Unraveling Sources and Climate Conditions Prevailing during the Deposition of Neoproterozoic Evaporites Using Coupled Chemistry and Boron Isotope Compositions (δ11B): The Example of the Salt Range, Punjab, Pakistan
Abstract
:1. Introduction
2. Geological Settings
3. Material and Methods
3.1. Sampling
3.2. Processing Procedure
4. Discussion
4.1. B Isotope Compositions and Ion Concentrations
4.2. Boron Sources
4.3. B isotope Fractionation between Halite and Brines in the SR Area
4.4. δ11B and Paleoclimate: Geological Implications
4.5. Boron Isotopes: A Global Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gou, G.-N.; Wang, Q.; Wyman, D.A.; Xia, X.-P.; Wei, G.-J.; Guo, H.-F. In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet: Evidence for melting of continental crust and sediment recycling. Solid Earth Sci. 2017, 2, 43–54. [Google Scholar] [CrossRef]
- Marschall, H.; Jiang, S.-Y. Tourmaline isotopes: No element left behind. Element 2011, 7, 313–319. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, H.; Zhang, Y.; Wei, H.; Dong, T. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation. Appl. Geochem. 2015, 63, 436–445. [Google Scholar] [CrossRef]
- Xiao, J.; Xiao, Y.K.; Jin, Z.D.; He, M.Y.; Liu, C.Q. Boron isotope variations and its geochemical application in nature. Aust. J. Earth Sci. 2013, 60, 431–447. [Google Scholar] [CrossRef]
- Fan, Q.; Ma, Y.; Cheng, H.; Wei, H.; Yuan, Q.; Qin, Z.; Shan, F. Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China. Sediment. Geol. 2015, 322, 34–42. [Google Scholar] [CrossRef]
- Tonarini, S.; D’Antonio, M.; Di Vito, M.A.; Orsi, G.; Carandente, A. Geochemical and B-Sr-Nd isotopic evidence for mingling and mixing processes in the magmatic system that fed the Astroni volcano (4.1–3.8 ka) within the Campi Flegrei caldera (southern Italy). Lithos 2009, 107, 135–151. [Google Scholar] [CrossRef]
- Wei, H.-Z.; Jiang, S.-Y.; Tan, H.-B.; Zhang, W.-J.; Li, B.-K.; Yang, T.-L. Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: Boron budget and sources. Chem. Geol. 2014, 380, 74–83. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Jiang, S.-Y. Chemical and boron isotopic composition of tourmaline in the Xiangshan volcanic—Intrusive complex, Southeast China: Evidence for boron mobilization and infiltration during magmatic-hydrothermal processes. Chem. Geol. 2012, 312, 177–189. [Google Scholar] [CrossRef]
- Kloppmann, W.; Vengosh, A.; Guerrot, C.; Millot, R.; Pankratov, I. Isotope and ion selectivity in reverse osmosis desalination: Geochemical tracers for man-made freshwater. Environ. Sci. Technol. 2008, 42, 4723–4731. [Google Scholar] [CrossRef]
- Muttik, N.; Kirsimäe, K.; Newsom, H.E.; Williams, L.B. Boron isotope composition of secondary smectite in suevites at the Ries crater, Germany: Boron fractionation in weathering and hydrothermal processes. Earth Planet. Sci. Lett. 2011, 310, 244–251. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, W.; Peng, Z.; Xiao, Y.; Wei, G.; Sun, W.; He, J.; Liu, G.; Chou, C.-L. Instability of seawater pH in the South China Sea during the mid-late Holocene: Evidence from boron isotopic composition of corals. Geochim. Cosmochim. Acta 2009, 73, 1264–1272. [Google Scholar] [CrossRef]
- Xiao, J.; Xiao, Y.; Jin, Z.; Liu, C.; He, M. Boron isotopic compositions in growing corals from the South China Sea. J. Asian Earth Sci. 2013, 62, 561–567. [Google Scholar] [CrossRef]
- Woodford, D.T.; Sisson, V.B.; Leeman, W.P. Boron metasomatism of the Alta stock contact aureole, Utah: Evidence from borates, mineral chemistry, and geochemistry. Am. Mineral. 2001, 86, 513–533. [Google Scholar] [CrossRef]
- Deegan, F.M.; Troll, V.R.; Whitehouse, M.J.; Jolis, E.M.; Freda, C. Boron isotope fractionation in magma via crustal carbonate dissolution. Sci. Rep. 2016, 6, 30774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, T.; Nakamura, E. Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Phys. Earth Planet. Inter. 2001, 127, 233–252. [Google Scholar] [CrossRef]
- Kasemann, S.A.; Meixner, A.; Erzinger, J.; Viramonte, J.G.; Alonso, R.N.; Franz, G. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina). J. S. Am. Earth Sci. 2004, 16, 685–697. [Google Scholar] [CrossRef]
- Casanova, J.; Négrel, P.; Kloppmann, W.; Aranyossy, J. Origin of deep saline groundwaters in the Vienne granitic rocks (France): Constraints inferred from boron and strontium isotopes. Geofluids 2001, 1, 91–101. [Google Scholar] [CrossRef]
- Paris, G.; Gaillardet, J.; Louvat, P. Geological evolution of seawater boron isotopic composition recorded in evaporites. Geology 2010, 38, 1036. [Google Scholar] [CrossRef]
- Pearson, P.N.; Foster, G.L.; Wade, B.S. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature 2009, 461, 1110. [Google Scholar] [CrossRef]
- Du, Y.; Fan, Q.; Gao, D.; Wei, H.; Shan, F.; Li, B.; Zhang, X.; Yuan, Q.; Qin, Z.; Ren, Q. Evaluation of boron isotopes in halite as an indicator of the salinity of Qarhan Paleolake water in the Eastern Qaidam Basin, Western China. Geosci. Front. 2019, 10, 253–262. [Google Scholar] [CrossRef]
- Liu, W.G.; Xiao, Y.K.; Peng, Z.C.; An, Z.S.; He, X.X. Boron concentration and isotopic composition of halite from experiments and salt lakes in the Qaidam Basin. Geochim. Cosmochim. Acta 2000, 64, 2177–2183. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, H.; Ma, Y.; Tang, Q.; Yuan, X. Origin of the late Cretaceous potash-bearing evaporites in the Vientiane Basin of Laos: δ11B evidence from borates. J. Asian Earth Sci. 2013, 62, 812–818. [Google Scholar] [CrossRef]
- Vengosh, A.; Starinsky, A.; Kolodny, Y.; Chivas, A.R.; Raab, M. Boron isotope variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate. Geology 1992, 20, 799–802. [Google Scholar] [CrossRef]
- Xiao, Y.; Shirodkar, P.; Liu, W.; Sun, D.; Wang, Y.; Jin, L. Boron isotopic geochemistry of salt lakes, Qaidam Basin, China. Adv. Nat. Sci. 1999, 917, 612–618. [Google Scholar]
- Hussain, S.A.; Feng-Qing, H.; Yunqi, M.; Khan, H.; Jian, Y.; Hussain, G.; Widory, D. An overview of Pakistan rock salt resources and their chemical characterisation. Pak. J. Sci. Ind. Res. 2020. [Google Scholar]
- Hussain, S.A.; Han, F.Q.; Han, J.; Khan, H.; Widory, D. Chlorine isotopes unravel conditions of formation of the Neoproterozoic rock salts from the Salt Range Formation, Pakistan. Can. J. Earth Sci. 2020. [Google Scholar] [CrossRef]
- Hussain, S.A.; Han, F.-Q.; Han, W.; Rodríguez, A.; Han, J.-L.; Han, J.; Nian, X.-Q.; Yi, L.; Ma, Z.; Widory, D. Climate Change Impact on the Evolution of the Saline Lakes of the Soan-Sakaser Valley (Central Salt Range; Pakistan): Evidences from Hydrochemistry and Water (δD, δ18O) and Chlorine (δ37Cl) Stable Isotopes. Water 2019, 11, 912. [Google Scholar] [CrossRef] [Green Version]
- Powell, C.M.; Roots, S.; Veevers, J. Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics 1988, 155, 261–283. [Google Scholar] [CrossRef]
- Gee, E.; Gee, D. Overview of the geology and structure of the Salt Range, with observations on related areas of northern Pakistan. Geol. Soc. Am. Spec. Pap. 1989, 232, 95–112. [Google Scholar]
- Ghazi, S.; Ali, S.H.; Sahraeyan, M.; Hanif, T. An overview of tectonosedimentary framework of the Salt Range, northwestern Himalayan fold and thrust belt, Pakistan. Arab. J. Geosci. 2015, 8, 1635–1651. [Google Scholar] [CrossRef]
- Grelaud, S.; Sassi, W.; de Lamotte, D.F.; Jaswal, T.; Roure, F. Kinematics of eastern Salt Range and South Potwar basin (Pakistan): A new scenario. Mar. Pet. Geol. 2002, 19, 1127–1139. [Google Scholar] [CrossRef]
- Richards, L.; King, R.; Collins, A.; Sayab, M.; Khan, M.; Haneef, M.; Morley, C.; Warren, J. Macrostructures vs microstructures in evaporite detachments: An example from the Salt Range, Pakistan. J. Asian Earth Sci. 2015, 113, 922–934. [Google Scholar] [CrossRef]
- Le Fort, P. Himalayas: The collided range. Present knowledge of the continental arc. Am. J. Sci. 1975, 275, 1–44. [Google Scholar]
- Krishnan, M. Salt tectonics in the Punjab salt range, Pakistan. Geol. Soc. Am. Bull. 1966, 77, 115–122. [Google Scholar] [CrossRef]
- Schröder, S.; Schreiber, B.C.; Amthor, J.E.; Matter, A. A depositional model for the terminal Neoproterozoic—Early Cambrian Ara Group evaporites in south Oman. Sedimentology 2003, 50, 879–898. [Google Scholar] [CrossRef]
- Fatmi, A.N. Lithostratigraphic units of the Kohat-Potwar province, Indus basin, Pakistan. Mem. Geol. Surv. Pak. 1974, 10, 1–80. [Google Scholar]
- Sameeni, S.J. The Salt Range. In PaleoParks: The Protection and Conservation of Fossil Sites Worldwide; Département des Sciences de la Terre, Université de Bretagne Occidentale: Brest, French, 2009; pp. 65–73. [Google Scholar]
- Han, J.-L.; Han, F.-Q.; Hussain, S.-A.; Liu, W.-Y.; Nian, X.-Q.; Mao, Q.-F. Origin of Boron and Brine Evolution in Saline Springs in the Nangqen Basin, Southern Tibetan Plateau. Geofluids 2018. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Jiang, H.; Xu, J.; Hussain, S.A.; Yuan, X.; Qin, X. Hydraulic connection affects uranium distribution in the Gas Hure salt lake, Qaidam Basin, China. Environ. Sci. Pollut. Res. 2018, 25, 4881–4895. [Google Scholar] [CrossRef]
- Han, J.; Xu, J.; Hussain, S.A.; Jiang, H.; Ma, Y.; Xu, K.; Ma, H. Origin of the Boron in the Gas Hure Salt Lake of the Northwestern Qaidam Basin, China: Evidence from Hydrochemistry and Boron Isotopes. Acta Geol. Sin. Engl. Ed. 2019, 4. [Google Scholar] [CrossRef]
- Xiao, Y.-K.; Beary, E.; Fassett, J. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry. Int. J. Mass Spectrom. Ion Process. 1988, 85, 203–213. [Google Scholar] [CrossRef]
- Ying-Kai, X.; Bu-Yong, L.; Wei-Guo, L.; Yun, X.; George, H.S. Ion Exchange Extraction of Boron from Aqueous Fluids by Amber-lite IRA 743 Resin. Chin. J. Chem. 2003, 21, 1073–1079. [Google Scholar]
- Hemming, N.G.; Hanson, G.N. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 1992, 56, 537–543. [Google Scholar] [CrossRef]
- Farooqui, M.A.; Umar, M.; Sabir, M.A.; Pervez, R.; Jalees, T. Geochemical attributes of late Neoproterozoic Salt Range Formation, Pakistan: Constraints on provenance, paleoclimate, depositional and tectonic settings. Geosci. J. 2019, 23, 201–218. [Google Scholar] [CrossRef]
- Vengosh, A.; Chivas, A.R.; Mcculloch, M.T.; Starinsky, A.; Kolodny, Y. Boron isotope geochemistry of Australian salt lakes. Geochim. Cosmochim. Acta 1991, 55, 2591–2606. [Google Scholar] [CrossRef]
- Williams, L.B.; Hervig, R.L.; Hutcheon, I. Boron isotope geochemistry during diagenesis: Part II, Applications to organic-rich sediments. Geochim. Cosmochim. Acta 2001, 65, 1783–1794. [Google Scholar] [CrossRef]
- Chao, H.; You, C. Distribution of B, Cl and their isotopes in pore waters separated from gas hydrate potential areas, offshore southwestern Taiwan. Terr. Atmos. Ocean. Sci. 2006, 17, 961. [Google Scholar] [CrossRef] [Green Version]
- Warren, J.K. Depositional Chemistry and Hydrology. In Evaporites; Springer: Berlin/Heidelberg, Germany, 2016; pp. 85–205. [Google Scholar]
- Boschetti, T.; Toscani, L.; Salvioli Mariani, E. Boron isotope geochemistry of NaN arom gas hydrate potential areas, offshore southwestern Taiwan. n. on provenanceoredeep basin: Other pieces of the sedimentary basin puzzle. Geofluids 2015, 15, 546–562. [Google Scholar] [CrossRef]
- Millot, R.; Petelet-Giraud, E.; Guerrot, C.; Négrel, P. Multi-isotopic composition (δ7Li–δ11B–δD–δ18O) of rainwaters in France: Origin and spatio-temporal characterization. Appl. Geochem. 2010, 25, 1510–1524. [Google Scholar] [CrossRef] [Green Version]
- Spivack, A.; Palmer, M.; Edmond, J. The sedimentary cycle of the boron isotopes. Geochim. Cosmochim. Acta 1987, 51, 1939–1949. [Google Scholar] [CrossRef]
- Lowenstein, T.K.; Timofeeff, M.N.; Brennan, S.T.; Hardie, L.A.; Demicco, R.V. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science 2001, 294, 1086–1088. [Google Scholar] [CrossRef] [Green Version]
- Deyhle, A.; Kopf, A.J.; Aloisi, G. Boron and boron isotopes as tracers for diagenetic reactions and depth of mobilization, using muds and authigenic carbonates from eastern Mediterranean mud volcanoes. Geol. Soc. Lond. Spec. Publ. 2003, 216, 491–503. [Google Scholar] [CrossRef]
- You, C.-F.; Spivack, A.; Gieskes, J.; Martin, J.; Davisson, M. Boron contents and isotopic compositions in pore waters: A new approach to determine temperature induced artifacts—Geochemical implications. Mar. Geol. 1996, 129, 351–361. [Google Scholar] [CrossRef]
- Baker, D.M.; Lillie, R.J.; Yeats, R.S.; Johnson, G.D.; Yousuf, M.; Zamin, A.S.H. Development of the Himalayan frontal thrust zone: Salt Range, Pakistan. Geology 1988, 16, 3–7. [Google Scholar] [CrossRef]
- Swihart, G.H.; Moore, P.B.; Callis, E.L. Boron isotopic composition of marine and nonmarine evaporite borates. Geochim. Cosmochim. Acta 1986, 50, 1297–1301. [Google Scholar] [CrossRef]
- Song, L.Y. Indoor evaporation experiment on water of South China Sea. Acta Geosicientia Sin. 1994, 1, 157–167, (In Chinese with English Abstract). [Google Scholar]
- Chaussidon, M.; Albarède, F. Secular boron isotope variations in the continental crust: An ion microprobe study. Earth Planet. Sci. Lett. 1992, 108, 229–241. [Google Scholar] [CrossRef]
- Xiao, Y.; Wei, H.; Yin, D. Progress on Isotopic Geochemistry of Boron and Chlorine in Salt Lakes. J. Salt Lake Res. 2000, 8, 30–40. [Google Scholar]
- Qi, H.; Wang, Y.; Xiao, Y.; Sun, D.; Jin, L.; Tang, Y. The preliminary study on the boron isotope of Chinese salt lakes. Chin. Sci. Bull. 1993, 38, 634. [Google Scholar]
- Chetelat, B.; Liu, C.Q.; Gaillardet, J.; Wang, Q.L.; Zhao, Z.Q.; Liang, C.S.; Xiao, Y.K. Boron isotopes geochemistry of the Changjiang basin rivers. Geochim. Cosmochim. Acta 2009, 73, 6084–6097. [Google Scholar] [CrossRef]
- Vengosh, A.; Chivas, A.R.; Starinsky, A.; Kolodny, Y.; Zhang, B.; Zhang, P. Chemical and boron isotope compositions of non-marine brines from the Qaidam Basin, Qinghai, China. Chem. Geol. 1995, 120, 135–154. [Google Scholar] [CrossRef]
- Schwarcz, H.P.; Agyei, E.K.; Mcmullen, C.C. Boron isotopic fractionation during clay adsorption from sea-water. Earth Planet. Sci. Lett. 1969, 6, 1–5. [Google Scholar] [CrossRef]
- Palmer, M.R.; Spivack, A.J.; Edmond, J.M. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clay. Geochim. Cosmochim. Acta 1987, 51, 2319–2323. [Google Scholar] [CrossRef]
- Ercan, H.Ü.; Karakaya, M.Ç.; Bozdağ, A.; Karakaya, N.; Delikan, A. Origin and evolution of halite based on stable isotopes (δ37Cl, δ81Br, δ11B and δ7Li) and trace elements in Tuz Gölü Basin, Turkey. Appl. Geochem. 2019, 105, 17–30. [Google Scholar] [CrossRef]
- Scotese, C.R. Late Proterozoic plate tectonics and palaeogeography: A tale of two supercontinents, Rodinia and Pannotia. Geol. Soc. Lond. Spec. Publ. 2009, 326, 67–83. [Google Scholar] [CrossRef]
Sample | Location | Cl− (Wt. %) | SO42− (Wt. %) | Na+ (Wt. %) | K+ (Wt. %) | Ca2+ (Wt. %) | Mg2+ (Wt. %) | B3+ (Wt. %) | Br− (Wt. %) | NO3− (Wt. %) | δ11B (‰) | Error (±) (‰) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
KH17-1 | NLLT | 51.05 | 6.96 | 36.41 | 0.32 | 0.23 | 0.13 | 0.0034 | 0.0080 | 0.0375 | 13.75 | 0.23 |
KH17-2 | SPW | 59.43 | 1.36 | 38.71 | 0.22 | 0.21 | 0.06 | 0.0003 | 0.0105 | 0.1262 | 2.13 | 0.13 |
KH17-3 | SPW | 59.35 | 1.47 | 38.50 | 0.32 | 0.24 | 0.13 | 0.0005 | 0.0089 | 0.1366 | 7.04 | 0.20 |
KH17-4 | KS | 36.68 | 27.21 | 24.21 | 7.55 | 0.03 | 4.31 | 0.0052 | 0.0097 | 0.1117 | 16.25 | 0.16 |
KH17-5 | KS | 44.85 | 0.31 | 22.30 | 9.41 | 0.01 | 0.06 | 0.0003 | 0.0340 | 0.0948 | 9.19 | 0.14 |
KH17-6 | MPW | 60.28 | 0.16 | 39.00 | 0.15 | 0.02 | 0.02 | 0.0012 | 0.0092 | 0.1534 | 22.04 | 0.03 |
KH17-7 | KS | 47.61 | 8.10 | 31.91 | 1.44 | 1.35 | 0.65 | 0.0106 | 0.0064 | 0.0326 | 17.44 | 0.26 |
KH17-8 | KS | 40.33 | 7.71 | 19.14 | 9.73 | 0.03 | 1.38 | 0.0014 | 0.0281 | 0.0904 | 17.08 | 0.05 |
KH17-9 | NPW | 54.14 | 3.81 | 35.40 | 0.77 | 0.52 | 0.45 | 0.0072 | 0.0093 | 0.0239 | 19.18 | 0.21 |
KH17-10 | NPW | 60.45 | 0.12 | 39.18 | 0.06 | 0.04 | 0.01 | 0.0000 | 0.0074 | 0.1795 | - | - |
KH17-11 | NPW | 60.16 | 0.29 | 38.94 | 0.13 | 0.10 | 0.08 | 0.0000 | 0.0082 | 0.0658 | 14.31 | 0.08 |
KH17-12 | NPW | 45.65 | 6.73 | 30.43 | 1.30 | 1.18 | 0.49 | 0.0082 | 0.0054 | 0.0300 | 17.05 | 0.27 |
KH17-13 | TS | 60.30 | 0.20 | 39.05 | 0.10 | 0.04 | 0.02 | 0.0001 | 0.0100 | 0.1863 | 17.29 | 0.12 |
KH17-14 | TS | 49.69 | 12.67 | 31.31 | 3.80 | 0.02 | 2.5 | 0.0022 | 0.0240 | 0.1391 | 13.67 | 0.09 |
KH17-15 | TS | 57.85 | 3.15 | 38.74 | 0.10 | 0.07 | 0.08 | 0.0001 | 0.0111 | 0.0687 | 14.53 | 0.28 |
KH17-16 | TS | 58.63 | 2.21 | 38.62 | 0.27 | 0.25 | 0.02 | 0.0001 | 0.0076 | 0.0992 | 18.16 | 0.10 |
KH17-17 | MPW | 60.49 | 0.18 | 39.21 | 0.05 | 0.02 | 0.04 | 0.0003 | 0.0243 | 0.1752 | 21.69 | 0.26 |
KH17-18 | MPW | 58.27 | 2.69 | 38.02 | 0.55 | 0.19 | 0.28 | 0.0005 | 0.0072 | 0.1231 | 16.8 | 0.08 |
KH17-19 | MPW | 60.19 | 0.52 | 39.09 | 0.10 | 0.07 | 0.03 | 0.0003 | 0.0096 | 0.0993 | 20.84 | 0.20 |
KH17-20 | MPW | 53.49 | 0.40 | 31.01 | 2.29 | 0.02 | 1.35 | 0.0005 | 0.0085 | 0.0734 | 21.2 | 0.05 |
KH17-21 | S | 49.30 | 12.68 | 37.90 | 0.04 | 0.02 | 0.06 | 0.0009 | 0.0183 | 0.1451 | 24.38 | 0.26 |
KH17-23 | S | 59.67 | 1.11 | 39.03 | 0.08 | 0.05 | 0.05 | 0.0000 | 0.0095 | 0.1314 | - | - |
KH17-22 | S | 60.22 | 0.47 | 39.04 | 0.14 | 0.08 | 0.04 | 0.0001 | 0.0103 | 0.0848 | 12.07 | 0.16 |
KH17-24 | B | 59.69 | 1.13 | 39.03 | 0.04 | 0.01 | 0.11 | 0.0005 | 0.0075 | 0.1175 | 20.14 | 0.03 |
KH17-25 | B | 59.37 | 1.54 | 38.56 | 0.16 | 0.11 | 0.25 | 0.0004 | 0.0091 | 0.1158 | 15.98 | 0.20 |
KH17-26 | NB | 59.33 | 1.48 | 38.52 | 0.29 | 0.27 | 0.11 | 0.0020 | 0.0078 | 0.0972 | 21.95 | 0.15 |
KH17-27 | NB | 56.31 | 4.83 | 36.54 | 0.20 | 0.13 | 0.05 | 0.0014 | 0.0076 | 0.0290 | 18.31 | 0.12 |
K17-28 | NB | 54.08 | 7.42 | 38.26 | 0.05 | 0.008 | 0.18 | 0.0007 | 0.0229 | 0.1530 | 22.13 | 0.13 |
KHY(H) | 47.69 | 11.52 | 30.35 | 3.20 | 0.04 | 2.3 | 0.0023 | 0.0240 | 0.1391 | 12.3 | 0.3 | |
KHY(B) | 89.12 | 6.15 | 39.66 | 4.67 | 1.47 | 71262 | 0.0002 | 0.0131 | 0.0302 | 17.9 | - |
Sample | Cl− (mg/L) | SO42− (mg/L) | Na+ (mg/L) | K+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | B3+ (mg/L) | Br− (mg/L) | NO3− (mg/L) | δ11B (‰) |
---|---|---|---|---|---|---|---|---|---|---|
KH-PB-1 | 1,725,361 | 319,765 | 956,750 | 71,600 | 2592.5 | 85,875 | 13.87 | 410.2 | 437.4 | 24.04 |
KH-PB-2 | 1,711,262 | 155,902 | 915,061.5 | 36,803.7 | 4212.495 | 36,997.2 | 6.52 | 197 | 956.4 | 24.2 |
KH-PB-3 | 1,708,814 | 131,128 | - | 45,085.1 | 14,270.85 | 42,478.8 | 7.25 | 188.8 | 262.4 | 26.13 |
KH-PB-4 | 720,827 | 49,306 | - | 59,818.2 | 119,184 | 43,914 | 14.93 | 125.6 | 632.2 | 17.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.A.; Han, F.-Q.; Ma, Z.; Hussain, A.; Mughal, M.S.; Han, J.; Alhassan, A.; Widory, D. Unraveling Sources and Climate Conditions Prevailing during the Deposition of Neoproterozoic Evaporites Using Coupled Chemistry and Boron Isotope Compositions (δ11B): The Example of the Salt Range, Punjab, Pakistan. Minerals 2021, 11, 161. https://doi.org/10.3390/min11020161
Hussain SA, Han F-Q, Ma Z, Hussain A, Mughal MS, Han J, Alhassan A, Widory D. Unraveling Sources and Climate Conditions Prevailing during the Deposition of Neoproterozoic Evaporites Using Coupled Chemistry and Boron Isotope Compositions (δ11B): The Example of the Salt Range, Punjab, Pakistan. Minerals. 2021; 11(2):161. https://doi.org/10.3390/min11020161
Chicago/Turabian StyleHussain, Syed Asim, Feng-Qing Han, Zhe Ma, Amjad Hussain, Muhammad Saleem Mughal, Jibin Han, Abdullah Alhassan, and David Widory. 2021. "Unraveling Sources and Climate Conditions Prevailing during the Deposition of Neoproterozoic Evaporites Using Coupled Chemistry and Boron Isotope Compositions (δ11B): The Example of the Salt Range, Punjab, Pakistan" Minerals 11, no. 2: 161. https://doi.org/10.3390/min11020161
APA StyleHussain, S. A., Han, F. -Q., Ma, Z., Hussain, A., Mughal, M. S., Han, J., Alhassan, A., & Widory, D. (2021). Unraveling Sources and Climate Conditions Prevailing during the Deposition of Neoproterozoic Evaporites Using Coupled Chemistry and Boron Isotope Compositions (δ11B): The Example of the Salt Range, Punjab, Pakistan. Minerals, 11(2), 161. https://doi.org/10.3390/min11020161