Gold in the Oxidized Ores of the Olympiada Deposit (Eastern Siberia, Russia)
Abstract
:1. Introduction
2. Geological Setting of Olympiada Deposit and Characteristics of Sulfide Ores
2.1. Geological Setting
2.2. Primary (Hypogene) Sulfide Ore
2.3. Oxide (Supergene) Ore
3. Samples and Methods
4. Results
4.1. Structure of the Oxidized Ore Section
4.2. Mineralogy of the Studied Section of Oxidized Ores
4.3. Native Gold in Oxidized Ores
5. Discussion of the Oxidized Ores Formation Conditions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smirnov, S.S. Oxidation Zone of Sulfide Deposits; Academy of Sciences USSR: Moscow, Russia, 1955; 232p. (In Russian) [Google Scholar]
- Albov, M.N. Secondary Zoning of the Gold Deposits of the Urals; Gosgeoltekhizdat: Moscow, Russia, 1960; 215p. (In Russian) [Google Scholar]
- Butt, C.R.M.; Smith, R.E. Conceptual models in exploration geochemistry: Australia. J. Geochem. Explor. 1980, 12, 89–365. [Google Scholar] [CrossRef]
- González-Álvarez, I.; Anand, R.R.; Boni, M. Mineral exploration in regolith-dominated terrains. Global considerations and challenges. Ore Geol. Rev. 2016, 73, 375–379. [Google Scholar] [CrossRef]
- Kalinin, Y.A.; Palyanova, G.A.; Naumov, E.A.; Kovalev, K.R.; Pirajnoe, F. Supergene remobilization of Au in Au-bearing regolith related to orogenic deposits: A case study from Kazakhstan. Ore Geol. Rev. 2019, 109, 358–369. [Google Scholar] [CrossRef]
- Petrovskaya, N.V. Native Gold; Nauka: Moscow, Russia, 1973; 347p. (In Russian) [Google Scholar]
- Greffie, C.; Benedetti, M.F.; Parron, C.; Amouric, M. Gold and iron oxide associations under supergene conditions: An experimental approach. Geochim. Cosmochim. Acta. 1996, 60, 1531–1542. [Google Scholar] [CrossRef]
- Kalinin, Y.A.; Kovalev, K.R.; Naumov, E.A.; Kirillov, M.V. Gold in the weathering crust at the Suzdal’ deposit (Kazakhstan). Russ. Geol. Geophys. 2009, 50, 174–187. [Google Scholar] [CrossRef]
- Chapman, R.J.; Leake, R.C.; Bond, D.P.G.; Stedra, V.; Fairgrieve, B. Chemical and mineralogical signatures of gold formed in oxidizing chloride hydrothermal systems and their significance within populations of placer gold grains collected during reconnaissance. Econ. Geol. 2009, 104, 563–585. [Google Scholar] [CrossRef]
- Craw, D.; MacKenzie, D.; Grieve, P. Supergene gold mobility in orogenic gold deposits, Otago Schist, New Zealand. N. Z. J. Geol. Geophys. 2015, 58, 123–136. [Google Scholar] [CrossRef]
- Craw, D.; Kerr, G. Geochemistry and mineralogy of contrasting supergene gold alteration zones, southern New Zealand. Appl. Geochem. 2017, 85, 19–34. [Google Scholar] [CrossRef]
- Horbe, A.M.C.; Martins-Ferreira, M.A.C.; Lima, R.S. Supergene gold characterization by geochemistry, grain morphology and Au-Ag-Cu-Te classification. J. South Am. Earth Sci. 2019, 95, 102315. [Google Scholar] [CrossRef]
- Kalinin, Y.; Pal’yanova, G.; Bortnikov, N.; Naumov, E.; Kovalev, K. Aggregation and differentiation of gold and silver during the formation of the gold bearing regolith (on the example of Kazakhstan deposits). Dokl. Earth Sci. 2018, 482, 1193–1198. [Google Scholar] [CrossRef]
- Khusainova, A.S.; Gaskova, O.L.; Kalinin, Y.A.; Bortnikova, S.B. Physical-chemical model of gold conversion in products of ore processing of silver-polymetallic deposits (Salair Ridge, Russia). Russ. Geol. Geophys. 2020, 61(9), 964–975. [Google Scholar] [CrossRef]
- Amosov, R.A.; Vasin, S.L. Gold microfossils. Ores Met. 1993, 3, 101–107. (In Russian) [Google Scholar]
- Lengke, M.; Southam, G. Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochim. Cosmochim. Acta. 2006, 70, 3646–3661. [Google Scholar] [CrossRef]
- Reith, F.; Etschmann, B.; Grosse, C.; Moors, H.; Benotmane, M.A.; Monsieurs, P.; Grass, G.; Doonan, C.; Vogt, S.; Lai, B.; et al. Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc. Natl. Acad. Sci. USA 2009, 106, 17757–17762. [Google Scholar] [CrossRef] [Green Version]
- Zhmodik, S.M.; Kalinin, Y.A.; Roslyakov, N.A.; Belyanin, D.K.; Nemirovskaya, N.A.; Nesterenko, G.V.; Airiyants, E.V.; Moroz, T.N.; Bul’bak, T.A.; Mironov, A.G.; et al. Nanoparticles of noble metals in the supergene zone. Geol. Ore Depos. 2012, 54, 141–154. [Google Scholar] [CrossRef]
- Fairbrother, L.; Brugger, J.; Shapter, J.; Laird, J.S.; Southam, G.; Reith, F. Supergene gold transformation: Biogenic secondary and nano-particulate gold from arid Australia. Chem. Geol. 2012, 320–321, 17–31. [Google Scholar] [CrossRef]
- Reith, F.; Rea, M.A.D.; Sawley, P.; Zammit, C.M.; Nolze, G.; Reith, T.; Rantanen, K.; Bissett, A. Biogeochemical cycling of gold: Transforming gold particles from arctic Finland. Chem. Geol. 2018, 483, 511–529. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Shuster, J.; Reith, F. Cycling of biogenic elements drives biogeochemical gold cycling. Earth Sci. Rev. 2019, 190, 131–147. [Google Scholar] [CrossRef]
- Rea, M.A.; Shuster, J.; Hoffmann, V.E.; Schade, M.; Bissett, A.; Reith, F. Does the primary deposit affect the biogeochemical transformation of placer gold and associated biofilms? Gondwana Res. 2019, 73, 77–95. [Google Scholar] [CrossRef]
- Boyle, R.W. An occurrence of native gold in an ice lens; gaint-Yellowknife gold mines, Yellowknife, Northwest Territories. Econ. Geol. 1951, 46, 223–227. [Google Scholar] [CrossRef]
- Shvartsev, S.L. A possible mechanism for the formation of native gold in ice lenses. Bull. Tomsk Polytech. Inst. 1976, 289, 107–109. (In Russian) [Google Scholar]
- Reith, F.; Brugger, J.; Zammit, C.M.; Nies, D.H.; Southam, G. Geobiological cycling of gold: From fundamental process understanding to exploration solutions. Minerals 2013, 3, 367–394. [Google Scholar] [CrossRef] [Green Version]
- Sazonov, A.M.; Lobanov, K.V.; Zvyagina, E.A.; Leontiev, S.I.; Silyanov, S.A.; Nekrasova, N.A.; Nekrasov, A.Y.; Borodushkin, A.B.; Poperekov, V.A.; Zhuravlev, V.V.; et al. Olympiada gold deposit, Yenisei Ridge, Russia. Econ. Geol. 2020. In press. [Google Scholar]
- Kuzmichev, A.B.; Sklyarov, E.V. The precambrian of transangaria, Yenisei Ridge (Siberia): Neoproterozoic microcontinent, Grenville-age orogen, or reworked margin of the Siberian craton? J. Asian Earth Sci. 2016, 115, 419–441. [Google Scholar] [CrossRef]
- Nozhkin, A.D.; Borisenko, A.S.; Nevol’ko, P.A. Stages of Late Proterozoic magmatism and periods of Au mineralization in the Yenisei Ridge. Russ. Geol. Geophys. 2011, 52, 124–143. [Google Scholar] [CrossRef]
- Novozhilov, Y.I.; Gavrilov, A.M. Gold-Sulfide Deposits in Carbon-Terrigenous Strata; TsNIGRI: Moscow, Russia, 1999; 175p. (In Russian) [Google Scholar]
- Lee, L.V. Olimpiadinskoe Deposit of Disseminated Gold-Sulfide Ores; KNIIGiMS: Krasnoyarsk, Russia, 2003; 120p. (In Russian) [Google Scholar]
- Savichev, A.A.; Shevchenko, S.S.; Rozinov, M.I.; Lokhov, K.I.; Prasolov, E.M.; Prilepskiy, E.B.; Kapitonov, I.N.; Matukov, D.I.; Berezhnaya, N.G.; Sergeev, S.A. Isotope-geochemical characteristics of the gold-sulfide deposits of the Olympics and its satellites (Yenisei Ridge). Reg. Geol. Metallog. 2006, 26, 122–143. (In Russian) [Google Scholar]
- Gibsher, N.A.; Sazonov, A.M.; Travin, A.V.; Tomilenko, A.A.; Ponomarchuk, A.V.; Sil’yanov, S.A.; Nekrasova, N.A.; Shaparenko, E.O.; Ryabukha, M.A.; Khomenko, M.O. Age and duration of the formation of the Olimpiadinski gold deposit (Yenisei ridge, Russia). Geochem. Int. 2019, 57, 593–599. [Google Scholar] [CrossRef]
- Gibsher, N.A.; Tomilenko, A.A.; Sazonov, A.V.; Bul’bak, T.A.; Ryabukha, M.A.; Sil’yanov, S.A.; Nekrasova, N.A.; Khomenko, M.O.; Shaparenko, E.O. The Olimpiada gold deposit (Yenisei ridge): Temperature, pressure, composition of ore-forming fluids, δ34S in sulfides, 3He/4He of fluids, Ar-Ar age and duration of deposit formation. Russ. Geol. Geophys. 2019, 9, 1310–1330. [Google Scholar] [CrossRef]
- Sazonov, A.M.; Zvyagina Ye, A.; Silyanov, S.A.; Lobanov, K.V.; Leontyev, S.I.; Kalinin Yu, A.; Savichev, A.A.; Tishin, P.A. Ore genesis of the Olimpiada gold deposit (Yenisei Ridge, Russia). Geosph. Res. 2019, 17–43. [Google Scholar] [CrossRef]
- Savichev, A.A.; Gavrilenko, V.V. Gold-sulfide mineralization of the North Yenisei region (Siberia) and the conditions for its formation. Notes All-Russ. Mineral. Soc. 2003, 2, 15–32. (In Russian) [Google Scholar]
- Belyi, A.V.; Chernov, D.V.; Solopova, N.V. Development of BIONORD® technology on Olimpiada deposit refractory arsenic-gold ores treatment in conditions of Extreme North. Hydrometallurgy 2018, 179, 188–191. [Google Scholar] [CrossRef]
- Genkin, A.D.; Bortnikov, N.S.; Cabri, L.J.; Wagner, F.E.; Stanley, C.J.; Safonov, Y.G.; McMahon, G.; Friedl, J.; Kerzin, A.L.; Gamyanin, G.N. A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation. Econ. Geol. 1998, 93, 463–487. [Google Scholar] [CrossRef]
- Sazonov, A.M.; Silyanov, S.A.; Bayukov, O.A.; Knyazev, Y.V.; Zvyagina, Y.A.; Tishin, P.A. Composition and ligand microstructure of arsenopyrite from gold ore deposits of the Yenisei Ridge (Eastern Siberia, Russia). Minerals 2019, 9, 737. [Google Scholar] [CrossRef] [Green Version]
- Trigub, A.L.; Tagirov, B.R.; Kvashnina, K.O.; Chareev, A.; Nickolsky, M.S.; Shiryaev, A.A.; Baranova, N.N.; Kovalchuk, E.V.; Mokhov, A.V. X-ray spectroscopy study of the chemical state of “invisible” Au in synthetic minerals in the Fe-As-S system. Am. Miner. 2017, 102, 1057–1065. [Google Scholar] [CrossRef]
- Merkulova, M.; Mathon, O.; Glatzel, P.; Rovezzi, M.; Batanova, V.; Marion, P.; Boiron, M.-C.; Manceau, A. Revealing the chemical form of “invisible” gold in natural arsenian pyrite and arsenopyrite with high energy-resolution X-ray absorption spectroscopy. ACS Earth Space Chem. 2019, 3, 1905–1914. [Google Scholar] [CrossRef] [Green Version]
- Peskov, E.G. Geological Manifestations of Cold Degassing of the Earth; SVKNII FEB RAS: Magadan, Russia, 2000; 279p. (In Russian) [Google Scholar]
- Yablokova, S.V.; Konovalova, M.S.; Sandomirskaya, S.M. Mineralogy of the gold-bearing weathering crust in the deposits of vein-disseminated sulfide ores in terrigenous-carbonate strata of the Precambrian. Tr. TSNIGRI 1986, 208, 10–19. (In Russian) [Google Scholar]
- Bernatonis, P.V. Oxidation Zone of the Olympiadinsky Vein-Disseminated Gold-Sulfide Deposit. Ph.D. Thesis, Tomsk Polytechnic University, Tomsk, Russia, 1999. (In Russian). [Google Scholar]
- Sergeev, N.B. Features of the structure and material composition of the gold-bearing weathering crust (Yenisei ridge). Weather. Crust 1991, 20, 77–90. (In Russian) [Google Scholar]
- Genkin, A.D.; Lopatin, V.A.; Saveliev, R.A.; Safonov, Y.G.; Sergeev, N.B.; Kerzin, A.L.; Tsepin, A.I.; Amshutts, H.; Afanasyeva, Z.B.; Wagner, F.; et al. Gold ores of the Olympiada deposit (Yenisei Ridge. Siberia). Geol. Ore Depos. 1994, 3, 111–136. (In Russian) [Google Scholar]
- Sergeev, N.B.; Zvezdinskaya, L.V.; Sergeeva, V.V. Tungsten containing hydroromeit—A new mineral variety from Eastern Siberia. Rep. RAS. 1993, 332, 99–101. (In Russian) [Google Scholar]
- Afanas’eva, Z.B.; Ivanova, G.F.; Raimbault, L.; Miklishanskii, A.Z. Rare-earth geochemistry of rocks and minerals from the olimpiada scheelite-bearing Gold Sulfide Deposit, Yenisei Ridge, Russia. Geochem. Int. 1997, 35, 155–166. [Google Scholar]
- Zvyagina, E.A. Metamorphism and Gold Metallogeny of the Upper Enashimo ore Cluster. Ph.D. Thesis, Siberian Federal University, Krasnoyarsk, Russia, 1989. (In Russian). [Google Scholar]
- Sazonov, A.M.; Zvyagina, E.A.; Silyanov, S.A.; Babenkov, D.E. Gold in the Olimpiada mine ore and tailings. Gorn. Zhurnal. 2019, 4, 54–59. [Google Scholar] [CrossRef]
- Roslyakov, N.A. Geochemistry of Gold in Supergene Zone; Nauka: Novosibirsk, Russia, 1981; 240p. (In Russian) [Google Scholar]
- Palyanova, G.A. Gold and silver minerals in sulfide Ore. Geol. Ore Depos. 2020, 62, 426–449. [Google Scholar] [CrossRef]
- Kalinin, Y.A.; Roslyakov, N.A. Geochemistry of noble, rare and radioactive elements in exogenous ore-forming systems. In The History of the Development of the Institute of Geology and Geophysics SB (USSR Academy of Sciences and RAS) and Its Scientific Directions; SS RAS: Novosibirsk, Russia, 2010; pp. 503–511. [Google Scholar]
- Craw, D. Water–rock interaction and acid neutralization in a large schist debris dam, Otago, New Zealand. Chem. Geol. 2000, 171, 17–32. [Google Scholar] [CrossRef]
- Chudaeva, V.A.; Chudaev, O.V. Accumulation and fractionation of rare earth elements in surface waters of the Russian Far East under the conditions of natural and anthropogenic anomalies. Geochem. Int. 2011, 49, 498–524. [Google Scholar] [CrossRef]
- Radomskaya, V.I.; Radomskii, S.M.; Kulik, E.N.; Rogulina, L.I.; Shumilova, L.P.; Pavlova, L.M. Geochemical features of rare-earth elements in surface and subsurface waters in the field of the Albynskoe Gold-Bearing Placer, Amur oblast. Water Resour. 2017, 44, 284–296. [Google Scholar] [CrossRef]
- Braun, J.J.; Pagel, M.; Muller, J.P.; Bilong, P.; Michaud, A.; Guillet, B. Cerium anomalies in lateritic profiles. Geochim. Cosmochim. Acta 1990, 51, 597–605. [Google Scholar] [CrossRef]
- Koppi, A.J.; Edis, R.; Field, D.J.; Geering, H.R.; Klessa, D.A.; Cockayne, D.J.H. Rare earth trends and cerium-uranium-manganese association in weathered\rock from Koongarra, Northern Territory, Australia. Geochim. Cosmochim. Acta. 1996, 60, 1695–1707. [Google Scholar] [CrossRef]
- Bau, M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation and lanthanide tetrad effect. Geochim. Cosmochim. Acta. 1999, 63, 67–77. [Google Scholar] [CrossRef]
- Ohta, A.; Kawabe, I. REE(III) adsorption onto Mn dioxide (-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2. Geochim. Cosmochim. Acta 2001, 65, 695–703. [Google Scholar] [CrossRef]
- Seto, M.; Akagi, A. Chemical condition for the appearance of a negative Ce anomaly in stream waters and groundwaters. Geochem. J. 2008, 42, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Moffett, J.W. Microbially mediated cerium oxidation in sea water. Nature 1990, 345, 421–423. [Google Scholar] [CrossRef]
- Akagi, T.; Masuda, A. A simple thermodynamic interpretation of Ce anomaly. Geochem. J. 1998, 32, 301–314. [Google Scholar] [CrossRef]
- Kawabe, I.; Ohta, A.; Ishu, S.; Tokumura, M.; Miyauchi, K. REE portioning between precipitates and weakly acid NaCl solutions: Convex tetrad effect and fractionation of Y and Sc from heavy lanthanides. Geochem. J. 1999, 33, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Elderfield, H.; Upstill-Goddard, R.; Sholkovitz, E.R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of the ocean waters. Geochim. Cosmchim. Acta 1990, 54, 971–991. [Google Scholar] [CrossRef]
- Reith, F.; Lengke, M.F.; Falconer, D.; Craw, D.; Southam, G. The geomicrobiology of gold. ISME J. 2007, 1, 567–584. [Google Scholar] [CrossRef] [PubMed]
- Radkova, A.B.; Jamieson, H.E.; Campbell, K.M. Antimony mobility during the early stages of stibnite weathering in tailings at the Beaver Brook Sb deposit, Newfoundlend. J. Appl. Geochem. 2020, 115, 104528. [Google Scholar] [CrossRef]
- Shabynin, L.L. On the issue of migration of gold in an aqueous medium in thiosulfate form. Izv. Tomsk Polytech. Inst. 1967, 67, 67–72. (In Russian) [Google Scholar]
- Webster, J.G. The solubility of gold and silver in the system Au–Ag–S–O2–H2O at 25 °C and 1 atm. Geochim. Cosmochim. Acta 1986, 50, 1837–1845. [Google Scholar] [CrossRef]
- Stezeryanskii, E.; V’yunov, O.; Omelchuk, A. Determination of the stability constants of gold(I) thiosulfate complexes by differential UV spectroscopy. J. Solut. Chem. 2015, 44, 1749–1755. [Google Scholar] [CrossRef]
- Kerr, G.; Craw, D. Mineralogy and geochemistry of biologically-mediated gold mobilisation and redeposition in a semiarid climate, Southern New Zealand. Minerals 2017, 7, 147. [Google Scholar] [CrossRef] [Green Version]
- Reith, F.; Stewart, L.; Wakelin, S.A. Supergene gold transformation: Secondary and nano-particulate gold from southern New Zealand. Chem. Geol. 2012, 320–321, 32–45. [Google Scholar] [CrossRef]
- Kashefi, K.; Tor, J.M.; Nevin, K.P.; Lovley, D.R. Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl. Environ. Microbiol. 2001, 67, 3275–3279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, D.R.; Waite, T.D. Interaction of aqueous Au species with goethite, smectite and kaolinite. Geochem.-Explor. Env. A 2004, 4, 279–287. [Google Scholar] [CrossRef]
- Ta, C.; Reith, F.; Brugger, J.; Pring, A.; Lenehan, C. Analysis of gold(I/III)-complexes by HPLC-ICP-MS demonstrates gold(III) stability in surface waters. Environ. SciTech. 2014, 48, 5737–5744. [Google Scholar] [CrossRef]
- Ran, Y.; Fu, J.; Rate, A.W.; Gilkes, R.J. Adsorption of Au(I, III) complexes on Fe, Mn oxides and humic acid. Chem. Geol. 2002, 1–2, 33–49. [Google Scholar] [CrossRef]
- Gray, D.J.; Pirlo, M.C. Hydrogeochemistry of the Tunkillia Gold Prospect, South Australia; CRC LEME Open File Report 194; CRC LEME: Wembley, Australia, 2005; 109p. [Google Scholar]
- Renders, P.; Seward, T. The stability of hydrosulphido- and sulphido-complexes of Au(I) and Ag(I) at 25 °C. Geochim. Cosmochim. Acta 1989, 53, 245–253. [Google Scholar] [CrossRef]
- Pal’yanova, G. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chem. Geol. 2008, 255, 399–413. [Google Scholar] [CrossRef]
- Schofield, E.J.; Ingham, B.; Turnbull, A.; Toney, M.F.; Ryan, M.P. Strain development in nanoporous metallic foils formed by dealloying. Appl. Phys. Lett. 2008, 92, 043118. [Google Scholar] [CrossRef]
- Makovicky, E.; Chovan, M.; Bakos, F. The stibian mustard gold from the Kriván Au deposit, Tatry Mts., Slovak Republic. N. Jb. Miner. Abh. 2007, 184, 207–215. [Google Scholar] [CrossRef]
- Tolstykh, N.D.; Palyanova, G.A.; Bobrova, O.V.; Sidorov, E.G. Mustard gold of the gaching Ore deposit (Maletoyvayam Ore Field, Kamchatka, Russia). Minerals 2019, 9, 489. [Google Scholar] [CrossRef] [Green Version]
- Kalinin, A.A.; Savchenko, Y.E.; Selivanova, E.A. Mustard gold in the oleninskoe gold deposit, Kolmozero–Voronya Greenstone Belt, Kola Peninsula, Russia. Minerals 2019, 9, 786. [Google Scholar] [CrossRef] [Green Version]
- Anisimova, G.S.; Kondratieva, L.A.; Kardashevskaia, V.N. Characteristics of supergene gold of Karst Cavities of the Khokhoy Gold Ore Field (Aldan Shield, East Russia). Minerals 2020, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Bruger, J.; Gundler, P.V.; Xia, F.; Chen, G.; Pring, A. Mechanism and kinetics of a mineral transformation under hydrothermal conditions: Calaverite to metallic gold. Am. Miner. 2009, 94, 1541–1555. [Google Scholar] [CrossRef]
- Okrugin, V.M.; Andreeva, E.; Etschmann, B.; Pring, A.; Li, K.; Zhao, J.; Gri_ths, G.; Lumpkin, G.R.; Triani, G.; Brugger, J. Microporous gold: Comparison of textures from nature and experiments. Am. Mineral. 2014, 99, 1171–1174. [Google Scholar] [CrossRef]
- Storozhenko, A.A.; Vasiliev, N.F.; Diner, A.E.; Pimanov, A.V.; Trofimov, Y.P.; Gursky, Y.I.; Pimanova, G.P.; Kiseleva, E.A.; Borodushkin, A.B. State Geological Map of the Russian Federation on a Scale of 1: 200 000, 2nd ed.; Series Yenisei. Sheet O-46-III. Explanatory Letter; Cartographic Factory VSEGEI: St. Petersburg, Russia, 2002; 125p. (In Russian) [Google Scholar]
- Sazonov, A.M.; Gertner, I.F.; Zvyagina, E.A.; Tishin, P.A.; Poleva, T.V.; Leontyev, S.I.; Kolmakov, Y.V.; Krasnova, T.S. Ore-forming conditions of the Blagodat Gold Deposit in the Riphean Metamorphic Rocks of the Yenisey Ridge according to geochemical and isotopic data. J. Sib. Fed. Univ. Eng. Technol. 2009, 2, 203–220. (In Russian) [Google Scholar]
- Goleva, G.A.; Krivenkov, V.A.; Gudz, Z.G. Geochemical regularities of the distribution and forms of migration of gold in natural waters. Geokhimiya 1970, 6, 744–757. (In Russian) [Google Scholar]
- Ong, H.L.; Swanson, V.E. Natural organic acids in the transportation, deposition, and concentration of gold. Q. Colo. Sch. Mines. 1969, 64, 395–425. [Google Scholar]
Mineral Name | O | Mg | Al | Si | Ca | Mn | Fe | Co | Ni | Sb | W | Pb | Ce | Sum |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cervantite (n = 2) 1 | 20.9 | 2.4 | 1.0 | 0.5 | 75.2 | 100 | ||||||||
Oxycalcioroméite (n = 2) | 25.9 | 1.0 | 11.6 | 4.6 | 56.9 | 100 | ||||||||
Tripuhyite (n = 3) | 25.1 | 2.2 | 3.8 | 0.4 | 23.0 | 45.5 | 100 | |||||||
Tungstite (n = 4) | 21.9 | 2.1 | 4.3 | 71.7 | 100 | |||||||||
Hydrotungstite (n = 2) | 26.0 | 3.1 | 3.3 | 67.6 | 100 | |||||||||
Tungstibite (n = 2) | 20.2 | 44.1 | 35.7 | 100 | ||||||||||
Plattnerite (n = 2) | 15.0 | 0.5 | 84.4 | 100 | ||||||||||
Bindheimite (n = 2) | 17.3 | 32.3 | 50.5 | 100 | ||||||||||
Oxyplumboroméite (n = 2) | 19.2 | 5.0 | 3.6 | 39.2 | 33.0 | 100 | ||||||||
Coronadite (n = 3) | 38.8 | 31.7 | 3.6 | 3.1 | 22.9 | 100 | ||||||||
Cerianite-(Ce) (n = 4) | 17.3 | 2.6 | 80.2 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silyanov, S.A.; Sazonov, A.M.; Zvyagina, Y.A.; Savichev, A.A.; Lobastov, B.M. Gold in the Oxidized Ores of the Olympiada Deposit (Eastern Siberia, Russia). Minerals 2021, 11, 190. https://doi.org/10.3390/min11020190
Silyanov SA, Sazonov AM, Zvyagina YA, Savichev AA, Lobastov BM. Gold in the Oxidized Ores of the Olympiada Deposit (Eastern Siberia, Russia). Minerals. 2021; 11(2):190. https://doi.org/10.3390/min11020190
Chicago/Turabian StyleSilyanov, Sergey A., Anatoly M. Sazonov, Yelena A. Zvyagina, Andrey A. Savichev, and Boris M. Lobastov. 2021. "Gold in the Oxidized Ores of the Olympiada Deposit (Eastern Siberia, Russia)" Minerals 11, no. 2: 190. https://doi.org/10.3390/min11020190
APA StyleSilyanov, S. A., Sazonov, A. M., Zvyagina, Y. A., Savichev, A. A., & Lobastov, B. M. (2021). Gold in the Oxidized Ores of the Olympiada Deposit (Eastern Siberia, Russia). Minerals, 11(2), 190. https://doi.org/10.3390/min11020190