Li, M. Petrogeochemical Characteristics Comparison and Implications for Magmatic Processes of the MORBs between EPR and SWIR. Ph.D. Thesis, China University of Ocean, Qingdao, China, 2014; pp. 30–52, (In Chinese with English abstract). [Google Scholar]
- Yang, A.; Zhou, M.; Zhao, T.; Deng, X.; Qi, L.; Xu, J. Chalcophile elemental compositions of MORBs from the ultraslow-spreading Southwest Indian Ridge and controls of lithospheric structure on S-saturated differentiation. Chem. Geol. 2014, 382, 1–13. [Google Scholar] [CrossRef]
- Yang, A.; Zhao, T.; Zhou, M.; Deng, X.; Wang, G.; Li, J. Os isotopic compositions of MORBs from the ultra-slow spreading Southwest Indian Ridge: Constraints on the assimilation and fractional crystallization (AFC) processes. Lithos 2013, 179, 28–35. [Google Scholar] [CrossRef]
- Yang, A.; Zhao, T.; Zhou, M.; Deng, X. Isotopically enriched N-MORB: A new geochemical signature of off-axis plume-ridge interaction-a case study at 50°28′ E, Southwest Indian Ridge. J. Geophys. Res. 2016, 122, 191–213. [Google Scholar]
- Qi, Q. Petrogeochemical characteristics comparison and implications for magmatic process of the MORBs between SAR and SWIR. Master’s Thesis, China University of Ocean, Qingdao, China, 2015; pp. 12–30, (In Chinese with English abstract). [Google Scholar]
- Yu, X.; Dick, H.J.B. Plate-driven micro-hotspots and the evolution of the Dragon Flag melting anomaly, Southwest Indian Ridge. Earth Planet. Sci. Lett. 2020, 531, 1–15. [Google Scholar] [CrossRef]
Sample | Longitude (East) | Latitude (South) | Depth (m) | Host Rock System | Sediment Type | Principal Characteristic |
---|---|---|---|---|---|---|
40III-S6-1 | 46°58.056′ | 38°42.953′ | 2969 | Basalt | Biogenic | Gray-white calcareous ooze |
40IV-S28-17 | 47°25.279′ | 38°45.596′ | 2699 | Basalt | Biogenic | Gray-white calcareous ooze |
22I-S52-2 | 48°6.567′ | 38°33.898′ | 2734 | Basalt | Biogenic | Gray calcareous ooze |
30III-S37-21 | 48°51.198′ | 37°59.508′ | 2327 | Basalt | Mixture, biogenic + volcanic | Gray calcareous ooze with pyroclastic |
30III-S39-22 | 48°51.606′ | 37°58.476′ | 2040 | Basalt | Biogenic | White calcareous ooze |
21VII-S29-16 | 49°39.720′ | 37°37.206′ | 2367 | Basalt | Biogenic | White calcareous ooze with black Fe–Mn deposits |
40IV-S7-7 | 49°43.763′ | 37°55.361′ | 1990 | Basalt | Volcanic | Yellow-brown pyroclastic with calcareous ooze |
20V-S32-14A | 50°28.030′ | 37°39.477′ | 1739 | Basalt | Hydrothermal-derived | Red-brown polymetallic deposit |
20V-S32-14B | 50°28.030′ | 37°39.477′ | 1739 | Basalt | Hydrothermal-derived | Red-brown polymetallic deposit |
20V-S32-14C | 50°28.030′ | 37°39.477′ | 1739 | Basalt | Mixture, hydrothermal-derived + biogenic | Reddish-brown polymetallic deposit with calcareous ooze |
30III-S17-4 | 51°41.808′ | 37°26.352′ | 2122 | Basalt + peridotite | Volcanic | Yellow-brown pyroclastic with calcareous ooze |
30III-S15-2 | 51°44.742′ | 37°29.424′ | 1868 | Basalt | Biogenic | White calcareous ooze |
21VII-S23-12 | 52°10.002′ | 37°13.374′ | 3879 | Peridotite | Volcanic | Brown pyroclastic with gray calcareous ooze |
20VII-S25-21 | 63°32.484′ | 27°57.042′ | 3666 | Peridotite | Hydrothermal-derived | Green polymetallic deposit |
Sample | S6-1 | S28-17 | S39-22 | S15-2 | S52-2 | S29-16 | S37-21 | S7-7 | S17-4 | S23-12 | S32-14C | S32-14B | S32-14A | S25-21 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Calcite | IV | IV | IV | IV | IV | IV | III | III | III | III | II | - | - | - |
Quartz (chert) | II | II | II | II | I | II | III | III | III | III | III | III | III | III |
Apatite | II | II | II | II | II | II | - | - | - | - | - | - | - | - |
Barite | - | - | - | - | - | - | II | - | II | II | II | II | II | - |
Gypsum | - | - | II | II | - | - | - | II | II | - | II | II | II | II |
Kaolinite | - | - | - | - | - | - | II | II | III | IV | - | - | - | - |
Zeolite | - | - | - | - | - | - | II | IV | - | - | - | - | - | - |
Montmorillonite | - | - | - | - | - | - | - | IV | III | - | - | - | - | - |
Nontronite | - | - | - | - | - | I | - | - | - | - | II | II | II | - |
Serpentine | - | - | - | - | - | - | - | - | II | III | - | - | - | III |
Chlorite | - | - | - | - | - | - | - | II | - | - | - | - | - | - |
Talc | - | - | - | - | - | - | - | I | III | II | - | - | - | II |
Sepiolite | - | - | - | - | - | - | - | - | II | II | - | - | - | II |
Brucite | - | - | - | - | - | - | - | II | II | II | - | - | - | II |
Olivine | - | - | - | - | - | - | - | - | II | II | - | - | - | - |
Diopside | II | II | II | II | - | - | III | III | III | III | - | - | - | - |
Augite | - | - | - | - | - | - | - | - | - | - | II | - | II | - |
Hypersthene | - | - | - | - | - | - | II | II | II | II | - | - | - | - |
Albite | II | - | - | - | - | - | - | II | II | - | I | II | I | - |
Anorthite | - | - | II | - | - | II | - | - | - | - | II | I | II | - |
Volcanic glass | - | - | I | - | - | I | III | - | II | - | II | II | II | - |
Element sulfur | - | - | - | - | - | - | - | - | - | - | III | III | III | IV |
Pyrite | - | - | - | - | - | - | - | - | - | - | IV | IV | IV | - |
Chalcopyrite | - | - | - | - | - | - | - | - | - | - | IV | IV | IV | - |
Marcasite | - | - | - | - | - | - | - | - | - | - | II | II | II | IV |
Isocubanite | - | - | - | - | - | - | - | - | - | - | II | II | II | IV |
Sphalerite | - | - | - | - | - | - | - | - | - | - | II | II | II | - |
Bornite | - | - | - | - | - | - | - | - | - | - | II | II | II | II |
Pyrrhotite | - | - | - | - | - | - | - | - | - | - | - | - | - | II |
Covellite | - | - | - | - | - | - | - | - | - | - | II | II | II | II |
Hematite | - | - | - | - | - | - | III | III | III | III | II | II | II | II |
Magnetite | - | - | - | - | - | - | - | II | III | II | - | - | - | II |
Goethite | - | - | - | - | - | - | - | - | - | - | II | II | II | II |
Chromite | - | - | - | - | - | - | I | I | II | III | - | - | - | - |
Ferromanganese hydroxide | - | - | - | - | - | II | - | II | II | III | II | II | II | II |
Manganite | - | - | - | - | - | - | II | II | - | II | - | - | - | - |
Azurite | - | - | - | - | - | - | - | - | - | - | - | - | - | II |
Nantokite | - | - | - | - | - | - | - | - | - | - | II | II | II | II |
Ferritic opal | I | I | II | II | I | IV | III | III | III | III | IV | IV | IV | IV |
Jarosite | - | - | - | - | - | - | - | - | - | - | III | III | III | III |
Category | Hydrothermal-Derived Deposit | Surface Sediment | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydrothermal-Derived | Mixture | Volcanic | Mixture | Biogenic | ||||||||||
Metal-Rich | Metalliferous | Non-Metalliferous | Metalliferous | Non-Metalliferous | ||||||||||
Sample | 25-21 | 32-14A | 32-14B | 32-14C | 23-12 | 17-4 | 7-7 | 37-21 | 29-16 | 52-2 | 15-2 | 39-22 | 28-17 | 6-1 |
CaO (%) | 0.19 | 1.52 | 2.01 | 12.30 | 13.85 | 6.19 | 10.65 | 35.60 | 49.90 | 51.30 | 52.50 | 50.10 | 51.70 | 48.80 |
SiO2 | 4.80 | 13.80 | 15.55 | 14.25 | 30.39 | 50.63 | 44.71 | 19.85 | 5.13 | 2.94 | 2.05 | 3.76 | 2.33 | 5.12 |
Al2O3 | 0.22 | 3.59 | 2.29 | 3.46 | 1.78 | 9.21 | 15.30 | 5.85 | 1.32 | 0.76 | 0.49 | 0.89 | 0.60 | 1.34 |
TFe2O3 | 49.50 | 43.00 | 40.70 | 33.70 | 6.86 | 8.70 | 9.25 | 5.47 | 1.11 | 0.49 | 0.67 | 0.84 | 0.62 | 0.91 |
K2O | 0.05 | 0.23 | 0.14 | 0.18 | 0.15 | 0.08 | 0.38 | 0.22 | 0.26 | 0.13 | 0.11 | 0.20 | 0.12 | 0.22 |
MgO | 1.94 | 1.14 | 0.79 | 1.94 | 24.70 | 17.05 | 7.53 | 3.31 | 0.53 | 0.31 | 0.37 | 0.44 | 0.32 | 0.51 |
MnO | 0.14 | 0.68 | 0.40 | 0.58 | 0.25 | 0.14 | 0.96 | 0.11 | 0.05 | 0.04 | 0.01 | 0.02 | 0.04 | 0.05 |
Na2O | 0.62 | 1.25 | 0.84 | 1.55 | 1.21 | 1.95 | 3.76 | 1.66 | 0.99 | 0.86 | 0.77 | 1.10 | 1.04 | 1.37 |
P2O5 | 0.33 | 0.72 | 0.66 | 0.75 | 0.08 | 0.02 | 0.09 | 0.07 | 0.09 | 0.04 | 0.03 | 0.05 | 0.03 | 0.07 |
TiO2 | <0.01 | 0.11 | 0.08 | 0.17 | 0.14 | 0.52 | 0.99 | 0.59 | 0.07 | 0.03 | 0.02 | 0.04 | 0.02 | 0.06 |
PbO | 0.01 | 0.14 | 0.12 | 0.04 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | <0.01 | 0.01 | 0.01 |
CuO | 3.34 | 6.87 | 6.26 | 4.96 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 |
ZnO | 0.08 | 5.49 | 9.83 | 2.89 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | <0.01 | <0.01 | 0.01 |
Cl | ND | ND | ND | ND | 0.76 | 0.09 | 0.15 | 0.56 | 0.79 | 0.65 | 0.47 | 0.88 | 0.67 | 0.93 |
SO3 | ND | ND | ND | ND | 0.55 | 0.09 | 0.08 | 0.31 | 0.31 | 0.21 | 0.50 | 0.28 | 0.26 | 0.33 |
LOI | 38.35 | 19.57 | 18.79 | 13.38 | 19.65 | 5.65 | 5.79 | 26.84 | 40.05 | 42.79 | 42.76 | 42.01 | 42.84 | 40.87 |
Mo (μg/g) | 109 | 89.0 | 89.3 | 62.9 | 2.04 | 1.02 | 7.05 | 0.22 | 0.33 | 0.12 | 0.59 | 0.05 | 0.15 | 0.13 |
Ba | 28.7 | 479 | 399 | 527 | 194.0 | 25.6 | 105.0 | 141.5 | 504 | 356 | 193.5 | 398 | 199.0 | 545 |
Cu | >10,000 | >10,000 | >10,000 | >10,000 | 305 | 129.5 | 97.6 | 57.5 | 48.4 | 22.3 | 129.5 | 39.4 | 21.5 | 37.1 |
Pb | 135 | 1260 | 1110 | 445 | 13.6 | 3.4 | 8.7 | 10.2 | 7.1 | 3.1 | 15.7 | 3.4 | 7.6 | 4.2 |
Zn | 531 | >10,000 | >10,000 | >10,000 | 163 | 72 | 104 | 57 | 98 | 16 | 22 | 21 | 16 | 20 |
As | 69.8 | 246 | 277 | 209 | 14.5 | 6.5 | 5.5 | 4.5 | 4.6 | 3.2 | 2.3 | 3.1 | 3.9 | 3.7 |
Sc | 0.6 | 3.8 | 2.8 | 5.0 | 8.4 | 23.2 | 31.1 | 15.2 | 2.5 | 1.9 | 1.3 | 1.9 | 1.6 | 2.2 |
Co | 625 | 297 | 218 | 251 | 90.6 | 41.7 | 51.7 | 23.1 | 12.1 | 5.2 | 6.0 | 5.5 | 6.5 | 5.9 |
Ni | 110 | 30.5 | 23.8 | 40.2 | 1350 | 364 | 140.0 | 64.6 | 13.0 | 10.7 | 7.1 | 7.6 | 8.5 | 12.5 |
Cr | 140 | 70 | 37 | 80 | 1890 | 890 | 250 | 130 | 18 | 8 | 9 | 9 | 18 | 16 |
U | 7.35 | 4.09 | 4.74 | 4.21 | 0.98 | 0.16 | 0.27 | 0.17 | 0.90 | 0.20 | 0.28 | 0.33 | 0.22 | 0.33 |
P | 1340 | 3150 | 2790 | 3270 | 400 | 160 | 430 | 380 | 430 | 220 | 190 | 260 | 190 | 350 |
Th | 0.26 | 0.46 | 0.28 | 0.42 | 1.05 | 0.19 | 0.32 | 0.55 | 1.39 | 0.83 | 0.63 | 0.85 | 0.71 | 1.21 |
Sr | 26.9 | 103.0 | 109.5 | 368 | 424 | 117.5 | 164.0 | 910 | 1520 | 1425 | 1470 | 1680 | 1380 | 1685 |
Mn | 913 | 4610 | 2650 | 3770 | 1680 | 1000 | 7030 | 778 | 343 | 257 | 93 | 141 | 277 | 335 |
Nb | 0.5 | 0.8 | 0.6 | 0.7 | 1.9 | 0.5 | 1.5 | 1.2 | 1.4 | 0.8 | 0.5 | 0.8 | 0.7 | 1.2 |
Ta | 0.05 | 0.05 | 0.09 | 0.05 | 0.10 | 0.05 | 0.08 | 0.08 | 0.08 | 0.05 | 0.05 | 0.05 | 0.05 | 0.07 |
Zr | 11 | 16 | 12 | 19 | 22 | 20 | 66 | 43 | 18 | 10 | 6 | 11 | 8 | 14 |
Hf | 0.2 | 0.3 | 0.3 | 0.4 | 0.4 | 0.7 | 1.8 | 1.2 | 0.5 | 0.3 | 0.2 | 0.3 | 0.3 | 0.4 |
V | 120 | 275 | 264 | 303 | 61 | 214 | 243 | 124 | 20 | 13 | 9 | 16 | 14 | 20 |
Rb | 1.6 | 4.5 | 3.0 | 3.4 | 4.8 | 1.5 | 6.6 | 4.8 | 10.7 | 5.8 | 4.0 | 6.5 | 4.4 | 8.4 |
Au | 0.938 | ND | ND | 0.100 | ND | ND | ND | ND | ND | ND | ND | ND | ND | ND |
La (μg/g) | 1.7 | 6.6 | 4.3 | 5.5 | 4.7 | 1.0 | 2.9 | 4.0 | 7.8 | 5.7 | 4.5 | 6.4 | 4.5 | 8.0 |
Ce | 2.3 | 9.3 | 5.5 | 6.7 | 14.3 | 2.7 | 9.6 | 7.7 | 10.8 | 6.7 | 5.0 | 6.8 | 6.1 | 9.2 |
Pr | 0.4 | 1.40 | 0.86 | 1.12 | 1.17 | 0.38 | 1.23 | 1.20 | 1.68 | 1.21 | 0.92 | 1.36 | 0.91 | 1.73 |
Nd | 1.6 | 6.2 | 4.0 | 4.8 | 4.9 | 2.1 | 6.7 | 6.0 | 6.7 | 4.9 | 3.7 | 5.6 | 3.7 | 7.0 |
Sm | 0.41 | 1.44 | 1.04 | 1.09 | 1.14 | 0.87 | 2.35 | 1.77 | 1.38 | 0.96 | 0.75 | 1.15 | 0.76 | 1.43 |
Eu | 0.17 | 0.55 | 0.37 | 0.43 | 0.23 | 0.41 | 0.94 | 0.58 | 0.33 | 0.27 | 0.18 | 0.29 | 0.19 | 0.32 |
Gd | 0.39 | 1.80 | 1.14 | 1.40 | 1.23 | 1.08 | 3.46 | 2.20 | 1.49 | 1.08 | 0.96 | 1.25 | 0.81 | 1.57 |
Tb | 0.07 | 0.31 | 0.21 | 0.24 | 0.21 | 0.25 | 0.66 | 0.42 | 0.22 | 0.18 | 0.16 | 0.20 | 0.13 | 0.25 |
Dy | 0.4 | 2.05 | 1.33 | 1.57 | 1.25 | 1.69 | 4.36 | 2.78 | 1.42 | 1.17 | 1.04 | 1.20 | 0.86 | 1.53 |
Ho | 0.09 | 0.46 | 0.30 | 0.35 | 0.26 | 0.39 | 0.97 | 0.62 | 0.32 | 0.25 | 0.22 | 0.28 | 0.18 | 0.34 |
Er | 0.25 | 1.36 | 0.90 | 1.06 | 0.73 | 1.17 | 2.88 | 1.84 | 0.91 | 0.70 | 0.64 | 0.77 | 0.51 | 0.94 |
Tm | 0.04 | 0.21 | 0.14 | 0.17 | 0.11 | 0.17 | 0.42 | 0.27 | 0.14 | 0.10 | 0.10 | 0.12 | 0.08 | 0.14 |
Yb | 0.27 | 1.33 | 0.85 | 1.09 | 0.69 | 1.05 | 2.63 | 1.70 | 0.89 | 0.63 | 0.64 | 0.74 | 0.52 | 0.87 |
Lu | 0.04 | 0.22 | 0.13 | 0.18 | 0.11 | 0.16 | 0.41 | 0.27 | 0.13 | 0.10 | 0.10 | 0.11 | 0.08 | 0.14 |
Y | 2.4 | 13.8 | 9.2 | 12.0 | 6.7 | 9.2 | 25.1 | 17.0 | 11.2 | 8.3 | 8.5 | 10.3 | 6.9 | 12.0 |
Sample | S25-21 | S32-14A | S32-14B | S32-14C | S23-12 | S17-4 | S7-7 | S37-21 | S29-16 | S52-2 | S15-2 | S39-22 | S28-17 | S6-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
⅀REE | 8.13 | 33.23 | 21.07 | 25.70 | 31.03 | 13.42 | 39.51 | 31.35 | 34.21 | 23.95 | 18.91 | 26.27 | 19.33 | 33.46 |
LREE*/HREE* | 4.25 | 3.29 | 3.21 | 3.24 | 5.76 | 1.25 | 1.50 | 2.10 | 5.20 | 4.69 | 3.90 | 4.63 | 5.10 | 4.79 |
MSI | 0.40 | 5.99 | 4.20 | 7.19 | 16.09 | 45.02 | 54.19 | 46.40 | 47.80 | 55.30 | 39.23 | 46.99 | 44.70 | 53.82 |
HREE | 0.60 | 3.12 | 2.02 | 2.50 | 1.64 | 2.55 | 6.34 | 4.08 | 2.07 | 1.53 | 1.48 | 1.74 | 1.19 | 2.09 |
(Eu/Eu*)N | 1.28 | 1.04 | 1.03 | 1.06 | 0.59 | 1.29 | 1.01 | 0.90 | 0.70 | 0.81 | 0.65 | 0.74 | 0.74 | 0.65 |
(Ce/Ce*)N | 0.64 | 0.69 | 0.64 | 0.60 | 1.40 | 1.03 | 1.19 | 0.82 | 0.67 | 0.57 | 0.55 | 0.52 | 0.67 | 0.56 |
CaOtotal/ (LOI-SO3) | - | - | - | - | 0.73 | 1.11 | 1.87 | 1.34 | 1.26 | 1.20 | 1.24 | 1.20 | 1.21 | 1.20 |
Al/Mg | 0.090 | 2.494 | 2.296 | 1.413 | 0.057 | 0.428 | 1.609 | 1.40 | 1.973 | 1.942 | 1.049 | 1.602 | 1.485 | 2.081 |
Al/Si | 0.054 | 0.309 | 0.175 | 0.288 | 0.070 | 0.216 | 0.407 | 0.350 | 0.306 | 0.307 | 0.284 | 0.281 | 0.306 | 0.311 |
Si/Al | 18.364 | 3.235 | 5.715 | 3.466 | 14.370 | 4.627 | 2.460 | 2.856 | 3.271 | 3.256 | 3.521 | 3.556 | 3.268 | 3.216 |
(La:Sm)N | 2.61 | 2.88 | 2.60 | 3.18 | 2.60 | 0.72 | 0.78 | 1.42 | 3.56 | 3.74 | 3.78 | 3.50 | 3.73 | 3.52 |
(Er:Lu)N | 0.96 | 0.95 | 1.06 | 0.90 | 1.02 | 1.12 | 1.07 | 1.04 | 1.07 | 1.07 | 0.98 | 1.07 | 0.98 | 1.03 |
Fe/Mg | 32.99 | 49.30 | 65.50 | 22.90 | 0.31 | 0.57 | 1.44 | 1.99 | 2.52 | 1.83 | 2.32 | 2.29 | 2.39 | 2.18 |
Mn/Ca | 0.761 | 0.448 | 0.198 | 0.050 | 0.018 | 0.022 | 0.090 | 0.0031 | 0.0011 | 0.0008 | 0.0003 | 0.0004 | 0.0008 | 0.001 |
Fe/Ca | 266.667 | 27.282 | 19.552 | 2.799 | 0.482 | 1.283 | 0.807 | 0.149 | 0.023 | 0.010 | 0.013 | 0.017 | 0.012 | 0.018 |
Si/Ca | 16.505 | 5.932 | 5.054 | 0.757 | 1.434 | 5.344 | 2.743 | 0.364 | 0.067 | 0.037 | 0.026 | 0.049 | 0.029 | 0.069 |
Fe/Mn | 350.493 | 60.954 | 98.868 | 54.499 | 27.560 | 58.100 | 8.933 | 47.558 | 21.283 | 12.841 | 47.312 | 39.007 | 15.524 | 18.209 |
Mg/Ca | 8.083 | 0.553 | 0.299 | 0.122 | 1.542 | 2.252 | 0.562 | 0.075 | 0.009 | 0.005 | 0.006 | 0.007 | 0.005 | 0.008 |
SiO2(bio)% | - | - | - | - | - | - | - | - | 0.84 | 0.47 | 0.46 | 0.87 | 0.38 | 0.77 |
CaO(carbonate)/ (LOI-SO3) | - | - | - | - | - | - | 1.27 | 1.30 | 1.25 | 1.20 | 1.23 | 1.19 | 1.20 | 1.19 |
Na2O(NaCl)% | - | - | - | - | - | - | 0.13 | 0.49 | 0.69 | 0.57 | 0.41 | 0.77 | 0.59 | 0.81 |
Na2O(non_NaCl)% | - | - | - | - | - | - | 3.63 | 1.17 | 0.30 | 0.29 | 0.36 | 0.33 | 0.45 | 0.56 |
CaO(silicate)% | - | - | - | - | - | - | 3.28 | 1.06 | 0.27 | 0.26 | 0.32 | 0.30 | 0.41 | 0.50 |
CaO(carbonate)% | - | - | - | - | - | - | 7.25 | 34.45 | 49.51 | 50.98 | 52.14 | 49.73 | 51.25 | 48.20 |
CaO(phosphate)% | - | - | - | - | - | 0.03 | 0.12 | 0.09 | 0.12 | 0.05 | 0.04 | 0.07 | 0.04 | 0.09 |
Mg/Si | 0.606 | 0.124 | 0.076 | 0.204 | 1.219 | 0.505 | 0.253 | 0.250 | 0.155 | 0.158 | 0.271 | 0.176 | 0.206 | 0.149 |
Fe/Al | 142.92 | 7.61 | 11.29 | 6.19 | 2.45 | 0.60 | 0.38 | 0.59 | 0.53 | 0.41 | 0.87 | 0.60 | 0.66 | 0.43 |
Ti/Al | 0.03 | 0.02 | 0.02 | 0.03 | 0.05 | 0.04 | 0.04 | 0.06 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | 0.03 |
Ceanom | -0.214 | -0.196 | -0.237 | -0.250 | 0.123 | -0.056 | 0.011 | -0.135 | -0.192 | -0.263 | -0.282 | -0.309 | -0.196 | -0.275 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Sun, X.; Wu, Z.; Wang, Y.; Lin, X.; Chen, H. Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock. Minerals 2021, 11, 138. https://doi.org/10.3390/min11020138
Chen X, Sun X, Wu Z, Wang Y, Lin X, Chen H. Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock. Minerals. 2021; 11(2):138. https://doi.org/10.3390/min11020138
Chicago/Turabian StyleChen, Xian, Xiaoming Sun, Zhongwei Wu, Yan Wang, Xiao Lin, and Hongjun Chen. 2021. "Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock" Minerals 11, no. 2: 138. https://doi.org/10.3390/min11020138
APA StyleChen, X., Sun, X., Wu, Z., Wang, Y., Lin, X., & Chen, H. (2021). Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock. Minerals, 11(2), 138. https://doi.org/10.3390/min11020138