Twinning of Tetrahedrite—OD Approach
Abstract
:1. Introduction
2. Twinning of Tetrahedrite
3. The Concept of OD Layers
3.1. The Untwinned Layer Sequence
3.2. The Twinned Layer Sequence
3.3. Twin Symmetry in OD Description
3.4. Penetration Twins
3.5. (As,Sb)-Coordination Pyramids and (Cu,Ag)-Spinners
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haidinger, W. Handbuch der Bestimmenden Mineralogie; Braumüller and Seidel: Wien, Austria, 1845; pp. 563–570. [Google Scholar]
- Phillips, R. Analysis of the copper ore, described in the preceding paper. Q. J. Sci. Lit. Arts 1819, 7, 100–102. [Google Scholar]
- Phillips, W. Description of an ore of copper from Cornwall. Q. J. Sci. Lit. Arts 1819, 7, 95–100. [Google Scholar]
- Biagioni, C.; George, L.L.; Cook, N.J.; Makovicky, E.; Moëlo, Y.; Pasero, M.; Sejkora, J.; Stanley, C.J.; Welch, M.D.; Bosi, F. The tetrahedrite group: Nomenclature and classification. Am. Mineral. 2020, 105, 109–122. [Google Scholar] [CrossRef]
- Makovicky, E.; Forcher, K.; Lottermoser, W.; Amthauer, G. The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite. Mineral. Petrol. 1990, 43, 73–81. [Google Scholar] [CrossRef]
- Makovicky, E.; Tippelt, G.; Forcher, K.; Lottermoser, W.; Karup-Møller, S.; Amthauer, G. Mössbauer study of Fe-bearing synthetic tennantite. Can. Mineral. 2003, 41, 1125–1134. [Google Scholar] [CrossRef]
- Andreasen, J.W.; Makovicky, E.; Lebech, B.; Karup Møller, S. The role of iron in tetrahedrite and tennantite determined by Rietveld refinement of neutron powder diffraction data. Phys. Chem. Miner. 2008, 35, 447–454. [Google Scholar] [CrossRef]
- Nasonova, D.I.; Presniakov, I.A.; Sobolev, A.V.; Verchenko, V.Y.; Tsirlin, A.A.; Wei, Z.; Dikarev, E.; Shevelkov, A.V. Role of iron in synthetitc tetrahedrites revisited. J. Solid State Chem. 2016, 235, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Wuensch, B.J. The crystal structure of tetrahedrite, Cu12Sb4S13. Z. Krist. 1964, 119, 437–453. [Google Scholar] [CrossRef]
- Wuensch, B.J.; Takéuchi, Y.; Nowacki, W. Refinement of the crystal structure of binnite, Cu12As4S13. Z. Krist. 1966, 123, 1–20. [Google Scholar] [CrossRef]
- Pauling, L.; Neuman, E.W. The crystal structure of binnite (Cu,Fe)12As4S13 and the chemical composition and structure of minerals of the tetrahedrite group. Z. Krist. 1934, 88, 54–62. [Google Scholar] [CrossRef]
- Makovicky, E.; Karanović, L.; Poleti, D.; Balić-Žunić, T.; Paar, W.H. Crystal structure of copper-rich unsubstituted tennantite, Cu12.5As4S13. Can. Mineral. 2005, 43, 679–688. [Google Scholar] [CrossRef]
- Peterson, R.C.; Miller, I. Crystal structure and cation distribution in freibergite and tetrahedrite. Mineral. Mag. 1986, 50, 717–721. [Google Scholar] [CrossRef]
- Johnson, M.L.; Burnham, C.W. Crystal structure refinement of an arsenic-bearing argentian tetrahedrite. Am. Mineral. 1985, 70, 165–170. [Google Scholar]
- Rozhdestvenskaya, I.V.; Zayakina, N.V.; Samusikov, V.P. Crystal structure features of minerals from a series of tetrahedrite-freibergite. Mineral. Zhurnal 1993, 15, 9–17. (In Russian) [Google Scholar]
- Welch, M.D.; Stanley, C.J.; Spratt, J.; Mills, S.J. Rozhdestvenskayaite Ag10Zn2Sb4S13 and argentotetrahedrite Ag6Cu4(Fe2+, Zn)2Sb4S13: Two Ag-dominant members of the tetrahedrite group. Eur. J. Mineral. 2018, 30, 1163–1172. [Google Scholar] [CrossRef]
- Karanović, L.; Cvetković, L.; Poleti, D.; Balić-Žunić, T.; Makovicky, E. Structural and optical properties of schwazite from Dragodol (Serbia). Neues Jahrb. Mineral. Mon. 2003, 503–520. [Google Scholar] [CrossRef]
- Kalbskopf, R. Strukturverfeinerung des Freibergits. Tschermaks Mineral. Petrogr. Mitt. 1972, 18, 147–155. [Google Scholar] [CrossRef]
- Kaplunnik, L.N.; Pobedimskaya, E.A.; Belov, N.V. The crystal structure of schwazite (Cu4.4Hg1.6)Cu6Sb4S12. Dokl. Akad. Nauk SSSR 1980, 253, 105–107. [Google Scholar]
- Foit, F.F.; Hughes, J.M. Structural variations in mercurian tetrahedrite. Am. Mineral. 2004, 89, 159–163. [Google Scholar] [CrossRef]
- Biagioni, C.; Sejkora, J.; Musetti, S.; Velebil, D.; Pasero, M. Tetrahedrite-(Hg), a new ‘old’ member of the tetrahedrite group. Mineral. Mag. 2020, 84, 584–592. [Google Scholar] [CrossRef]
- Škácha, P.; Sejkora, J.; Palatinus, L.; Makovicky, E.; Plášil, J.; Macek, I.; Goliáš, V. Hakite from Příbram, Czech Republic: Compositional variability, crystal structure and the role in Se mineralization. Mineral. Mag. 2016, 80, 1115–1128. [Google Scholar] [CrossRef]
- Chetty, R.; Prem Kumar, D.S.; Rogl, G.; Rogl, P.; Bauer, E.; Michor, H.; Suwas, S.; Puchegger, S.; Giester, G.; Mallik, R.C. Thermoelectric properties of a Mn substituted synthetic tetrahedrite. Phys. Chem. Chem. Phys. 2015, 17, 1716–1727. [Google Scholar] [CrossRef]
- Barbier, T.; Lemoine, P.; Gascoin, S.; Lebedev, O.I.; Kaltzoglou, A.; Vaquiero, P.; Powell, A.V.; Smith, R.I.; Guilmeau, E. Structural stability of the synthetic thermoelectric ternary and nickel-substituted tetrahedrite phases. J. Alloys Compd. 2015, 634, 253–262. [Google Scholar] [CrossRef]
- Dornberger-Schiff, K. Lehrgang über OD-Strukturen; Akademie-Verlag: Berlin, Germany, 1966; 135p. [Google Scholar]
- Ďurovič, S. Fundamentals of the OD theory. EMU Notes Mineral. 1997, 1, 3–28. [Google Scholar]
- Ferraris, G.; Makovicky, E.; Merlino, S. Crystallography of Modular Materials; Oxford University Press: Oxford, UK, 2004; 370p. [Google Scholar]
- Makovicky, E. Crystal structures of sulfides and other chalcogenides. Rev. Mineral. Geochem. 2006, 61, 7–125. [Google Scholar] [CrossRef]
- Makovicky, E.; Karup-Møller, S. Exploratory studies on substitution of minor elements in synthetic tetrahedrite. Part I. Substitution by Fe, Zn, Co, Ni, Mn, Cr, V and Pb. Unit-cell parameter changes on substitution and the structural role of “Cu2+”. Neues Jahrb. Mineral. Abh. 1994, 167, 89–123. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makovicky, E. Twinning of Tetrahedrite—OD Approach. Minerals 2021, 11, 170. https://doi.org/10.3390/min11020170
Makovicky E. Twinning of Tetrahedrite—OD Approach. Minerals. 2021; 11(2):170. https://doi.org/10.3390/min11020170
Chicago/Turabian StyleMakovicky, Emil. 2021. "Twinning of Tetrahedrite—OD Approach" Minerals 11, no. 2: 170. https://doi.org/10.3390/min11020170
APA StyleMakovicky, E. (2021). Twinning of Tetrahedrite—OD Approach. Minerals, 11(2), 170. https://doi.org/10.3390/min11020170