A Mero-Plesiotype Series of Vanadates, Arsenates, and Phosphates with Blocks Based on Densely Packed Octahedral Layers as Repeating Modules
Abstract
:1. Introduction
2. The Main Module Topology
3. The Mero-Plesiotype Series of Structurally-Related Phases
4. Magnetic Behavior of the Series Members
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, J.B., Jr. Geometrical possibilities for amphibole structures: Model biopyriboles. Amer. Miner. 1970, 55, 292–293. [Google Scholar]
- Thompson, J.B. An Introduction to the Mineralogy and Petrology of the Biopyriboles. In Amphiboles and Other Hydrous Pyriboles—Mineralogy, Reviews in Mineralogy; Veblen, D.R., Ed.; Mineralogical Society of America: Washington, DC, USA, 1981; Volume 9A, pp. 141–188. [Google Scholar]
- Thompson, J.B., Jr. Biopyriboles and polysomatic series. Amer. Miner. 1978, 63, 239–249. [Google Scholar]
- Veblen, D.R. Non-Classical Pyriboles and Polysomatic Reactions in Biopyriboles. In Amphiboles and other Hydrous Pyriboles—Mineralogy, Reviews in Mineralogy; Veblen, D.R., Ed.; Mineralogical Society of America: Washington, DC, USA, 1981; Volume 9A, pp. 189–236. [Google Scholar]
- Makovicky, E. Modularity—Different Types and Approaches. In EMU Notes in Mineralogy, Modular Aspects of Minerals; Merlino, S., Ed.; Eötvös University Press: Budapest, Hungary, 1997; Volume 1, pp. 315–343. [Google Scholar]
- Ferraris, G. Polysomatic Aspects of Microporous Minerals—Heterophyllosilicates, Palysepioles and Rhodesite-Related Structures. Rev. Miner. Geochem. 2005, 57, 69–104. [Google Scholar] [CrossRef]
- Cadoni, M.; Ferraris, G. Two new members of the rhodesite mero-plesiotype series close to delhayelite and hydrodelhayelite: Synthesis and crystal structure. Eur. J. Miner. 2009, 21, 485–493. [Google Scholar] [CrossRef]
- Veblen, D.R. Polysomatism and polysomatic series: A review and application. Amer. Miner. 1991, 76, 801–826. [Google Scholar]
- Veblen, D.R.; Buseck, P.R. Microstructures and reaction mechanisms in biopyriboles. Amer. Miner. 1980, 65, 599–623. [Google Scholar]
- Welch, M.; Klinowski, J. Characterization of polysomatism in biopyriboles: Double-/triple-chain lamellar intergrowths. Phys. Chem. Miner. 1992, 18, 460–468. [Google Scholar] [CrossRef]
- Merlino, S.; Pasero, M. Polysomatic Approach in the Crystal Chemistry Study of Minerals. In EMU Notes in Mineralogy, Modular Aspects of Minerals; Merlino, S., Ed.; Eötvös University Press: Budapest, Hungary, 1997; Volume 1, pp. 297–312. [Google Scholar]
- Baronnet, A.; Papp, G.; Merlino, S. Equilibrium and Kinetic Processes for Polytype and Polysome Generation. In Modular Aspects of Minerals; Mineralogical Society of America: Chantilly, VA, USA, 1997; Volume 1, pp. 119–152. [Google Scholar]
- Drits, V.A.; Papp, G.; Merlino, S. Mixed-layer Minerals. In Modular Aspects of Minerals; Mineralogical Society of America: Chantilly, VA, USA, 1997; Volume 1, pp. 153–190. [Google Scholar]
- Ferraris, G.; Makovicky, E.; Merlino, S. Crystallography of Modular Materials; Oxford University Press (OUP): Oxford, UK, 2008. [Google Scholar]
- Zvyagin, B.B.; Papp, G.; Merlino, S. Modular Analysis of Crystal Structures. In Modular Aspects of Minerals; Mineralogical Society of America: Chantilly, VA, USA, 1997; Volume 1, pp. 345–372. [Google Scholar]
- Ferraris, G.; Ivaldi, G. Structural Features of Micas. Rev. Miner. Geochem. 2002, 46, 117–153. [Google Scholar] [CrossRef]
- Nespolo, M.; Ferraris, G.; Ďurovič, S.; Takeuchi, Y. Twins vs. modular crystal structures. Z.Kristallogr. Cryst. Mater. 2004, 219, 773–778. [Google Scholar] [CrossRef]
- Ferraris, G. Modular structures The paradigmatic case of the heterophyllosilicates. Z. Kristallogr. Cryst. Mater. 2008, 223, 76–84. [Google Scholar] [CrossRef]
- Yakubovich, O.V.; Dem’yanetz, L.N.; Massa, W. A New Cu, Al Fluoride Disilicate CuAl2F2(Si2O7) and its Relations to Topaz. Z. Anorg. Allg. Chem. 2000, 626, 1514–1518. [Google Scholar] [CrossRef]
- Massa, W.; Yakubovich, O.V.; Kireev, V.V.; Mel’Nikov, O.K. Crystal structure of a new vanadate variety in the lomonosovite group: Na5Ti2O2[Si2O7](VO4). Solid State Sci. 2000, 2, 615–623. [Google Scholar] [CrossRef]
- Yakubovich, O.V.; Massa, W.; Chukanov, N.V. Crystal structure of britvinite [Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)]: A new layered silicate with an original type of silicon-oxygen networks. Crystallogr. Rep. 2008, 53, 206–215. [Google Scholar] [CrossRef]
- Bozhilov, K.N. Structures and Microstructures of Non-Classical Pyriboles. In EMU Notes in Mineralogy, Minerals at the Nanoscale; Nieto, F., Livi, K.J.T., Oberti, R., Eds.; European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland: London, UK, 2013; Volume 14, pp. 109–152. [Google Scholar]
- Yakubovich, O.V.; Yakovleva, E.V.; Golovanov, A.N.; Volkov, A.S.; Volkova, O.S.; Zvereva, E.A.; Dimitrova, O.V.; Vasiliev, A.N. The First Vanadate–Carbonate, K2Mn3(VO4)2(CO3): Crystal Structure and Physical Properties. Inorg. Chem. 2013, 52, 1538–1543. [Google Scholar] [CrossRef]
- Yakubovich, O.; Kiriukhina, G.; Dimitrova, O.; Volkov, A.; Golovanov, A.; Volkova, O.; Zvereva, E.; Baidya, S.; Saha-Dasgupta, T.; Vasiliev, A. Crystal structure and magnetic properties of a new layered sodium nickel hydroxide phosphate, Na2Ni3(OH)2(PO4)2. Dalton Trans. 2013, 42, 14718–14725. [Google Scholar] [CrossRef] [PubMed]
- Basso, R.; Lucchetti, G.; Zefiro, L.; Palenzona, A. Reppiaite, Mn5(OH)4(VO4)2, a new mineral from Val Graveglia (Northern Apennines, Italy). Z. Kristallogr. Cryst. Mater. 1992, 201, 223–234. [Google Scholar] [CrossRef]
- Tillmanns, E.; Hofmeister, W.; Petitjean, K. Cornubite, Cu5(AsO4)2(OH)4, first occurrence of single crystals, mineralogical description and crystal structure. Bull. Geol. Soc. Finl. 1985, 57, 119–127. [Google Scholar] [CrossRef]
- Barbier, J. The crystal structure of Ni5(AsO4)2(OH)4 and its comparison to other M5(XO4)2(OH)4 compounds. Eur. J. Miner. 1996, 8, 77–84. [Google Scholar] [CrossRef]
- Pellizzeri, T.M.S.; Sanjeewa, L.D.; Pellizzeri, S.; McMillen, C.D.; Garlea, V.O.; Ye, F.; Sefat, A.S.; Kolis, J.W. Single crystal neutron and magnetic measurements of Rb2Mn3(VO4)2CO3 and K2Co3(VO4)2CO3 with mixed honeycomb and triangular magnetic lattices. Dalton Trans. 2020, 49, 4323–4335. [Google Scholar] [CrossRef]
- Rogado, N.; Huang, Q.; Lynn, J.W.; Ramirez, A.P.; Huse, D.; Cava, R.J. BaNi2V2O8: A two-dimensional honeycomb antiferromagnet. Phys. Rev. B 2002, 65, 144443. [Google Scholar] [CrossRef]
- Bircsak, Z.; Harrison, W.T.A. Barium Cobalt Phosphate, BaCo2(PO4)2. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1998, 54, 1554–1556. [Google Scholar] [CrossRef]
- Đordević, T. BaCo2(AsO4)2. Acta Crystallogr. Sect. E Struct. Rep. Online 2008, 64, i58–i59. [Google Scholar] [CrossRef] [Green Version]
- Buckley, A.M.; Bramwell, S.T.; Day, P.; Harrison, W.T.A. The Crystal Structure of Potassium Nickel Arsenate; KNiAsO4. Z. Naturforsch. B 1988, 43, 1053–1055. [Google Scholar] [CrossRef]
- Zhesheng, M.; Ruilin, H.; Xiaoling, Z. Redetermination of the Crystal Structure of Vesignieite. Acta Geol. Sin. 2009, 4, 145–151. [Google Scholar] [CrossRef]
- Freedman, D.E.; Chisnell, R.; McQueen, T.M.; Lee, Y.S.; Payen, C.; Nocera, D.G. Frustrated magnetism in the S = 1 kagomé lattice BaNi3(OH)2(VO4)2. Chem. Commun. 2011, 48, 64–66. [Google Scholar] [CrossRef]
- Pellizzeri, T.M.S.; Morrison, G.; McMillen, C.D.; Loye, H.Z.; Kolis, J.W. Sodium Transition Metal Vanadates from Hydrothermal Brines: Synthesis and Characterization of NaMn4(VO4)3, Na2Mn3(VO4)3, and Na2Co3(VO4 )2(OH)2. Eur. J. Inorg. Chem. 2020, 2020, 3408–3415. [Google Scholar] [CrossRef]
- Liao, J.-H.; Guyomard, D.; Piffard, Y.; Tournoux, M. K2Mn3(OH)2(VO4)2, a New Two-Dimensional Potassium Manganese(II) Hydroxyvanadate. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1996, 52, 284–286. [Google Scholar] [CrossRef]
- Ghose, S.; Wan, C. Structural chemistry of copper and zinc minerals. VI. Bayldonite, (Cu,Zn)3Pb(AsO4)2(OH)2: A complex layer structure. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1979, 35, 819–823. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, S.-Y.; Guo, W.-B.; Tang, Y.-Y.; He, Z.-Z. Spin-frustration in a new spin-1/2 oxyfluoride system (Cu13(VO4)4(OH)10F4) constructed by alternatively distorted kagome-like and triangular lattices. Dalton Trans. 2015, 44, 15396–15399. [Google Scholar] [CrossRef]
- El-Bali, B.; Bolte, M.; Boukhari, A.; Aride, J.; Taibe, M. BaNi2(PO4)2. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1999, 55, 701–702. [Google Scholar] [CrossRef]
- Régnault, L.; Henry, J.; Rossat-Mignod, J.; De Combarieu, A. Magnetic properties of the layered nickel compounds BaNi2(PO4)2 and BaNi2(AsO4)2. J. Magn. Magn. Mater. 1980, 15–18, 1021–1022. [Google Scholar] [CrossRef]
- Zhong, R.; Chung, M.; Kong, T.; Nguyen, L.T.; Lei, S.; Cava, R.J. Field-induced spin-liquid-like state in a magnetic honeycomb lattice. Phys. Rev. B 2018, 98, 220407. [Google Scholar] [CrossRef]
- Balents, L. Spin liquids in frustrated magnets. Nat. Cell Biol. 2010, 464, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Bramwell, S.T. Spin Ice State in Frustrated Magnetic Pyrochlore Materials. Science 2001, 294, 1495–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, H.S.; Brown, J.M.; Coldren, E.; Hester, G.; Gelfand, M.P.; Podlesnyak, A.; Huang, Q.; Ross, K.A. Short-range order in the quantum XXZ honeycomb lattice material BaCo2(PO4)2. Phys. Rev. B 2018, 97, 134409. [Google Scholar] [CrossRef] [Green Version]
- Greedan, J.E. Geometrically frustrated magnetic materials. J. Mater. Chem. 2001, 11, 37–53. [Google Scholar] [CrossRef]
- Moessner, R.; Ramirez, A.P. Geometrical frustration. Phys. Today 2006, 59, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Matsubara, F.; Fujiki, S.; Shirakura, T. Absence of classical long-range order in an S=1/2 Heisenberg antiferromagnet on a triangular lattice. Phys. Rev. B Condens. Matter 2014, 90, 184414. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.F.; Petrenko, O.A. Review/Synthèse: Triangular antiferromagnets. Can. J. Phys. 1997, 75, 605–655. [Google Scholar] [CrossRef]
- Harrison, A. First catch your hare: The design and synthesis of frustrated magnets. J. Physics: Condens. Matter 2004, 16, S553–S572. [Google Scholar] [CrossRef]
- Pati, S.K.; Rao, C.N.R. Role of the spin magnitude of the magnetic ion in determining the frustration and low-temperature properties of kagome lattices. J. Chem. Phys. 2005, 123, 234703. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, D.; Sato, H.; Matsuo, A.; Kindo, K.; Nakamura, D.; Takeyama, S. Ultrahigh-Magnetic-Field Magnetization of Multi-Kagome-Strip (MKS) Lattice Spin-Frustrated Magnet K2Mn3(OH)2(VO4)2. J. Phys. Soc. Jpn. 2018, 87, 124701. [Google Scholar] [CrossRef]
- Okamoto, Y.; Yoshida, H.; Hiroi, Z. Vesignieite BaCu3V2O8(OH)2 as a Candidate Spin-1/2 Kagome Antiferromagnet. J. Phys. Soc. Jpn. 2009, 78, 033701. [Google Scholar] [CrossRef] [Green Version]
- Regnault, L.; Burlet, P.; Rossat-Mignod, J. Magnetic ordering in a planar X—Y model: BaCo2(AsO4)2. Phys. B+C 1977, 86–88, 660–662. [Google Scholar] [CrossRef]
- Regnault, L.-P.; Boullier, C.; Lorenzo, J. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2 frustrated honeycomb-lattice magnet. Heliyon 2018, 4, e00507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanjeewa, L.D.; McGuire, M.A.; McMillen, C.D.; Willett, D.; Chumanov, G.; Kolis, J.W. Honeycomb-like S = 5/2 Spin–Lattices in Manganese(II) Vanadates. Inorg. Chem. 2016, 55, 9240–9249. [Google Scholar] [CrossRef] [PubMed]
- Garlea, V.O.; Sanjeewa, L.D.; McGuire, M.A.; Batista, C.D.; Samarakoon, A.M.; Graf, D.; Winn, B.; Ye, F.; Hoffmann, C.; Kolis, J.W. Exotic Magnetic Field-Induced Spin-Superstructures in a Mixed Honeycomb-Triangular Lattice System. Phys. Rev. X 2019, 9, 011038. [Google Scholar] [CrossRef] [Green Version]
- Yakubovich, O.V.; Yakovleva, E.V.; Kirjukhina, G.V. A polysomatic series of two-dimensional vanadates, arsenates and phosphates. Acta Crystallogr. Sect. A Found. Crystallogr. 2013, 69, 125. [Google Scholar] [CrossRef]
Mineral/ Synthetic Phase Ref. | Unit-cell Parameters a, b, c (Å) and Angles α, β, γ (°) | Space Group, V (Å3), Z | Fraction of Filled Octahedra, Layer Topology, Module Sequence | Magnetic Behavior |
---|---|---|---|---|
Phases with archetype crystal structure | ||||
Reppiaite Mn5(OH)4[VO4]2 [25] | a 9.604(2) b 9.558(2) β 98.45(1) c 5.393(1) | C2/m 489.7 2 | ⅚, dual-width triangular stripes separated by honeycombs, (AA′) | Canted antiferromagnetic ordering below 57 K |
Ni5(OH)4[AsO4]2 [27] | a 9.291(2) b 9.008(2) β 98.70(3) c 5.149(1) | C2/m 426.0 2 | ⅚, dual-width triangular stripes separated by honeycombs, (AA′) | ------- |
Cornubite Cu5(OH)4[AsO4]2 [26] | a 6.121(1) α 92.93(1) b 6.251(1) β 111.30(1) c 6.790(1) γ 107.47(1) | P 227.1 1 | ⅚, dual-width triangular stepped stripes separated by honeycombs, (AA′) | ------- |
Compounds forming the mero-plesiotype series | ||||
K2Mn3[VO4]2(CO3) [23] | a 5.201(1) c 22.406(3) | P63/m 524.9 2 | ⅔, honeycomb (ABA’B’) | The honeycomb substructure orders antiferromagnetically at 85 K; the triangular substructure displays two ordered states at 3 and 2.2 K |
K2Co3[VO4]2(CO3) [28] | a 5.0931(2) c 22.1551(13) | P63/m 497.7 2 | ⅔, honeycomb (ABA’B’) | Canted antiferromagnetic ordering below 8 K |
Rb2Mn3[VO4]2(CO3) [28] | a 5.2488(3) c 22.7020(14) | P 1c 541.6 2 | ⅔, honeycomb (ABA’B’) | The honeycomb substructure orders antiferromagnetically at 77 K; the triangular substructure exhibits two transitions at 2.3 K and 1.5 K |
BaNi2[VO4]2 [29] | a 5.028(1) c 22.345(3) | R 489.4 3 | ⅔, honeycomb (ABA’B’A″B″) | Antiferromagnetic long-range ordering close to 50 K |
BaCo2[PO4]2 [30] | a 4.8554(6) c 23.2156(17) | R 474.0 3 | ⅔, honeycomb (ABA’B’A″B″) | Competing short range magnetic orders below TN1 ∼ 6 K and TN2 ∼ 3.5 K. |
BaCo2[AsO4]2 * [31] | a 5.007(1) c 23.491(5) | R 510.0 3 | ⅔, honeycomb (ABA’B’A″B″) | Frustrated magnet |
NaNi[AsO4] [32] | a 4.955(3) c 26.47(3) | R 562.8 6 | ⅔, honeycomb (ABA’B’A″B″) | ----- |
KNi[AsO4] [32] | a 4.97208(2) c 28.52606(10) | R 610.7 6 | ⅔, honeycomb (ABA’B’A″B″) | ----- |
Vésignéite BaCu3(OH)2[VO4]2 [33] | a 10.270(2) b 5.911(1) β 116.42(3) c 7.711(2) | C2/m 419.2 2 | ¾, kagomé (AB) | Strong antiferromagnetic interactions, no long-range order down to 16 K |
BaNi3(OH)2[VO4]2 [34] | a 10.213(6) b 5.816(3) β 117.01(4) c 7.888(4) | C2/m 417.4 2 | ¾, kagomé (AB) | Glassy transition at 19 K, magnetic frustration from a competition between ferro- and antiferromagnetic ordering |
Na2Ni3(OH)2[PO4]2 [24] | a 14.259(5) b 5.695(2) β 104.28(3) c 4.933(1) | C2/m 388.2 2 | ¾, triangular stripes separated by honeycombs, (ABA′B′) | Antiferromagnetic ordering at 33.4 K |
Na2Co3(OH)2[VO4]2 [35] | a 14.5847(11) b 5.9552(4) β 104.068(2) c 5.1414(4) | C2/m 433.2 2 | ¾, triangular stripes separated by honeycombs, (ABA′B′) | Antiferromagnetic ordering at 4.4 K |
K2Mn3(OH)2[VO4]2 [36] | a 15.204(2) b 6.159(1) β 105.40(1) c 5.400(1) | C2/m 487.5 2 | ¾, triangular stripes separated by honeycombs, (ABA′B′) | Antiferromagnetic ordering at 50 K |
Bayldonite Pb(Cu,Zn)3(OH)2 [AsO4]2 [37] | a 10.147(2) b 5.892(1) β 106.05(1) c 14.081(2) | C2/c 809.0 4 | ¾, kagomé (ABA′B′) | ----- |
Cu13(OH)10F4[VO4]4 [38] | a 5.802(2) α 110.043(3) b 10.239(4)β 104.320(4) c 10.914(5) γ 96.662(3) | P 675.6 2 | ¾, triangular stepped stripes separated by honeycombs; triangular net; (AB) | Antiferromagnetic ordering at 3 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakubovich, O.; Kiriukhina, G. A Mero-Plesiotype Series of Vanadates, Arsenates, and Phosphates with Blocks Based on Densely Packed Octahedral Layers as Repeating Modules. Minerals 2021, 11, 273. https://doi.org/10.3390/min11030273
Yakubovich O, Kiriukhina G. A Mero-Plesiotype Series of Vanadates, Arsenates, and Phosphates with Blocks Based on Densely Packed Octahedral Layers as Repeating Modules. Minerals. 2021; 11(3):273. https://doi.org/10.3390/min11030273
Chicago/Turabian StyleYakubovich, Olga, and Galina Kiriukhina. 2021. "A Mero-Plesiotype Series of Vanadates, Arsenates, and Phosphates with Blocks Based on Densely Packed Octahedral Layers as Repeating Modules" Minerals 11, no. 3: 273. https://doi.org/10.3390/min11030273
APA StyleYakubovich, O., & Kiriukhina, G. (2021). A Mero-Plesiotype Series of Vanadates, Arsenates, and Phosphates with Blocks Based on Densely Packed Octahedral Layers as Repeating Modules. Minerals, 11(3), 273. https://doi.org/10.3390/min11030273