Au‐Ag‐S‐Se‐Cl‐Br Mineralization at the Corrida Deposit (Russia) and Physicochemical Conditions of Ore Formation
Abstract
:1. Introduction
2. Geological Situation
3. Materials and Methods
4. Results
4.1. Mineral Composition of Ores
4.2. Fluid Inclusions
4.3. Physicochemical Parameters (fO2, fS2, fSe2, pH) of Ore Formation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bortnikov, N.S.; Lobanov, K.V.; Volkov, A.V.; Galyamov, A.L.; Vikentev, I.V.; Tarasov, N.N.; Distler, V.V.; Lalomov, A.V.; Aristov, V.V.; Murashov, K.Y.; et al. Strategy metal deposits in the Arctic zone. Geol. Ore Depos. 2015, 57, 479–500. [Google Scholar] [CrossRef]
- Volkov, A.V.; Prokofyev, V.Y.; Savva, N.Y.; Sidorov, A.A.; Byankin, M.A.; Uyutnov, K.V.; Kolova, E.E. Ore formation at the Kupol epithermal Au-Ag deposit (Russia’s North-East) according to the data from fluid inclusions studies. Geol. Ore Depos. 2012, 54, 295–303. [Google Scholar] [CrossRef]
- Savva, N.E.; Pal’yanova, G.A.; Byankin, M.A. The problem of genesis of gold and silver sulfides and selenides in the Kupol deposit (Chukci Peninsula, Russia). Rus. Geol. Geophys. 2012, 53, 457–466. [Google Scholar] [CrossRef]
- Savva, N.E.; Kolova, E.E.; Fomina, M.I.; Kurashko, V.V. Gold mineralization in explosive breccia bodies: Mineralogical characterization and genetic aspects (Sentyabrsky NE Deposit, Chukotka Region, Arctic Russia). Arktos 2017, 3, 6. [Google Scholar] [CrossRef]
- Kolova, E.E.; Volkov, A.V.; Savva, N.Y.; Prokofyev, V.Y.; Sidorov, A.A. Features of ore formation at the Dvoynoye epithermal Au-Ag deposit (West Chukotka). Dokl. Earth Sci. 2018, 478, 561–565. [Google Scholar] [CrossRef]
- Volkov, A.V.; Prokofyev, V.Y.; Sidorov, A.A.; Vinokurov, S.F.; Yelmanov, A.A.; Murashov, K.Y.; Sidorova, N.V. Conditions of the Au-Ag epithermal mineralization formation in the Amguema-Kanchalan volcanic field (East Chukotka). Voclanol. Seismol. 2019, 13, 335–347. [Google Scholar] [CrossRef]
- Zhuravkova, T.V.; Palyanova, G.A.; Kalinin, Y.А.; Goryachev, N.А.; Zinina, V.Y.; Zhutova, L.М. Physicochemical conditions of formation of gold and silver paragenesis at the Valunistoe deposit (Chukchi Peninsula). Rus. Geol. Geophys. 2019, 60, 1247–1256. [Google Scholar]
- Heald, P.; Hayba, D.O.; Foley, N.K. Comparative anatomy of volcanic-hosted epithermal deposits: Acid sulfate and adularia-sericite types. Econ. Geol. 1987, 82, 1–26. [Google Scholar] [CrossRef]
- White, N.C.; Hedenquist, J.W. Epithermal environments and styles of mineralization: Variations and their causes, and guidelines for exploration. J. Geochem. Explor. 1990, 36, 445–474. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.; Gonzalez-Urien, E. Exploration for epithermal gold deposits. Rev. Econ. Geol. 2000, 13, 245–277. [Google Scholar]
- Sillitoe, R.H.; Hedenquist, J.W. Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits. Spec. Publ. Soc. Econ. Geol. 2003, 10, 315–343. [Google Scholar]
- Taylor, B.E. Epithermal Gold Deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit Types, District Metallogeny, the Evolution of Geological Provinces and Exploration Methods; Goodfellow, W.D., Ed.; Mineral Deposits Division Special Publication; Geological Association of Canada: St. John’s, NL, Canada, 2007; Volume 5, pp. 113–139. [Google Scholar]
- Volkov, А.V.; Goncharov, V.I.; Sidorov, А.А. Gold and Silver Deposits in Chukotka; Neisri Feb Ras: Magadan, Russia, 2006. (In Russian) [Google Scholar]
- Struzhkov, S.F.; Konstantinov, М.М. Gold and Silver Metallogeny in the Okhotsk-Chukotka Volcanogenic Belt; Science World: Moscow, Russia, 2005. (In Russian) [Google Scholar]
- White, N.C.; Hedenquist, J.W. Epithermal gold deposits: Styles, characteristics and exploration. SEG Newsl. 1995, 23, 9–13. [Google Scholar]
- Barton, P.B., Jr.; Skinner, B.J. Sulfide Mineral Stabilities. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; Wiley Interscience: New York, NY, USA, 1979; pp. 278–403. [Google Scholar]
- Giggenbach, W.F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet. Sci. Lett. 1992, 113, 495–510. [Google Scholar] [CrossRef]
- Rye, R.O. The evolution of magmatic fluids in the epithermal environment; the stable isotope perspective. Econ. Geol. 1993, 88, 733–752. [Google Scholar] [CrossRef]
- Mancano, D.P.; Campbell, A.R. Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation CuAu deposit. Geochim. Cosmochim. Acta 1995, 9, 3909–3916. [Google Scholar] [CrossRef]
- Izawa, E.; Urashima, Y.; Ibaraki, K.; Suzuki, R.; Yokoyama, T.; Kawasaki, K.; Taguchi, S. The Hishikari gold deposit: High-grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan. J. Geochem. Explor. 1990, 36, 1–56. [Google Scholar] [CrossRef]
- André-Mayer, A.S.; Leroy, A.S.; Bailly, J.L.; Chauvet, A.; Marcoux, E.; Grancea, L.; Rosas, J. Boiling and vertical mineralization zoning: A case study from the Apacheta low-sulfidation epithermal gold-silver deposit, southern Peru. Miner. Depos. 2002, 37, 452–464. [Google Scholar] [CrossRef]
- Akinin, V.V.; Miller, E.L. Evolution of lime-alkaline magmas in the Okhotsk-Chukotka volcanic belt. Petrol 2011, 19, 237–277. [Google Scholar] [CrossRef]
- Isayeva, Y.P.; Zvizda, Т.V.; Ushakova, D.D. State Geological Map of the Russian Federation, Scale 1:1 000 000 (3rd Generation), Ser. Chukotka, Sheet Q-60—Anadyr, Explanatory Note; Vsegei Map Factory: St. Petersburg, Russia, 2016; Available online: ftp://ftp.vsegei.ru/Q-60/Q-60_ObZap.pdf (accessed on 28 October 2020).
- Sakhno, V.G.; Polin, V.F.; Akinin, V.V.; Sergeev, S.A.; Alenicheva, A.A.; Tikhomirov, P.L.; Moll-Stalcup, E.J. The diachronous formation of the Enmyvaam and Amguema-Kanchalan volcanic fields in the Okhotsk-Chukotka volcanic belt (NE Russia): Evidence from isotopic data. Dokl. Earth Sci. 2010, 434, 365–371. [Google Scholar] [CrossRef]
- Ledneva, G.V.; Piis, V.L.; Bazylev, B.А. Upper Triassic siliceous-volcanogenic-terrigenous deposits of the Chukchi Peninsula. Rus. Geol. Geophys. 2016, 57, 1423–1442. [Google Scholar] [CrossRef]
- Akinin, V.V.; Gelman, M.L.; Sedov, B.M.; Amato, J.M.; Miller, E.L.; Toro, J.; Calvert, A.T.; Fantini, R.M.; Wright, J.E.; Natal’in, B.A. Koolen metamorphic complex, NE Russia: Implications for the tectonic evolution of the Bering Strait region. Tectonics 1997, 16, 713–729. [Google Scholar]
- Glukhov, A.N.; Kolova, E.E.; Savva, N.Y. Gold-silver mineralization of East Chukotka. In Geology & Mineral Resources of Russia’s North-East; Proceedings of the 10th All-Russia Conference with International Participation, Yakutsk, Russia, 8–20 April 2020; Neefu Publishers: Yakutsk, Russia, 2020; pp. 192–195. [Google Scholar]
- Redder, E. Fluid Inclusions in Minerals; Nauka: Moscow, Russia, 1987. [Google Scholar]
- Van den Kerkhof, A.M.; Hein, U.F. Fluid inclusion petrography. Lithosphere 2001, 55, 27–47. [Google Scholar] [CrossRef]
- Borisenko, А.S. Studies of the salt composition of gaseous-fluid inclusions in minerals by cryometry. Rus. Geol. Geophys. 1977, 8, 16–27. [Google Scholar]
- Bodnar, R.J.; Vityk, M.O. Interpretation of microterhrmometric data for H2O–NaCl fluid inclusions. In Fluid Inclusions in Minerals: Methods and Applications; Pontignano: Siena, Italy, 1994; pp. 117–130. [Google Scholar]
- Brown, P. FLINCOR: A computer program for the reduction and investigation of fluid inclusion data. Am. Mineral. 1989, 74, 1390–1393. [Google Scholar]
- Zhang, Y.G.; Frantz, J.D. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem. Geol. 1987, 64, 335–350. [Google Scholar] [CrossRef]
- Garrels, R.М.; Christ, C.L. Solutions, Minerals, and Equilibria; Mir: Мoscow, Russia, 1968. (In Russian) [Google Scholar]
- Chudnenko, К.V. Thermodynamic Modelling in Geochemistry: Theory, Algorythms, Software, Applications; GEO: Novosibirsk, Russia, 2010. (In Russian) [Google Scholar]
- Helgeson, H.C.; Delany, J.M.; Nesbitt, H.W.; Bird, D.K. Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 1978, 278, 1–229. [Google Scholar]
- Yokokawa, H. Tables of thermodynamic properties of inorganic compounds. J. Natl. Chem. Lab. Ind. 1988, 305, 27–118. [Google Scholar]
- Thermodderm Thermochemical and Mineralogical Tables for Geochemical Modeling. Available online: https://thermoddem.brgm.fr (accessed on 1 July 2020).
- Perfetti, E.; Pokrovski, G.S.; Ballerat-Busserolles, К.; Majer, V.; Gibert, F. Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 °C and 300 bar, and revised thermodynamic properties of As(OH)3°(aq), AsO(OH)3°(aq) and iron sulfarsenide minerals. Geochim. Cosmochim. Acta 2008, 72, 713–731. [Google Scholar] [CrossRef]
- Pokrovski, G.; Gout, R.; Schott, J.; Zotov, A.; Harrichoury, J.C. Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim. Cosmochim. Acta 1996, 60, 737–749. [Google Scholar] [CrossRef]
- Tagirov, B.R.; Baranova, N.N.; Zotov, A.V.; Schott, J.; Bannykh, L.N. Experimental determination of the stabilities of Au2S(cr) at 25 °C and Au(HS)2¯ at 25–250 °C. Geochim. Cosmochim. Acta 2006, 70, 3689–3701. [Google Scholar] [CrossRef]
- Pal’yanova, G.А. Physicochemical modeling of the coupled behavior of gold and silver in hydrothermal processes: Gold fineness, Au/Ag ratios and their possible implications. Chem. Geol. 2008, 255, 399–413. [Google Scholar] [CrossRef]
- Pal’yanova, G.A.; Chudnenko, K.V.; Zhuravkova, T.V. Thermodynamic properties of solid solutions in the Ag2S–Ag2Se system. Thermochim. Acta 2014, 575, 90–96. [Google Scholar] [CrossRef]
- Pankratz, L.B. Thermodynamic Data for Silver Chloride and Silver Bromide; US Bur Mines, Rep. Inv. 7430; US Department of Interior, Bureau of Mines: Washington, DC, USA, 1970. [Google Scholar]
- Rycerz, L.; Szymanska-Kolodziej, M.; Kolodziej, P.; Gaune-Escard, M. Thermodynamic properties of AgCl and AgBr. J. Chem. Eng. 2008, 53, 1116–1119. [Google Scholar] [CrossRef]
- Scott, S.D.; Barnes, H.L. Sphalerite geothermometry and geobarometry. Econ. Geol. 1971, 66, 653–669. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Kawakami, Y.; Yamamoto, J.; Kagi, H. Micro-Raman densimeter for CO2 inclusions in mantle-derived minerals. Appl. Spectrosc. 2003, 57, 1333–1339. [Google Scholar] [CrossRef]
- Czamanske, G.K. The stability of argentopyrite and sternbergite. Econ. Geol. 1969, 64, 459–461. [Google Scholar] [CrossRef]
- Zharikov, V.А.; Rusinov, V.L. Metasomatism and Metasomatic Rocks; Nauchny Mir: Moscow, Russia, 1998; p. 492. (In Russian) [Google Scholar]
- Naboko, S.I. Jarosite deposition from acid sulfate water of the Lower Mendeleyev Spring (Kunashir Isle). Proc. Mineral. Mus. 1959, 10, 164–170. (In Russian) [Google Scholar]
- Heinrich, C.A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner. Depos. 2005, 39, 864–889. [Google Scholar] [CrossRef] [Green Version]
- Berger, B.R.; Henley, R.W. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization. Ore Geol. Rev. 2011, 39, 75–90. [Google Scholar] [CrossRef]
- Rottier, B.; Kouzmanov, K.; Casanova, V.; Wälle, M.; Fontboté, L. Cyclic dilution of magmatic metal-rich hypersaline fluids by magmatic low-salinity fluid: A major process generating the giant epithermal polymetallic deposit of Cerro de Pasco, Peru. Econ. Geol. 2018, 113, 825–856. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Fluid inclusions in hydrothermal ore deposits. Lithos 2001, 55, 229–272. [Google Scholar] [CrossRef]
- Banks, D.A.; Bozkaya, G.; Bozkaya, O. Direct observation and measurement of Au and Ag in epithermal mineralizing fluids. Ore Geol. Rev. 2019, 111, 102955. [Google Scholar] [CrossRef]
- Gartman, A.; Hannington, M.; Jamieson, J.W.; Peterkin, B.; Garbe-Schönberg, D.; Findlay, A.J.; Kwasnitschka, T. Boiling-induced formation of colloidal gold in black smoker hydrothermal fluids. Geology 2018, 46, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Prokofiev, V.Y.; Banks, D.A.; Lobanov, K.V.; Selektor, S.L.; Milichko, V.A.; Akinfiev, N.N.; Borovikov, A.A.; Lüders, V.; Chicherov, M.V. Exceptional Concentrations of Gold Nanoparticles in 1,7 Ga Fluid Inclusions From the Kola Superdeep Borehole, Northwest Russia. Sci. Rep. 2020, 10, 1108. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Akinfiev, N.N.; Borisova, A.Y.; Zotov, A.V.; Kouzmanov, K. Gold speciation and transport in geological fluids: Insights from experiments and physical-chemical modelling. Geol. Soc. Lond. Spec. Publ. 2014, 402, 9–70. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Bowell, R.J.; Migdisov, A.A. Gold in solution. Elements 2009, 5, 281–287. [Google Scholar] [CrossRef]
- Simmons, S.F.; Christenson, B.W. Origins of calcite in a boiling geothermal system. Am. J. Sci. 1994, 294, 361–400. [Google Scholar] [CrossRef]
- Akinfiev, N.N.; Tagirov, B.R. Selenium impact on silver transportation and sedimentation by hydrothermal solutions: Thermodynamic description of the Ag-Se-S-Cl-OH system. Geol. Ore Depos. 2006, 48, 460–472. [Google Scholar] [CrossRef]
- Tagirov, B.R.; Baranova, N.N. On the role of selenium in the silver hydrothermal transportation (by experimental data). Geochem. Int. 2009, 6, 666–672. [Google Scholar]
- Stotler, R.L.; Frape, S.K.; Shouakar-Stash, O. An isotopic survey of δ81Br and δ37Cl of dissolved halides in the Canadian and Fennoscandian shields. Chem. Geol. 2010, 274, 38–55. [Google Scholar] [CrossRef]
- Layton-Matthews, D.; Leybourne, M.I.; Peter, J.M.; Scott, S.D.; Cousens, B.; Eglington, B.M. Multiple sources of selenium in ancient seafloor hydrothermal systems: Compositional and Se, S, and Pb isotopic evidence from volcanic-hosted and volcanic-sediment-hosted massive sulfide deposits of the Finlayson Lake district, Yukon, Canada. Geochim. Cosmochim. Acta 2013, 117, 313–331. [Google Scholar] [CrossRef]
- Tikhomirov, P.L.; Glukhov, A.N. On the issue of the age of volcanites within the East Chukotka segment of the OCVB and the associated mineralization. In Cretaceous Systems in Russia and Adjacent Countries: Problems of Stratigraphy and Paleogeography; Proceedings of the 10th All-Russia Meeting, Magadan, Russia, 20–25 September 2020; MAOBTI: Magadan, Russia, 2020; pp. 250–252. (In Russian) [Google Scholar]
- Tikhomirov, P.L.; Kalinina, E.A.; Moriguti, T.; Makishima, A.; Kobayashi, K.; Cherepanova, I.Y.; Nakamura, E. The Cretaceous Okhotsk-Chukotka volcanic belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic LIPs. J. Volcanol. Geotherm. Res. 2012, 221, 14–32. [Google Scholar] [CrossRef]
- Seryotkin, Y.V.; Pal’yanova, G.A.; Savva, N.E. Sulfur–selenium isomorphous substitution and morphotropic transition in the Ag3Au(Se,S)2 series. Rus. Geol. Geophys. 2013, 54, 646–651. [Google Scholar] [CrossRef]
- Palyanova, G.A.; Savva, N.E.; Zhuravkova, T.V.; Kolova, E.E. Gold and silver minerals in low-sulfide ores of the Julietta deposit (northeastern Russia). Russ. Geol. Geophys. 2016, 57, 1171–1190. [Google Scholar] [CrossRef]
- Sidorov, E.G.; Borovikov, A.A.; Tolstykh, N.D.; Bukhanova, D.S.; Palyanova, G.A.; Chubarov, V.M. Gold Mineralization at the Maletoyvayam Deposit (Koryak Highland, Russia) and Physicochemical Conditions of Its Formation. Minerals 2020, 10, 1093. [Google Scholar] [CrossRef]
- Palyanova, G.A. Gold and Silver Minerals in Sulfide Ore. Geol. Ore Depos. 2020, 62, 383–406. [Google Scholar] [CrossRef]
Groups | Basic | Secondary | Rare |
---|---|---|---|
Vein | Quartz | Adularia Albite Hydromica Kaolinite Jarosite | Carbonate Zeolite Epidote Actinolite |
Ore | Pyrite Galena Acanthite * Naumannite * | Sphalerite Arsenopyrite Native gold * Chalcopyrite Fahlores Bromargyrite * Au-chlorargyrite * | Argyrodite * Polybasite * Pyrargyrite * Miargyrite * Clausthalite * Andorite Lenaite * Sternbergite * Argentopyrite * Uytenbogaardtite * Fischesserite * Native silver |
Hypergene | Limonite Chalcocite | Anglesite | Chlorargyrite * Acanthite |
Mineral | Element Concentrations, wt.% | Sum | ||||
---|---|---|---|---|---|---|
Ag | Zn | As | Fe | S | ||
Pyrite | 45.55 | 54.45 | 100.00 | |||
46.45 | 53.55 | 100.00 | ||||
47.84 | 52.16 | 100.00 | ||||
48.37 | 51.63 | 100.00 | ||||
Arsenopyrite | 43.75 | 37.44 | 18.80 | 100.00 | ||
Sphalerite | 4.66 | 55.66 | 5.96 | 33.72 | 100.00 | |
2.45 | 61.97 | 4.45 | 31.02 | 100.00 | ||
3.50 | 62.07 | 1.53 | 32.89 | 100.00 | ||
62.95 | 1.98 | 35.07 | 100.00 | |||
1.68 | 63.30 | 1.03 | 33.60 | 99.95 | ||
65.09 | 2.25 | 32.67 | 100.00 |
Mineral | Element Concentrations, wt.% | Sum | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Fe | Pb | Zn | Ge | Cu | Au | Ag | Sb | Se | S | ||
Clausthalite | 72.02 | 27.90 | 99.92 | ||||||||
72.54 | 26.99 | 99.53 | |||||||||
Naumannite | 72.76 | 27.24 | 100.00 | ||||||||
73.36 | 25.60 | 1.04 | 100.00 | ||||||||
74.51 | 24.50 | 0.98 | 100.00 | ||||||||
76.29 | 21.49 | 2.22 | 100.00 | ||||||||
77.75 | 19.26 | 2.98 | 100.00 | ||||||||
Uytenbogaardtite-fischesserite | 3.00 | 76.34 | 18.36 | 2.30 | 100.00 | ||||||
13.78 | 77.73 | 7.15 | 100.00 | ||||||||
Argyrodite | 4.97 | 72.69 | 13.25 | 9.09 | 100.00 | ||||||
5.53 | 72.57 | 10.74 | 11.17 | 100.00 | |||||||
5.94 | 69.90 | 10.60 | 10.43 | 98.87 | |||||||
Andorite | 13.22 | 22.72 | 18.31 | 3.70 | 11.40 | 99.61 | |||||
18.52 | 17.22 | 22.17 | 1.81 | 22.62 | 98.40 | ||||||
Pyrargyrite | 59.70 | 20.58 | 3.43 | 14.33 | 98.04 | ||||||
Miargyrite | 45.99 | 41.19 | 4.55 | 8.28 | 100.00 | ||||||
35.02 | 40.35 | 1.80 | 22.00 | 100.97 | |||||||
36.15 | 41.00 | 1.16 | 20.46 | 98.77 | |||||||
Acanthite | 78.06 | 15.73 | 6.21 | 100.00 | |||||||
78.88 | 12.71 | 8.41 | 100.00 | ||||||||
2.99 | 84.41 | 4.14 | 11.45 | 100.00 | |||||||
1.67 | 79.14 | 3.54 | 11.30 | 100.00 | |||||||
0.94 | 82.59 | 3.27 | 13.21 | 100.00 | |||||||
87.41 | 1.27 | 11.32 | 100.00 | ||||||||
5.97 | 65.70 | 7.15 | 100.00 | ||||||||
77.16 | 14.63 | 97.76 | |||||||||
Polybasite | 4.57 | 10.35 | 43.04 | 23.02 | 19.02 | 100.00 | |||||
65.77 | 21.70 | 12.53 | 100.00 | ||||||||
Argentopyrite-lenaite-sternbergite | 15.12 | 61.76 | 23.12 | 100.00 | |||||||
9.06 | 72.59 | 18.15 | 100.00 | ||||||||
8.20 | 72.82 | 16.98 | 100.00 | ||||||||
8.24 | 80.63 | 11.13 | 100.00 |
Mineral | Element Concentrations. wt.% | Sum | |
---|---|---|---|
Ag | Au | ||
Native gold (electrum) | 28.45 | 71.55 | 100.00 |
29.50 | 70.50 | 100.00 | |
34.04 | 65.96 | 100.00 | |
38.95 | 61.05 | 100.00 | |
41.46 | 58.20 | 100.00 | |
44.60 | 55.40 | 100.00 | |
48.50 | 51.50 | 100.00 | |
57.51 | 42.49 | 100.00 | |
60.64 | 39.36 | 100.00 | |
65.67 | 34.33 | 100.00 | |
67.11 | 32.89 | 100.00 |
Mineral | Element Concentrations, wt.% | Sum | |||||
---|---|---|---|---|---|---|---|
S | Cl | Br | Fe | Au | Ag | ||
Bromargyrite | 18.32 | 6.01 | 75.68 | 100.00 | |||
18.18 | 4.19 | 77.63 | 100.00 | ||||
Chlorargyrite | 22.76 | 77.25 | 100.01 | ||||
1.22 | 22.57 | 76.21 | 100.00 | ||||
0.57 | 21.00 | 78.43 | 100.00 | ||||
18.61 | 81.39 | 100.00 | |||||
Au-chlorargyrite (or phase mixture) | 5.85 | 9.63 | 20.95 | 63.57 | 100.00 | ||
4.51 | 40.63 | 54.87 | 100.00 |
Sample | n | Experimental Data | Calculation Data | |||||
---|---|---|---|---|---|---|---|---|
Тhom., °C | Тeut., °C | Тice.mel., °C | FF, % | С, wt.% NaCl eq. | d, g/cm3 | P, bar | ||
016с Quartz Type 1 | 3 | 340–320 | −20 | −1.4 | 75 | 2.41 | 0.63 | 140–108 |
6 | 314–280 | −25 | −2–−1.8 | 50–67 | 3.39–3.06 | 0.7 | 82–60 | |
7 | 314–292 | −26–−20 | −2.1–−1.5 | 75–83 | 3.55–2.57 | 0.75 | 100–72 | |
2 | 290–288 | −0.1 | 75 | 0.18 | 0.7 | 70–68 | ||
5 | 286–280 | −29–−23 | −2–−1.8 | 80 | 3.39–3.06 | 0.7 | 66–60 | |
4 | 279–240 | −29–−25.6 | −2–−0.1 | 75–86 | 3.39–0.18 | 0.8–0.7 | 59–27 | |
3 | 240–237 | - | −0.1 | 50–67 | 0.18 | 0.8 | 29 | |
3 | 235–192 | −25 | −0.1 | 75–80 | 0.18 | 0.8 | 27–11 | |
053 Quartz Type 2 | 3 | 307 | −28 | −0.1 | 66 | 0.18 | 0.67 | 90 |
3 | 279 | −25 | −0.1 | 75 | 0.18 | 0.73 | 59 | |
5 | 233–223 | −28 | −0.3–−0.1 | 83–75 | 0.53–0.18 | 0.83–0.8 | 26–21 | |
5 | 182–172 | −32–−25 | −0.3–−0.1 | 85–83 | 0.53–0.18 | 0.9 | 8–7 | |
1014В Quartz Type 3 | 3 | 205 | −23.8 | −0.1 | 91 | 0.18 | 0.8 | 14 |
5 | 183–158 | −27.5–−23 | −0.1 | 88–80 | 0.18 | 0.9–0.8 | 9–6 | |
1 | 163 | −22 | −0.1 | 67 | 0.18 | 0.9 | 6 |
№ | xFeS | xAg | T°, С [17]/[47] | logƒS2 [17]/[47] | № | xFeS | logƒS2 [17]/[47] | |
---|---|---|---|---|---|---|---|---|
175 °C | 150 °C | |||||||
Sphalerite with native gold | Sphalerite with Ag-minerals | |||||||
1 | 0.022 | 0.731 | 214.9/192.0 | −14.06/−15.62 | 6 | 0.120 | −18.35/−17.63 | −20.39/−19.57 |
2 | 0.027 | 0.719 | 223.5/201.1 | −13.67/−15.14 | 7 | 0.094 | −18.13/−17.41 | −20.17/−19.35 |
3 | 0.049 | 0.631 | 270.4/250.6 | −11.53/−12.60 | 8 | 0.020 | −16.79/−16.07 | −18.83/−18.00 |
4 | 0.055 | 0.630 | 274.2/254.6 | −11.42/−12.46 | 9 | 0.096 | −18.16/−17.44 | −20.19/−19.37 |
5 | 0.019 | 0.631 | 237.3/216.1 | −12.55/−13.86 | 10 | 0.089 | −18.08/−17.36 | −20.12/−19.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolova, E.E.; Savva, N.E.; Zhuravkova, T.V.; Glukhov, A.N.; Palyanova, G.A. Au‐Ag‐S‐Se‐Cl‐Br Mineralization at the Corrida Deposit (Russia) and Physicochemical Conditions of Ore Formation. Minerals 2021, 11, 144. https://doi.org/10.3390/min11020144
Kolova EE, Savva NE, Zhuravkova TV, Glukhov AN, Palyanova GA. Au‐Ag‐S‐Se‐Cl‐Br Mineralization at the Corrida Deposit (Russia) and Physicochemical Conditions of Ore Formation. Minerals. 2021; 11(2):144. https://doi.org/10.3390/min11020144
Chicago/Turabian StyleKolova, Elena E., Nataly E. Savva, Tatiana V. Zhuravkova, Anton N. Glukhov, and Galina A. Palyanova. 2021. "Au‐Ag‐S‐Se‐Cl‐Br Mineralization at the Corrida Deposit (Russia) and Physicochemical Conditions of Ore Formation" Minerals 11, no. 2: 144. https://doi.org/10.3390/min11020144
APA StyleKolova, E. E., Savva, N. E., Zhuravkova, T. V., Glukhov, A. N., & Palyanova, G. A. (2021). Au‐Ag‐S‐Se‐Cl‐Br Mineralization at the Corrida Deposit (Russia) and Physicochemical Conditions of Ore Formation. Minerals, 11(2), 144. https://doi.org/10.3390/min11020144