Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Characteristics of Evaporite Minerals
4.2. XRD Results
4.3. Sr, S and O Isotopes
5. Discussion
5.1. Sr Isotopes
5.2. S Isotopes
5.3. O Isotopes
5.4. The Origin of Evaporites and Paleoenvironmental Significance
6. Conclusions
- (1)
- The 87Sr/86Sr ratios of sulfate samples (including gypsum and celestite) in the Lanping–Simao basin are higher than those of contemporaneous seawater, indicating continental contribution; elevated 87Sr/86Sr ratios of rock salt samples were caused by continental contribution and radiogenic 87Sr accumulation.
- (2)
- The δ34S values of gypsum samples in the Simao basin are consistent with those of Cretaceous seawater, suggesting a marine origin; the reduced δ34S values of rock salts samples might be due to reservoir effect and continental contribution; the relatively higher δ34S values of sulfates in Lanping were likely caused by BSR or/and recycling of Triassic sulfates; the low δ34S values of gypsums in Nuodeng was caused by re-oxidation of weathering sulfides with negative S isotope compositions.
- (3)
- Sr and S isotope compositions of gypsum samples in a single section in Baozang suggest that continental water played an increasingly significant role with the evaporation of brines.
- (4)
- The O isotope compositions of evaporite salts showing more complex pattern compared with Sr and S, indicating that sulfate reduction or/and re-oxidation processes prevailed during deposition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, L.; Liu, C.; Zhao, J.; Feng, Y.; Wang, L.; Zhou, J. The remaking of the Mengyejing potash deposit in Yunnan, China: Evidence from Rb-Sr isotopic systematics. Ore Geol. Rev. 2017, 89, 876–886. [Google Scholar] [CrossRef]
- Xue, C.; Zeng, R.; Liu, S.; Chi, G.; Qing, H.; Chen, Y.; Yang, J.; Wang, D. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn–Pb deposit, western Yunnan, South China: A review. Ore Geol. Rev. 2007, 31, 337–359. [Google Scholar] [CrossRef]
- Hu, G.Y.; Li, Y.H.; Zeng, P.S. The role of halosalt in mineralization of the Jinding Pb-Zn deposit: Evidence from sulphur and strontium isotopic compositions. Acta Geol. Sin. 2013, 87, 1694–1702. (In Chinese) [Google Scholar]
- Deng, J.; Wang, Q.; Li, G.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Leach, D.L.; Song, Y.C.; Hou, Z.Q. The world-class Jinding Zn–Pb deposit: Ore formation in an evaporite dome, Lanping Basin, Yunnan, China. Miner. Deposita. 2017, 52, 281–296. [Google Scholar] [CrossRef]
- Xia, W.; Li, X. about the theoretic original study of evaporites-from the potash-halite deposit in Mengyejing Yunnan. J. Miner. Pet. 1983, 3, 1–11. (In Chinese) [Google Scholar]
- Shuai, K. Geologic-Tectonic evolution and evaporite formation of Mesozoic-Cenozoic era in Yunnan. Geoscience 1987, 1, 207–227. (In Chinese) [Google Scholar]
- Gao, G. Review of geological origion about Jinding lead-zinc ore deposit. Earth Sci. J. China Univ. Geosci. 1989, 14, 467–475. (In Chinese) [Google Scholar]
- Gao, G. Formation age and involved problems on anhydrites ore in Jinding lead-zinc ore area. Yunnan Geol. 1991, 10, 191–206. (In Chinese) [Google Scholar]
- Qu, Y.; Yuan, P.; Shuai, K.; Zhang, Y.; Cai, K.; Jia, S.; Chen, C. Potash-forming Rules and Prospects of Lower Tertiary in Lanping–Simao Basin, Yunnan; Geological Publishing House: Beijing, China, 1998; pp. 1–120. (In Chinese) [Google Scholar]
- Gao, X.; Fang, Q.; Yao, W.; Peng, Q.; Dong, J.; Qin, H.; Di, Y. Genesis of the Mengyejing potash deposit in Lanping-Simao basin, Yunnan: Implication from the components of the deposit. Acta Geosci. Sin. 2013, 34, 529–536. (In Chinese) [Google Scholar]
- Wang, L.; Liu, C.; Fei, M.; Shen, L.; Zhang, H. Sulfur isotopic composition of sulfate and its geological significance of the Yunlong formation in the Lanping Basin, Yunnan Province. China Min. Mag. 2014, 23, 57–65. (In Chinese) [Google Scholar]
- Shen, L.; Liu, C.; Wang, L.; Hu, Y.; Hu, M.; Feng, Y. Degree of Brine Evaporation and Origin of the Mengyejing Potash Deposit: Evidence from Fluid Inclusions in Halite. Acta Geol. Sin. 2017, 91, 175–185. (In English) [Google Scholar] [CrossRef]
- Zhang, J.; Wen, H.; Qiu, Y.; Zhang, Y.; Li, C. Ages of sediment-hosted Himalayan Pb–Zn–Cu–Ag polymetallic deposits in the Lanping basin, China: Re–Os geochronology of molybdenite and Sm–Nd dating of calcite. J. Asian Earth Sci. 2013, 73, 284–295. [Google Scholar] [CrossRef]
- Xu, X.; Wu, J. Potash deposits in Mengyejing, Yunnan-A study of certain characteristics, geochemistry of trace elements and genesis of the deposits. Bull. Chin. Acad. Geol. Sci. 1983, 5, 17–36. (In Chinese) [Google Scholar]
- Li, M.; Yan, M.; Wang, Z.; Liu, X.; Fang, X.; Li, J. The origins of the Mengye potash deposit in the Lanping–Simao basin, Yunnan province, Western China. Ore Geol. Rev. 2015, 69, 174–186. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Yan, M.; Zhao, Y.; Cao, Y.; Fang, X.; Shen, L.; Wu, C.; Lv, F.; Ding, T. The Mesozoic-Cenozoic tectonic settings, paleogeography and evaporitic sedimentation of Tethyan blocks within China: Implications for potash formation. Ore Geol. Rev. 2018, 102, 406–425. [Google Scholar] [CrossRef]
- Palmer, M.R.; Helvací, C.; Fallick, A.E. Sulphur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporites. Chem. Geol. 2004, 209, 341–356. [Google Scholar] [CrossRef]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Veizer, J. Strontium isotopes in seawater through time. Annu. Rev. Earth Planet. Sci. Lett. 1989, 17, 141–167. [Google Scholar] [CrossRef]
- Strauss, H. The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 132, 97–118. [Google Scholar] [CrossRef]
- McArthur, J.M.; Howarth, R.J.; Bailey, T.R. Strontium isotope stratigraphy: LOWESS version 3: Best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J. Geol. 2001, 109, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Kampschulte, A.; Strauss, H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 2004, 204, 255–286. [Google Scholar] [CrossRef]
- Alonso-Azcárate, J.; Bottrell, S.H.; Mas, J.R. Synsedimentary versus metamorphic control of S, O and Sr isotopic compositions in gypsum evaporites from the Cameros Basin, Spain. Chem. Geol. 2006, 234, 46–57. [Google Scholar] [CrossRef]
- Metcalfe, I. Palaeozoic-Mesozoic history of SE Asia. Geol. Soc. Lond. Spec. Publ. 2011, 355, 7–35. [Google Scholar]
- Chen, H.H.; Dobson, J.; Heller, F.; Hao, J. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous: A consequence of India–Asia collision. Earth Planet Sci. Lett. 1995, 134, 203–217. [Google Scholar]
- Wang, L.; Liu, C.; Fei, M.; Shen, L.; Zhang, H.; Zhao, Y. First SHRIMP U–Pb zircon ages of the potash-bearing Mengyejing formation, Simao Basin, southwestern Yunnan, China. Cretac. Res. 2015, 52, 238–250. [Google Scholar] [CrossRef]
- Chen, K. Provenance Analysis of the Late Cretaceous Yunlong Formation in the Lanping Basin, Yunnan Province and Its Tectonic Implications. Master’s Dissertation, China University of Geosciences, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Wang, L.C.; Shen, L.J.; Liu, C.L.; Chen, K.; Ding, L.; Wang, C.S. The Late Cretaceous source-to-sink system at the eastern margin of the Tibetan Plateau: Insights from the provenance of the Lanping Basin. Geosci. Front. 2021, 12, 101102. [Google Scholar] [CrossRef]
- Babechuk, M.G.; Kamber, B.S. An estimate of 1.9 Ga mantle depletion using the high-field-strength elements and Nd–Pb isotopes of ocean floor basalts, Flin Flon Belt, Canada. Precambrian Res. 2011, 189, 114–139. [Google Scholar] [CrossRef]
- Niu, Y.; Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet Sci. Lett. 1997, 148, 471–483. [Google Scholar] [CrossRef] [Green Version]
- Denison, R.E.; Kirkland, D.W.; Evans, R. Using strontium isotopes to determine the age and origin of gypsum and anhydrite beds. J. Geol. 1998, 106, 1–18. [Google Scholar] [CrossRef]
- Cong, F.; Wu, F.Y.; Li, W.C.; Mou, C.L.; Huang, X.M.; Wang, B.D.; Hu, F.Y.; Peng, Z.M. Origin of the Triassic Lincang granites in the southeastern Tibetan Plateau: Crystallization from crystal mush. Lithos 2020, 360–361, 105452. [Google Scholar] [CrossRef]
- Noh, H.; Huh, Y.; Qin, J.; Ellis, A. Chemical weathering in the Three Rivers region of Eastern Tibet. Geochim. Cosmochim. Acta 2009, 73, 1857–1877. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, H.; Shuai, K.; Yang, Z. Mineralization of Jinman copper deposit in Mesozoic sedimentary rocks in Lanping, Yunnan Province. Geoscience 1994, 8, 490–4960. (In Chinese) [Google Scholar]
- Wang, L.; Liu, C.; Gao, X.; Zhang, H. Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau: Whole-rock geochemistry, U-Pb geochronology, and Hf isotopic constraints. Sediment. Geol. 2014, 304, 44–58. [Google Scholar] [CrossRef]
- Holser, W.T.; Kaplan, I.R. Isotope geochemistry of sedimentary sulfates. Chem. Geol. 1966, 1, 93–135. [Google Scholar] [CrossRef]
- Kaplan, I.R.; Rittenberg, S.C. Microbiological fractionation of sulphur isotopes. Microbiology 1964, 34, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Zeng, P.; Li, H.; Li, Y.; Wang, Z.; Wen, L.; Liu, S. Asian largest lead-zinc ore deposit: The Jinding giant Pb-Zn deposit by three stages superimposed mineralization. Acta Geol. Sin. 2016, 90, 2384–2397. (In Chinese) [Google Scholar]
- Taylor, B.E.; Wheeler, M.C.; Nordstrom, D.K. Stable isotope geochemistry of acid mine drainage: Experimental oxidation of pyrite. Geochim. Cosmochim. Acta 1984, 48, 2669–2678. [Google Scholar] [CrossRef]
- El Tabakh, M.; Utha-Aroon, C.; Schreiber, B.C. Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand. Sediment. Geol. 1999, 123, 31–62. [Google Scholar] [CrossRef]
- Qin, Z.; Li, Q.; Zhang, X.; Fan, Q.; Wang, J.; Du, Y.; Ma, Y.; Wei, H.; Yuan, Q.; Shan, F. Origin and recharge model of the Late Cretaceous evaporites in the Khorat Plateau. Ore Geol. Rev. 2020, 116, 103226. [Google Scholar] [CrossRef]
- Lu, F.H.; Meyers, W.J. Sr, S, and OSO4 isotopes and the depositional environments of the upper Miocene evaporites, Spain. J. Sediment. Res. 2003, 73, 444–450. [Google Scholar] [CrossRef]
- Rick, B. Sulphur and oxygen isotopic composition of Swiss Gipskeuper (Upper Triassic). Chem. Geol. Isot. Geosci. 1990, 80, 243–250. [Google Scholar] [CrossRef]
- Longinelli, A.; Flora, O. Isotopic composition of gypsum samples of Permian and Triassic age from the north-eastern Italian Alps: Palaeoenvironmental implications. Chem. Geol. 2007, 245, 275–284. [Google Scholar] [CrossRef]
- Lloyd, R.M. Oxygen-18 composition of oceanic sulfate. Science 1967, 156, 1228–1231. [Google Scholar] [CrossRef] [PubMed]
- Balci, N.; Shanks, W.C., III; Mayer, B.; Mandernack, K.W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 2007, 71, 3796–3811. [Google Scholar] [CrossRef]
- Mangalo, M.; Meckenstock, R.U.; Stichler, W.; Einsiedl, F. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochim. Cosmochim. Acta 2007, 71, 4161–4171. [Google Scholar] [CrossRef]
- Yao, W.; Paytan, A.; Wortmann, U.G. Effects of a transient marine sulfur reservoir on seawater δ18OSO4 during the Paleocene-Eocene Thermal Maximum. Geochim. Cosmochim. Acta 2020, 269, 257–269. [Google Scholar] [CrossRef]
- Turchyn, A.V.; Schrag, D.P. Cenozoic evolution of the sulfur cycle: Insight from oxygen isotopes in marine sulfate. Earth Planet Sci. Lett. 2006, 241, 763–779. [Google Scholar] [CrossRef]
- Turchyn, A.V.; Brüchert, V.; Lyons, T.W.; Engel, G.S.; Balci, N.; Schrag, D.P.; Brunner, B. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: A combined theoretical and experimental approach. Geochim. Cosmochim. Acta 2010, 74, 2011–2024. [Google Scholar] [CrossRef]
- Chen, G.; Yin, H.; Chu, Y. Characteristics and geological significance of organic matter contained in Tertiary ore deposits in Lanping-Simao Basin, west Yunnan. Miner. Depos. 1996, 15, 374–380. (In Chinese) [Google Scholar]
- Lu, F.H.; Meyers, W.J.; Schoonen, M.A. S and O (SO4) isotopes, simultaneous modeling, and environmental significance of the Nijar Messinian gypsum, Spain. Geochim. Cosmochim. Acta 2001, 65, 3081–3092. [Google Scholar] [CrossRef]
- Kristall, B.; Jacobson, A.D.; Sageman, B.B.; Hurtgen, M.T. Coupled strontium-sulfur cycle modeling and the Early Cretaceous sulfur isotope record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 496, 305–322. [Google Scholar] [CrossRef]
- Longinelli, A. Isotope geochemistry of some Messinian evaporates: Paleoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1979, 29, 95–123. [Google Scholar] [CrossRef]
- Fontes, J.C.; Pierre, C. Oxygen 18 changes in dissolved sulphate during sea water evaporation in saline ponds. In Proceedings of the 10th International Congress on Sedimentology, Jerusalem, Israel, 9–14 July 1978; International Accounting Standards (IASs): London, UK, 1978; pp. 215–216. [Google Scholar]
Location | Sample ID | Age | Formation | Compositions, Based on XRD Analyses | Lithology |
---|---|---|---|---|---|
Lanping | LP-SM-G5 | late Cretaceous? | Yunlong | 90% gypsum, 10% calcite, and trace quartz | Gypsum laminae |
Lanping | LP-SM-G6 | late Cretaceous? | Yunlong | 55% calcite, 40% celestite, 5% quartz | Gypsum laminae |
Lanping | LP-SM-G7 | late Cretaceous? | Yunlong | 90% gypsum, 10% calcite, and trace quartz | Gypsum laminae |
Lanping | LP-SM-G8 | late Cretaceous? | Yunlong | 90% calcite, 10% celestite | Gypsum laminae |
Nuodeng | LP-SM-G1 | late Cretaceous? | Yunlong | 100% gypsum | Gypsum veins |
Nuodeng | LP-SM-G2 | late Cretaceous? | Yunlong | 100% gypsum | Gypsum veins |
Nuodeng | LP-SM-G3 | late Cretaceous? | Yunlong | 93% gypsum, 3% quartz, and trace albite | Gypsum veins |
Jinggu | JG-G1 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Jinggu | JG-G2 | late Cretaceous | Mengyejing | 95% gypsum, 5% calcite | Gypsum laminae |
Jinggu | JG-G3 | late Cretaceous | Mengyejing | 90% gypsum, 5% calcite, 5% magnesite | Gypsum laminae |
Jinggu | JG-G6 | late Cretaceous | Mengyejing | 90% gypsum, 20% dolomite, | Gypsum laminae |
Mengyejing | G1 | late Cretaceous | Mengyejing | nearly 100% halite, trace gypsum | |
Mengyejing | G2 | late Cretaceous | Mengyejing | nearly 100% halite, trace gypsum | Layered rock salts |
Mengyejing | G3 | late Cretaceous | Mengyejing | 95% halite, 5% anhydrite | Layered rock salts |
Mengyejing | G4 | late Cretaceous | Mengyejing | 70% halite, 10% anhydrite, 10% quartz | Layered rock salts |
Mengyejing | G5 | late Cretaceous | Mengyejing | 65% halite, 15% quartz, 10% anhydrite, 10% dolomite | Layered rock salts |
Mengyejing | G6 | late Cretaceous | Mengyejing | 85% halite, 15% sylvite, trace anhydrite | Layered rock salts |
Baozang | JBZ-F1 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum veins |
Baozang | JBZ-F2 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum veins |
Baozang | JBZ-F3 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum veins |
Baozang | JBZ-F4 | late Cretaceous | Mengyejing | 85% gypsum, 15% bassanite | Gypsum veins |
Baozang | JBZ-F5 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum veins |
Baozang | JBZ-G02 | late Cretaceous | Mengyejing | 98% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G03 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G04 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G05 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G06 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G07 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace bassanite | Gypsum laminae |
Baozang | JBZ-G08 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G09 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G10 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G11 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G12 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G13 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G14 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G15 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G16 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G17 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G18 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G19 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G20 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G21 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G22 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G23 | late Cretaceous | Mengyejing | 95% gypsum, 5% calcite | Gypsum laminae |
Baozang | JBZ-G24 | late Cretaceous | Mengyejing | 95% gypsum, 5% quartz | Gypsum laminae |
Baozang | JBZ-G25 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G26 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G27 | late Cretaceous | Mengyejing | 98% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G28 | late Cretaceous | Mengyejing | 95% gypsum, 5% dolomite | Gypsum laminae |
Baozang | JBZ-G29 | late Cretaceous | Mengyejing | 98% gypsum, trace calcite | Gypsum laminae |
Baozang | JBZ-G30 | late Cretaceous | Mengyejing | nearly 100% gypsum, trace quartz | Gypsum laminae |
Baozang | JBZ-G31 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G32 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Baozang | JBZ-G33 | late Cretaceous | Mengyejing | 100% gypsum | Gypsum laminae |
Location | Sample ID | δ18O‰ | δ34SV-CDT | 87Sr/86Sr | Rb (ppm) | Sr (ppm) | Rb/Sr |
---|---|---|---|---|---|---|---|
Lanping | LP-SM-G5 | 21.6 | 14.5 | 0.709622 ± 0.000005 | 1.34 | 3572 | 0.0003751 |
LP-SM-G6 | 18.4 | 20.5 | 0.710049 ± 0.000007 | 0.678 | >5000 | <0.0001356 | |
LP-SM-G7 | 23.1 | 17.6 | 0.709845 ± 0.000008 | 0.483 | 4699 | 0.0001028 | |
LP-SM-G8 | 17 | 20.7 | 0.710039 ± 0.000005 | 2.05 | >5000 | <0.00041 | |
Nuodeng | LP-SM-G1 | 6.8 | 10.2 | 0.709406 ± 0.000013 | 2.59 | 192 | 0.0134896 |
LP-SM-G2 | - | 9.5 | 0.709438 ± 0.000007 | 3.04 | 293 | 0.0103754 | |
LP-SM-G3 | 8 | 10.4 | 0.709475 ± 0.000006 | 2.71 | 603 | 0.0044942 | |
jinggu | LP-SM-G1 | - | 14.4 | 0.708648 ± 0.000007 | 1.15 | 186 | 0.0061828 |
LP-SM-G2 | 6.9 | 14.4 | 0.708081 ± 0.000006 | 3.47 | 3573 | 0.0009712 | |
LP-SM-G3 | 20.3 | 15.1 | 0.708712 ± 0.000008 | 3.49 | 679 | 0.0051399 | |
LP-SM-G6 | 10.2 | 13.5 | 0.708792 ± 0.000010 | 12.4 | 308 | 0.0402597 | |
Mengyejing | G1 | - | 12.2 | 0.709717 ± 0.000007 | 15.5 | 29.4 | 0.5272109 |
G2 | - | 15.5 | 0.710058 ± 0.000006 | 0.258 | 152 | 0.0016974 | |
G3 | - | 8.8 | 0.710019 ± 0.000006 | 4.73 | 227 | 0.020837 | |
G4 | 4.1 | 8 | 0.709881 ± 0.000007 | 22.5 | 100 | 0.225 | |
G5 | 10.3 | 9.1 | 0.709937 ± 0.000005 | 37.1 | 163 | 0.2276074 | |
G6 | - | 13.9 | 0.710071 ± 0.000005 | 11.6 | 55.4 | 0.2093863 | |
Baozang | JBZ-F1 | 6.6 | 15 | 0.709268 ± 0.000006 | 0.458 | 144 | 0.0031806 |
JBZ-F2 | 6.8 | 14.8 | 0.709225 ± 0.000006 | 0.314 | 154 | 0.002039 | |
JBZ-F3 | 7.7 | 15 | 0.709548 ± 0.000005 | 0.363 | 161 | 0.0022547 | |
JBZ-F4 | 7.4 | 14.8 | 0.708794 ± 0.000005 | 0.525 | 178 | 0.0029494 | |
JBZ-F5 | - | 14.3 | 0.709074 ± 0.000005 | 1.25 | 528 | 0.0023674 | |
JBZ-G02 | 15.1 | 15.2 | 0.709148 ± 0.000009 | 3.19 | 263 | 0.0121293 | |
JBZ-G03 | 13.6 | 14.9 | 0.70855 ± 0.000011 | 0.813 | 222 | 0.0036622 | |
JBZ-G04 | 16.8 | 14.9 | 0.708755 ± 0.000010 | 3.47 | 232 | 0.0149569 | |
JBZ-G05 | 9.1 | 14.9 | 0.708152 ± 0.000017 | 0.962 | 236 | 0.0040763 | |
JBZ-G06 | 10.3 | 15.1 | 0.708513 ± 0.000020 | 2 | 236 | 0.0084746 | |
JBZ-G07 | 10.2 | 14.9 | 0.708114 ± 0.000010 | 0.154 | 319 | 0.0004828 | |
JBZ-G08 | 10.5 | 14.9 | 0.708918 ± 0.000011 | 9.53 | 135 | 0.0705926 | |
JBZ-G09 | 16.1 | 15 | 0.708322 ± 0.000013 | 1.05 | 262 | 0.0040076 | |
JBZ-G10 | 14 | 14.7 | 0.708242 ± 0.000009 | 0.159 | 195 | 0.0008154 | |
JBZ-G11 | 13.4 | 14.5 | 0.708625 ± 0.000011 | 1.85 | 166 | 0.0111446 | |
JBZ-G12 | 9.7 | 14.6 | 0.70833 ± 0.000010 | 0.078 | 234 | 0.0003333 | |
JBZ-G13 | 9 | 14.7 | 0.708538 ± 0.000016 | 1.05 | 218 | 0.0048165 | |
JBZ-G14 | 13.3 | 14.2 | 0.709253 ± 0.000016 | 8.93 | 279 | 0.0320072 | |
JBZ-G15 | 7.1 | 14.6 | 0.708693 ± 0.000018 | 1.71 | 202 | 0.0084653 | |
JBZ-G16 | 14.3 | 0.708672 ± 0.000013 | #DIV/0! | ||||
JBZ-G17 | 15.7 | 14.8 | 0.708643 ± 0.000026 | 26.9 | 168 | 0.160119 | |
JBZ-G18 | 8.9 | 13.9 | 0.708713 ± 0.000013 | 3.94 | 246 | 0.0160163 | |
JBZ-G19 | 14.8 | 14.6 | 0.7086 ± 0.000011 | 0.517 | 312 | 0.0016571 | |
JBZ-G20 | 17.3 | 14.7 | 0.708807 ± 0.000017 | 0.506 | 321 | 0.0015763 | |
JBZ-G21 | 10 | 14.4 | 0.708439 ± 0.000010 | 0.757 | 451 | 0.0016785 | |
JBZ-G22 | 10 | 13.6 | 0.708346 ± 0.000011 | 0.198 | 476 | 0.000416 | |
JBZ-G23 | 13 | 14.5 | 0.708584 ± 0.000009 | 0.321 | 514 | 0.0006245 | |
JBZ-G24 | 8.4 | 14.6 | 0.708523 ± 0.000012 | 10 | 485 | 0.0206186 | |
JBZ-G25 | 15.7 | 14.1 | 0.708897 ± 0.000013 | 0.262 | 551 | 0.0004755 | |
JBZ-G26 | 9.1 | 14.6 | 0.709085 ± 0.000013 | 1.63 | 248 | 0.0065726 | |
JBZ-G27 | 11.3 | 14.7 | 0.709174 ± 0.000014 | 10 | 284 | 0.0352113 | |
JBZ-G28 | 9.4 | 14.3 | 0.709184 ± 0.000010 | 3.61 | 302 | 0.0119536 | |
JBZ-G29 | 12.7 | 13.4 | 0.709128 ± 0.000006 | 1.89 | 366 | 0.0051639 | |
JBZ-G30 | 18.4 | 14.3 | 0.709053 ± 0.000005 | 12.2 | 403 | 0.030273 | |
JBZ-G31 | 23.7 | 14.2 | 0.708704 ± 0.000006 | 1.21 | 445 | 0.0027191 | |
JBZ-G32 | 10 | 14.2 | 0.709038 ± 0.000006 | 2.25 | 277 | 0.0081227 | |
JBZ-G33 | 11 | 14.1 | 0.708781 ± 0.000005 | 1.47 | 491 | 0.0029939 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Wang, L.; Liu, C.; Zhao, Y. Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China. Minerals 2021, 11, 96. https://doi.org/10.3390/min11020096
Shen L, Wang L, Liu C, Zhao Y. Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China. Minerals. 2021; 11(2):96. https://doi.org/10.3390/min11020096
Chicago/Turabian StyleShen, Lijian, Licheng Wang, Chenglin Liu, and Yanjun Zhao. 2021. "Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China" Minerals 11, no. 2: 96. https://doi.org/10.3390/min11020096
APA StyleShen, L., Wang, L., Liu, C., & Zhao, Y. (2021). Sr, S, and O Isotope Compositions of Evaporites in the Lanping–Simao Basin, China. Minerals, 11(2), 96. https://doi.org/10.3390/min11020096