Crystal Structure of Moganite and Its Anisotropic Atomic Displacement Parameters Determined by Synchrotron X-ray Diffraction and X-ray/Neutron Pair Distribution Function Analyses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. High-Resolution Synchrotron XRD
3.2. EPMA
3.3. TEM
3.4. Neutron/X-ray PDF Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flörke, O.; Jones, J.; Schmincke, H.U. A new microcrystalline silica from Gran Canaria. Z. Kristallogr. Krist. 1976, 143, 156–165. [Google Scholar] [CrossRef]
- Heaney, P.J.; Post, J.E. The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties. Science 1992, 255, 441–443. [Google Scholar] [CrossRef]
- Miehe, G.; Graetsch, H. Crystal structure of moganite: A new structure type for silica. Eur. J. Mineral. 1992, 4, 693–706. [Google Scholar] [CrossRef] [Green Version]
- Heaney, P.J. Moganite as an indicator for vanished evaporites; a testament reborn? J. Sediment. Res. 1995, 65, 633–638. [Google Scholar]
- Petrovic, I.; Heaney, P.J.; Navrotsky, A. Thermochemistry of the new silica polymorph moganite. Phys. Chem. Miner. 1996, 23, 119–126. [Google Scholar] [CrossRef]
- Götze, J.; Nasdala, L.; Kleeberg, R.; Wenzel, M. Occurrence and distribution of “moganite” in agate/chalcedony: A combined micro-Raman, Rietveld, and cathodoluminescence study. Contrib. Mineral. Petrol. 1998, 133, 96–105. [Google Scholar] [CrossRef]
- Rodgers, K.; Cressey, G. The occurrence, detection and significance of moganite (SiO2) among some silica sinters. Mineral. Mag. 2001, 65, 157–167. [Google Scholar] [CrossRef]
- Flörke, O.; Flörke, U.; Giese, U. Moganite. A new microcrystalline silica-mineral. Neues Jahrb. Mineral. Abhandlungen 1984, 149, 325–336. [Google Scholar]
- Xu, H.; Buseck, P.R.; Gufeng, L. HRTEM investigation of microstructures in length-slow chalcedony. Am. Mineral. 1998, 83, 542–545. [Google Scholar] [CrossRef]
- Parthasarathy, G.; Kunwar, A.C.; Srinivasan, R. Occurrence of moganite-rich chalcedony in Deccan flood basalts, Killari, Maharashtra, India. Eur. J. Mineral. 2001, 13, 127–134. [Google Scholar] [CrossRef]
- Gíslason, S.R.; Heaney, P.J.; Oelkers, E.H.; Schott, J. Kinetic and thermodynamic properties of moganite, a novel silica polymorph. Geochim. Cosmochim. Acta 1997, 61, 1193–1204. [Google Scholar] [CrossRef]
- Moxon, T.; Ríos, S. Moganite and water content as a function of age in agate: An XRD and thermogravimetric study. Eur. J. Mineral. 2004, 16, 269–278. [Google Scholar] [CrossRef]
- Kayama, M.; Tomioka, N.; Ohtani, E.; Seto, Y.; Nagaoka, H.; Götze, J.; Miyake, A.; Ozawa, S.; Sekine, T.; Miyahara, M. Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith. Sci. Adv. 2018, 4, eaar4378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaney, P.J.; Post, J.E. Evidence for an I 2/a to Imab phase transition in the silica polymorph moganite at ~570 K. Am. Mineral. 2001, 86, 1358–1366. [Google Scholar] [CrossRef]
- Chateau, C.; Haines, J.; Leger, J.-M.; LeSauze, A.; Marchand, R. A moganite-type phase in the silica analog phosphorus oxynitride. Am. Mineral. 1999, 84, 207–210. [Google Scholar] [CrossRef]
- Kanzaki, M.; Xue, X. Structural characterization of moganite-type AlPO4 by NMR and powder X-ray diffraction. Inorg. Chem. 2012, 51, 6164–6172. [Google Scholar] [CrossRef] [PubMed]
- Graetsch, H.; Flörke, O.; Miehe, G. Structural defects in microcrystalline silica. Phys. Chem. Miner. 1987, 14, 249–257. [Google Scholar] [CrossRef]
- Miehe, G. Die monokline Kristallstruktur des SiO2 Minerals Moganit. Z. Kristallogr. Krist. 1988, 182, 183–184. [Google Scholar]
- Zhang, M.; Moxon, T. In situ infrared spectroscopic studies of OH, H2O and CO2 in moganite at high temperatures. Eur. J. Mineral. 2012, 24, 123–131. [Google Scholar] [CrossRef]
- Zhang, M.; Moxon, T. Infrared absorption spectroscopy of SiO2-moganite. Am. Mineral. 2014, 99, 671–680. [Google Scholar] [CrossRef]
- Schmidt, P.; Bellot-Gurlet, L.; Léa, V.; Sciau, P. Moganite detection in silica rocks using Raman and infrared spectroscopy. Eur. J. Mineral. 2013, 25, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Xu, H. Using complementary methods of synchrotron radiation powder diffraction and pair distribution function to refine crystal structures with high quality parameters—A Review. Minerals 2020, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Xu, H. Using powder XRD and pair distribution function to determine anisotropic atomic displacement parameters of orthorhombic tridymite and tetragonal cristobalite. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Egami, T.; Billinge, S.J. Underneath the Bragg Peaks: Structural Analysis of Complex Materials, 2nd ed.; Elsevier: Oxford, UK, 2012; pp. 10–32. [Google Scholar]
- Xu, H.; Heaney, P.J.; Beall, G.H. Phase transitions induced by solid solution in stuffed derivatives of quartz: A powder synchrotron XRD study of the LiAlSiO4-SiO2 join. Am. Mineral. 2000, 85, 971–979. [Google Scholar] [CrossRef]
- Xu, H.; Navrotsky, A.; Balmer, M.L.; Su, Y. Crystal chemistry and phase transitions in substituted pollucites along the CsAlSi2O6-CsTiSi2O6.5 join: A powder synchrotron X-ray diffractometry study. J. Am. Ceram. Soc. 2002, 85, 1235–1242. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, Y.; Zhang, J.; Hickmott, D.D.; Daemen, L.L. In situ neutron diffraction study of deuterated portlandite Ca (OD)2 at high pressure and temperature. Phys. Chem. Miner. 2007, 34, 223–232. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, Y.; Vogel, S.C.; Hickmott, D.D.; Daemen, L.L.; Hartl, M.A. Thermal expansion and decomposition of jarosite: A high-temperature neutron diffraction study. Phys. Chem. Miner. 2010, 37, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Xu, H.; Xu, W.; Sun, X. The structure and crystal chemistry of vernadite in ferromanganese crusts. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2019, 75, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Trueblood, K.; Bürgi, H.B.; Burzlaff, H.; Dunitz, J.; Gramaccioli, C.; Schulz, H.; Shmueli, U.; Abrahams, S. Atomic dispacement parameter nomenclature. Report of a subcommittee on atomic displacement parameter nomenclature. Acta Crystallogr. Sect. A Found. Crystallogr. 1996, 52, 770–781. [Google Scholar] [CrossRef] [Green Version]
- Graetsch, H.; Topalovic, I.; Gies, H. NMR spectra of moganite and chalcedony. Eur. J. Mineral. 1994, 6, 459–464. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Kihara, K. An X-ray study of the temperature dependence of the quartz structure. Eur. J. Mineral. 1990, 2, 63–78. [Google Scholar] [CrossRef]
- Comodi, P.; Nazzareni, S.; Zanazzi, P.F.; Speziale, S. High-pressure behavior of gypsum: A single-crystal X-ray study. Am. Mineral. 2008, 93, 1530–1537. [Google Scholar] [CrossRef]
- Finger, L.; King, H. A revised method of operation of the single-crystal diamond cell and refinement of the structure of NaCl at 32 kbar. Am. Mineral. 1978, 63, 337–342. [Google Scholar]
- Juhás, P.; Davis, T.; Farrow, C.L.; Billinge, S.J. PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr. 2013, 46, 560–566. [Google Scholar] [CrossRef] [Green Version]
- Farrow, C.; Juhas, P.; Liu, J.; Bryndin, D.; Božin, E.; Bloch, J.; Proffen, T.; Billinge, S. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 2007, 19, 335219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, P.; Gutmann, M.; Proffen, T.; Billinge, S. PDFgetN: A user-friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data. J. Appl. Crystallogr. 2000, 33, 1192. [Google Scholar] [CrossRef] [Green Version]
- Antao, S.M.; Hassan, I.; Wang, J.; Lee, P.L.; Toby, B.H. State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can. Mineral. 2008, 46, 1501–1509. [Google Scholar] [CrossRef]
- Xu, H.; Jin, S.; Lee, S.; Hobbs, F.W. Nano-phase KNa(Si6Al2)O16 in adularia: A new member in the alkali feldspar series with ordered K–Na distribution. Minerals 2019, 9, 649. [Google Scholar] [CrossRef] [Green Version]
- Ribbe, P.H. Aluminium-silicon order in feldspars; domain textures and diffraction patterns. In Feldspar Mineralogy; De Gruyter: Berlin, Germany, 1983; Volume 2, pp. 21–55. [Google Scholar]
- Xu, H.; Veblen, D.R.; Buseck, P.; Ramakrishna, B.L. TEM and SFM of exsolution and twinning in an alkali feldspar. Am. Mineral. 2000, 85, 509–513. [Google Scholar] [CrossRef]
- Hantsch, U.; Winkler, B.R.; Pickard, C.J.; Warren, M.C.; Milman, V.; Mauri, F. Theoretical investigation of moganite. Eur. J. Mineral. 2005, 17, 21–30. [Google Scholar] [CrossRef]
- Lee, S.; Cai, J.; Jin, S.; Zhang, D.; Thevamaran, R.; Xu, H. Coesite formation at low pressure during supersonic microprojectile impact of opal. ACS Earth Space Chem. 2020, 4, 1291–1297. [Google Scholar] [CrossRef]
- Huang, Y.X.; Prots, Y.; Kniep, R. Zn[BPO4(OH)2]: A zinc borophosphate with the rare moganite-type uopology. Chem. Eur. J. 2008, 14, 1757–1761. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Hill, T.R.; Konishi, H.; Farfan, G. Protoenstatite: A new mineral in Oregon sunstones with “watermelon” colors. Am. Mineral. 2017, 102, 2146–2149. [Google Scholar] [CrossRef]
Moganite (Space Group I2/a) | ||||
Atom | x | y | z | Uiso (Å2) |
Si1 | 0.2500 | 0.9731(7) | 0.0000 | 0.0129(5) |
Si2 | 0.0089(4) | 0.2512(5) | 0.1663(4) | 0.0173(5) |
O1 | 0.9773(7) | 0.0651(7) | 0.2873(4) | 0.0184(6) |
O2 | 0.1683(4) | 0.1710(4) | 0.1004(4) | 0.0195(6) |
O3 | 0.8696(7) | 0.2302(4) | 0.0676(5) | 0.0201(6) |
Lattice parameters: a = 8.7363(8), b = 4.8688(5), c = 10.7203(17) Å and β = 90.212(13)° | ||||
Quartz (Space Group P3221) | ||||
Atom | x | y | z | Uiso (Å2) |
Si | 0.4690(5) | 0.0000 | 0.0000 | 0.0084(3) |
O | 0.4134(6) | 0.2671(4) | 0.1192(3) | 0.0142(3) |
Lattice parameters: a = 4.9156(4) and c = 5.4052(4) Å | ||||
Halite (Space Group Fmm) | ||||
Atom | x | y | z | Uiso (Å2) |
Na | 0.0000 | 0.0000 | 0.0000 | 0.0237(2) |
Cl | 0.5000 | 0.5000 | 0.5000 | 0.0193(2) |
Lattice parameters: a = 5.6338(7) Å | ||||
Gypsum (Space Group C2/c) | ||||
Atom | x | y | z | Uiso (Å2) |
Ca | 0.0000 | 0.1693(4) | 0.2500 | 0.0111(3) |
S | 0.0000 | 0.3289(5) | 0.7500 | 0.0095(3) |
O1 | 0.0834(2) | 0.2729(4) | 0.5918(7) | 0.0152(5) |
O2 | 0.2015(5) | 0.3831(6) | 0.9149(6) | 0.0149(5) |
OW | −0.2106(7) | 0.0665(4) | −0.0808(6) | 0.0236(6) |
Lattice parameters: a = 6.2820(6), b = 15.175(9), c = 5.673(5) Å and β = 117.51(2)° |
(1) | (2) | (3) | (4) | (5) | (6) | Average | |
---|---|---|---|---|---|---|---|
Si (wt.%) | 44.03 | 43.86 | 43.46 | 43.59 | 43.83 | 43.85 | 43.77 |
O | 52.97 | 53.08 | 53.86 | 53.80 | 54.67 | 53.92 | 53.72 |
Na | 0.06 | 0.01 | 0.02 | 0.04 | 0.05 | 0.03 | 0.03 |
K | 0.02 | 0.01 | 0.00 | 0.01 | 0.02 | 0.00 | 0.01 |
Mg | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Ca | 0.02 | 0.03 | 0.02 | 0.03 | 0.01 | 0.02 | 0.02 |
Al | 0.01 | 0.03 | 0.02 | 0.03 | 0.00 | 0.01 | 0.02 |
Fe | 0.05 | 0.09 | 0.05 | 0.01 | 0.03 | 0.04 | 0.05 |
Total | 97.17 | 97.11 | 97.43 | 97.51 | 98.62 | 97.89 | 97.62 |
SiO2(wt.%) | 94.20 | 93.83 | 92.97 | 93.26 | 93.76 | 93.80 | 93.64 |
Na2O | 0.08 | 0.01 | 0.03 | 0.05 | 0.06 | 0.04 | 0.04 |
K2O | 0.02 | 0.01 | 0.00 | 0.02 | 0.03 | 0.00 | 0.01 |
MgO | 0.01 | 0.00 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 |
CaO | 0.03 | 0.04 | 0.02 | 0.04 | 0.02 | 0.03 | 0.03 |
Al2O3 | 0.01 | 0.06 | 0.03 | 0.05 | 0.01 | 0.02 | 0.03 |
Fe2O3 | 0.03 | 0.06 | 0.03 | 0.01 | 0.02 | 0.03 | 0.03 |
H2O* | 3.13 | 3.48 | 4.87 | 4.58 | 5.31 | 4.43 | 4.30 |
Total | 97.51 | 97.50 | 97.97 | 98.01 | 99.21 | 98.38 | 98.10 |
X-ray PDF Analysis: a = 8.7363 Å, b = 4.8688 Å, c = 10.7203 Å and β = 90.212° | ||||||||||
Atom | Occ. | x | y | z | U11 | U22 | U33 | U12 | U13 | U23 |
Si1 | 1 | 0.25 | 0.9731 | 0 | 0.0132(5) | 0.0128(4) | 0.0127(4) | 0 | −0.0003(1) | 0 |
Si2 | 1 | 0.0089 | 0.2512 | 0.1663 | 0.0165(6) | 0.0184(6) | 0.017(2) | 0.0009(2) | −0.0002(1) | −0.007(3) |
O1 | 1 | 0.9773 | 0.0651 | 0.2873 | 0.0232(6) | 0.0146(4) | 0.0168(4) | −0.0019(4) | −0.0022(4) | 0.0044(6) |
O2 | 1 | 0.1683 | 0.1710 | 0.1004 | 0.0171(5) | 0.0215(7) | 0.0167(4) | 0.0064(5) | 0.0043(4) | −0.0025(4) |
O3 | 1 | 0.8696 | 0.2302 | 0.0676 | 0.0173(5) | 0.0154(5) | 0.0232(8) | −0.0016(3) | −0.0124(3) | −0.0013(2) |
Neutron PDF Analysis: a = 8.7357(13) Å, b = 4.8675(15) Å, c = 10.719(3) Å and β = 90.20(3)° | ||||||||||
Atom | Occ. | x | y | z | U11 | U22 | U33 | U12 | U13 | U23 |
Si1 | 1 | 0.25 | 0.9733(4) | 0 | 0.0098(5) | 0.0098(4) | 0.0109(5) | 0 | −0.0004(1) | 0 |
Si2 | 1 | 0.0089(5) | 0.2512(6) | 0.1664(4) | 0.0112(3) | 0.0125(4) | 0.0104(3) | 0.0006(1) | −0.0003(1) | −0.0005(2) |
O1 | 1.06(1) | 0.9776(5) | 0.0649(6) | 0.2873(4) | 0.0205(5) | 0.0102(3) | 0.0120(5) | −0.0023(2) | −0.0015(3) | 0.0038(5) |
O2 | 1.06(1) | 0.1681(5) | 0.1712(5) | 0.1005(4) | 0.0161(6) | 0.0212(5) | 0.0129(4) | 0.0035(4) | 0.0019(2) | −0.0014(3) |
O3 | 1.06(1) | 0.8699(8) | 0.2303(6) | 0.0674(6) | 0.0198(5) | 0.0131(4) | 0.0226(7) | −0.0021(3) | −0.0081(5) | −0.0014(2) |
(This Study) | (This Study) | Miehe and Graetsch (1992) | Heaney and Post (2001) | |
---|---|---|---|---|
Location | Mogán, Spain | Mogán, Spain | Mogán, Spain | Mogán, Spain |
Source | X-ray | Neutron | X-ray | Neutron |
Temp | 298 K | 298 K | 298 K | 298 K |
a (Å) | 8.7363(8) | 8.7357(13) | 8.758(2) | 8.7371(6) |
b | 4.8688(5) | 4.8675(15) | 4.876(1) | 4.8692(3) |
c | 10.7203(17) | 10.719(3) | 10.715(2) | 10.7217(7) |
β (°) | 90.212(13) | 90.20(3) | 90.08(3) | 90.193(9) |
Volume (Å3) | 455.99(7) | 455.78(22) | 457.6(2) | 456.13(5) |
Si(1)-O(2) X 2 | 1.613(5) | 1.614(4) | 1.630(1) | 1.614(4) |
Si(1)-O(3) X 2 | 1.610(6) | 1.611(7) | 1.603(1) | 1.610(4) |
Avg. | 1.611(6) | 1.613(5) | 1.617(1) | 1.612(4) |
Si(2)-O(1) | 1.607(6) | 1.606(6) | 1.601(1) | 1.590(5) |
Si(2)-O(1) | 1.612(6) | 1.610(6) | 1.622(1) | 1.612(4) |
Si(2)-O(2) | 1.613(7) | 1.610(5) | 1.596(2) | 1.605(4) |
Si(2)-O(3) | 1.612(5) | 1.613(9) | 1.635(2) | 1.632(4) |
Avg. | 1.611(7) | 1.610(7) | 1.614(1) | 1.610(4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Xu, H.; Xu, H.; Neuefeind, J. Crystal Structure of Moganite and Its Anisotropic Atomic Displacement Parameters Determined by Synchrotron X-ray Diffraction and X-ray/Neutron Pair Distribution Function Analyses. Minerals 2021, 11, 272. https://doi.org/10.3390/min11030272
Lee S, Xu H, Xu H, Neuefeind J. Crystal Structure of Moganite and Its Anisotropic Atomic Displacement Parameters Determined by Synchrotron X-ray Diffraction and X-ray/Neutron Pair Distribution Function Analyses. Minerals. 2021; 11(3):272. https://doi.org/10.3390/min11030272
Chicago/Turabian StyleLee, Seungyeol, Huifang Xu, Hongwu Xu, and Joerg Neuefeind. 2021. "Crystal Structure of Moganite and Its Anisotropic Atomic Displacement Parameters Determined by Synchrotron X-ray Diffraction and X-ray/Neutron Pair Distribution Function Analyses" Minerals 11, no. 3: 272. https://doi.org/10.3390/min11030272
APA StyleLee, S., Xu, H., Xu, H., & Neuefeind, J. (2021). Crystal Structure of Moganite and Its Anisotropic Atomic Displacement Parameters Determined by Synchrotron X-ray Diffraction and X-ray/Neutron Pair Distribution Function Analyses. Minerals, 11(3), 272. https://doi.org/10.3390/min11030272