Genesis of Dulong Sn-Zn-In Polymetallic Deposit in Yunnan Province, South China: Insights from Cassiterite U-Pb Ages and Trace Element Compositions
Abstract
:1. Introduction
2. Geological Background
3. Samples and Analytical Methods
3.1. Cathodoluminescence Imaging
3.2. LA-ICP-MS Cassiterite U-Pb Dating and Trace Elemental Analysis
4. Results
4.1. Cassiterite U–Pb Age
4.2. Compositions of Cassiterite
5. Discussion
5.1. Mechanism of Sn Precipitation
+ 9FeCl2 + 2KCl + 12H2O
5.2. Trace Elements Substitution in Cassiterite
5.3. Genesis of Cassiterite
5.4. Mineralization Age of the Dulong Sn-Zn Polymetallic deposit
6. Conclusions
- (1)
- Acid neutralizing muscovitization and pyroxene reactions could be one of the important mechanisms for the Sn precipitation via fluid-rock interaction.
- (2)
- Tetravalent elements (e.g., Zr, Hf, Ti, U, W) are incorporated in cassiterite by direct substitution, other elements such as Fe enter cassiterite by coupled substitution with OH– (Fe3+ + OH– = Sn4+ + O2–).
- (3)
- Cst I–II have higher contents of activating luminescence elements (Al, Ti, W) and quenching luminescence elements (Fe) than Cst III. Elevated W and Fe but low Zr, Hf, Nb and Ta concentrations in cassiterite from Dulong, which are distinctly different from those of cassiterites in VMS/SEDEX tin deposits, but similar to those from granite related tin deposits.
- (4)
- In situ U–Pb dating of two cassiterite samples from Cst II and Cst III yielded Tera-Wasserburg U–Pb lower intercept ages of 88.5 ± 2.1 Ma and 82.1 ± 6.3 Ma, with weighted mean 206Pb/238U ages of 87.1 ± 1.6 Ma and 77.7 ± 4.4 Ma, respectively. Compared with the emplacement age of the Laojunshan granite (75.9–92.9 Ma), the U-Pb age and trace element characteristics of cassiterites reveal that Cst I–II within the proximal skarn is mainly related to concealed granite (Laojunshan granites of phases one and two) whereas Cst III is mainly associated with porphyritic granite.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, B. Metallogeny of Tin; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Heinrich, C.A. The chemistry of tin (-tungsten) ore deposition. Econ. Geol. 1990, 85, 529–550. [Google Scholar] [CrossRef]
- Heinrich, C.A. Geochemical evolution and hydrothermal mineral deposition in Sn(-W-base metal) and other granite related ore systems: Some conclusions from Australian examples. In Magmas, Fluids and Ore Deposits. Mineralogical Association of Canada Short Course Series; Mineralogical Association of Canada: Quebec, QC, Canada, 1995; Volume 23, pp. 203–220. [Google Scholar]
- Schneider, H.J.; Dulski, P.; Luck, J.; Moeller, P.; Villalpando, A. Correlation of trace element distribution in cassiterites and geotectonic position of their deposits in Bolivia. Miner. Depos. 1978, 13, 119–122. [Google Scholar] [CrossRef]
- Moore, F.; Howie, R.A. Geochemistry of some Cornubian cassiterites. Miner. Depos. 1979, 14, 103–107. [Google Scholar] [CrossRef]
- Cheng, Y.B.; Spandler, C.; Kemp, A.; Mao, J.W.; Rusk, B.; Hu, Y.; Blake, K. Controls on cassiterite (SnO2) crystallization: Evidence from cathodoluminescence, trace-element chemistry, and geochronology at the Gejiu tin district. Am. Miner. 2019, 104, 118–129. [Google Scholar] [CrossRef]
- Giuliani, G. La cassiterite zonée du gisement de Sokhret Allal (Granite des Zaer, Maroc Central): Composition chimique et phases fluides associées. Miner. Depos. 1987, 22, 253–261. [Google Scholar] [CrossRef]
- Möller, P.; Dulski, P.; Szacki, W.; Malow, G.; Riedel, E. Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese. Geochim. Cosmochim. Acta 1988, 52, 1497–1503. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, R.Q.; Li, C.; Sun, W.; Hu, Y.; Kang, D.; Wu, J. Genesis of the Gaosong Sn-Cu deposit, Gejiu district, SW China: Constraints from in situ LA-ICP-MS cassiterite U-Pb dating and trace element fingerprinting. Ore Geol. Rev. 2018, 92, 627–642. [Google Scholar] [CrossRef]
- Nambaje, C.; Eggins, S.M.; Yaxley, G.M.; Sajeev, K. Micro-characterisation of cassiterite by geology, texture and zonation: A case study of the Karagwe Ankole Belt, Rwanda. Ore Geol. Rev. 2020, 124, 103609. [Google Scholar] [CrossRef]
- Stein, H.J.; Markey, R.J.; Morgan, J.W.; Du, A.; Sun, Y. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China. Econ. Geol. 1997, 92, 827–835. [Google Scholar] [CrossRef]
- Yuan, S.D.; Peng, J.T.; Hao, S.; Li, H.M.; Geng, J.Z.; Zhang, D.L. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Miner. Depos. 2008, 43, 375–382. [Google Scholar] [CrossRef]
- Chiaradia, M.; Vallance, J.; Fontboté, L.; Stein, H.; Schaltegger, U.; Coder, J.; Richards, J.; Villeneuve, M.; Gendall, I. U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: Implications for the Jurassic metallogenic belt of the Northern Andes. Miner. Depos. 2009, 44, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Li, J.W.; Deng, X.D.; Zhou, M.F.; Liu, Y.S.; Zhao, X.F.; Guo, J.L. Laser ablation ICPMS titanite U-Th–Pb dating of hydrothermal ore deposits: A case study of the Tonglushan Cu-Fe-Au skarn deposit, SE Hubei Province, China. Chem. Geol. 2010, 270, 56–67. [Google Scholar] [CrossRef]
- Chen, X.C.; Hu, R.Z.; Bi, X.W.; Li, H.M.; Lan, J.B.; Zhao, C.H.; Zhu, J.J. Cassiterite LA-MC-ICP-MS U/Pb and muscovite 40Ar/39Ar dating of tin deposits in the Tengchong-Lianghe tin district, NW Yunnan, China. Miner. Depos. 2014, 49, 843–860. [Google Scholar] [CrossRef]
- Cox, R.A.; Wilton, D.H.C.; Košler, J. Laser-ablation U-Th-Pb in situ dating of zircon and allanite: An example from the October Harbour granite, central Coastal Labrador, Canada. Can. Miner. 2003, 41, 273–291. [Google Scholar] [CrossRef] [Green Version]
- Cox, R.A.; Wilton, D.H.C. U-Pb dating of perovskite by LA-ICP-MS: An example from the Oka carbonatite, Quebec, Canada. Chem. Geol. 2006, 235, 21–32. [Google Scholar] [CrossRef]
- Yuan, S.D.; Peng, J.T.; Hao, S.; Li, H.M.; Geng, J.Z.; Zhang, D.L. In situ LA-MC-ICPMS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geol. Rev. 2011, 43, 235–242. [Google Scholar] [CrossRef]
- Che, X.D.; Wu, F.Y.; Wang, R.C.; Gerdes, A.; Ji, W.Q.; Zhao, Z.H.; Yang, J.H.; Zhu, Z.Y. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geol. Rev. 2015, 65, 979–989. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Walker, R.J. U-Pb geochronology of calcite-mineralized faults:absolute timing of rift-related fault events on the northeast Atlantic margin. Geology 2016, 44, 531–534. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Hou, L.; Ding, J.; Zhang, Q.M.; Wu, S.Y. A genetic link between late cretaceous granitic magmatism and sn mineralization in the southwestern south china block: A case study of the dulong Sn-dominant polymetallic deposit. Ore Geol. Rev. 2018, 93, 268–289. [Google Scholar] [CrossRef]
- Liu, Y.P.; Li, Z.; Li, H.; Guo, L.; Xu, W.; Ye, F.; Li, C.; Pi, D. U-Pb geochronology of cassiterite and zircon from the Dulong deposit:evidence for Cretaceous large-scale granitic magmatism and mineralization events in southeastern Yunnan Province, China. Acta Pet. Sin. 2007, 23, 967–976, (In Chinese with English abstract). [Google Scholar]
- Wang, X.; Liu, Y.; Miao, Y.; Bao, T.; Ye, L.; Zhang, Q. In LA-MC-ICP-MS cassiterite U-Pb dating of Dulong Sn-Zn polymetallic deposit and its significance. Acta Petrol. Sin. 2014, 30, 867–876, (In Chinese with English abstract). [Google Scholar]
- Xu, B.; Jiang, S.Y.; Wang, R.; Ma, L.; Zhao, K.; Dong, Y.X. Late cretaceous granites from the giant dulong sn-polymetallic ore district in yunnan province, south china: Geochronology, geochemistry, mineral chemistry and nd-hf isotopic compositions. Lithos 2015, 218, 54–72. [Google Scholar] [CrossRef]
- Zhou, H.; Qi, X. Extremely Low Grade Metamorphism: A Case Study of the Mesozoic Metamorphic Belt in Youjiang Basin; Geological Publishing House: Beijing, China, 1999; pp. 1–66. (In Chinese) [Google Scholar]
- Liu, Y.P.; Ye, L.; Li, C.Y.; Song, B.; Li, T.S.; Guo, L.G.; Pi, D.H. Discovery of the Neoproterozoic magmatics in southeastern Yunnan: Evidence from SHRIMP zircon U-Pb dating and lithogeochemistry. Acta Pet. Sin. 2006, 22, 916–926, (In Chinese with English abstract). [Google Scholar]
- Guo, L.G.; Liu, Y.P.; Li, C.Y.; Xu, W.; Ye, L. SHRIMP zircon U-Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, southeastern Yunnan province, China: Implications for the collision between the Yangtze and Cathaysia blocks. Geochem. J. 2009, 43, 101–122. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.P.; Zhou, M.F.; Wang, C.Y.; Xia, B. Structural and geochronological constraints on the tectonic evolution of the Dulong-Song Chay tectonic dome in Yunnan province, SW China. J. Asian Earth Sci. 2006, 28, 332–353. [Google Scholar] [CrossRef]
- Zhang, R.; Lehmann, B.; Seltmann, R.; Li, C.; Sun, W. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). Geology 2017, 45, 1095–1098. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, J.; Lehmann, B.; Li, C.; Li, G.; Zhang, L.; Guo, J.; Sun, W. Combined zircon and cassiterite U-Pb dating of the Piaotang granite-related tungsten-tin deposit, southern Jiangxi tungsten district, China. Ore Geol. Rev. 2017, 82, 268–284. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Güther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Kelly, W.C.; Turneaure, F.S. Mineralogy, paragenesis and geothermometry of the tin and tungsten deposits of the Eastern Andes, Bolivia. Econ. Geol. 1970, 65, 609–680. [Google Scholar] [CrossRef]
- Jackson, N.J.; Willis-Richards, J.; Manning, D.A.C.; Sams, M.S. Evolution of the Cornubian Ore Field, Southwest England: Part II. Mineral deposits and ore-forming processes. Econ. Geol. 1989, 84, 1101–1133. [Google Scholar] [CrossRef]
- Wagner, T.; Mlynarczyk, M.S.J.; Williams-Jones, A.E.; Boyce, A.J. Stable isotope constraints on ore formation at the San Rafael tin-copper deposit, southeast Peru. Econ. Geol. 2009, 104, 223–248. [Google Scholar] [CrossRef]
- Neiva, A.M.R. Geochemistry of cassiterite and wolframite from tin and tungsten quartz veins in Portugal. Ore Geol. Rev. 2008, 33, 221–238. [Google Scholar] [CrossRef] [Green Version]
- Eugster, H.P.; Wilson, G.A. Transport and deposition of ore-forming elements in hydrothermal systems associated with granites. In High Heat Production (HHP) Granites, Hydrothermal Circulation and Ore Genesis; Halls, C., Ed.; Institution of Mining and Metallurgy: London, UK, 1985; pp. 87–98. [Google Scholar]
- Eugster, H.P. Granites and hydrothermal ore-deposits—A geochemical framework. Miner. Mag. 1985, 49, 7–23. [Google Scholar] [CrossRef] [Green Version]
- Plimer, I.R.; Lu, J.; Kleeman, J.D. Trace and rare earth elements in cassiterite—sources of components for the tin deposits of the Mole Granite, Australia. Miner. Depos. 1991, 26, 267–274. [Google Scholar] [CrossRef]
- Murciego, A.; Sanchez, A.G.; Dusausoy, Y.; Pozas, J.M.M.; Ruck, R. Geochemistry and EPR of cassiterites from the Iberian Hercynian Massif. Miner. Mag. 1997, 61, 357–365. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Hoskin, P.W.O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Rev. Miner. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Münker, C.; Pfänder, J.A.; Weyer, S.; Büchl, A.; Kleine, T.; Mezger, K. Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics. Science 2003, 301, 84–87. [Google Scholar] [CrossRef]
- Cerný, P.; Ercit, T.S. Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull. Minéral. 1985, 108, 499–532. [Google Scholar] [CrossRef]
- Tindle, A.G.; Breaks, F.W. Oxide minerals of the separation rapids rare-element granitic pegmatite group, northwestern Ontario. Can. Miner. 1998, 36, 609–635. [Google Scholar]
- Pieczka, A.; Golebiowska, B.; Parafiniuk, J. Geochemistry and origin of the cassiterite from Redziny, lower Silesia, Poland. Mineralogia 2007, 38, 219–230. [Google Scholar] [CrossRef]
- Sippel, R.F. Sandstone petrology, evidence from luminescence petrography. J. Sediment. Res. 1968, 38, 530–554. [Google Scholar] [CrossRef]
- Rusk, B.; Reed, M. Scanning electron microscopecathodoluminescence analysis of quartz reveals complex growth histories in veins from the Butte porphyry copper deposit, Montana. Geology 2002, 30, 727–730. [Google Scholar] [CrossRef]
- Mao, W.; Rusk, B.; Yang, F.; Zhang, M. Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, South China: Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz. Econ. Geol. 2017, 112, 889–918. [Google Scholar] [CrossRef]
- Mao, W.; Zhong, H.; Zhu, W.G.; Lin, X.G.; Zhao, X.Y. Magmatichydrothermal evolution of the Yuanzhuding porphyry Cu-Mo deposit, South China: Insights from mica and quartz geochemistry. Ore Geol. Rev. 2018, 101, 765–784. [Google Scholar] [CrossRef]
- Remond, G. Exemples d’identification et de localisation des elements entrace dans les mineraux luminescents a l’aide de la microsonde ionique. Bull. Société Française Minéralogie Cristallogr. 1973, 96, 183–198. [Google Scholar] [CrossRef]
- Farmer, C.B.; Searl, A.; Halls, C. Cathodoluminescence and growth of cassiterite in the composite lodes at South Crofty mine, Cornwall, England. Miner. Mag. 1991, 55, 447–458. [Google Scholar] [CrossRef]
- Steveson, B.G.; Taylor, R.G. Trace element content of some cassiterites from Eastern Australia. Proc. R. Soc. Qld. 1973, 84, 43–54. [Google Scholar]
- Hosking, K.F.G. The world’s major types of tin deposits. In Geology of Tin Deposits in Asia and the Pacific; Springer: Berlin, Heidelberg, 1988; pp. 3–49. [Google Scholar]
- Taylor, R.G. Geology of Tin Deposits; Elsevier: Amsterdam, The Netherlands, 1979; pp. 1–543. [Google Scholar]
- Hamilton, J.M.; Bishop, D.T.; Morris, H.C.; Owens, O.E. Geology of the Sullivan orebody, Kimberley, BC, Canada. Precambrian Sulphide Deposits; Special Paper; Geological Association of Canada: Toronto, Canada, 1982; Volume 25, pp. 597–665. [Google Scholar]
- Oliveira, J.T.; Pacheco, N.; Carvalho, P.; Ferreira, A. The Neves Corvo mine and the Paleozoic geology of southwest Portugal. Geology and VMS Deposits of the Iberian Pyrite belt. In Proceedings of the SEG Neves Corvo Field Conference, Libson, Portugal, 11–14 May 1997; pp. 21–71. [Google Scholar]
- Hennigh, Q.; Hutchinson, R.W. Cassiterite at Kidd Creek: An example of volcanogenic massive sulfide-hosted tin mineralization. Econ. Geol. Monogr. 1999, 10, 431–440. [Google Scholar]
- Ye, L.; Bao, T.; Liu, Y.P.; He, F.; Wang, X.J.; Zhang, Q.; Wang, D.P.; Lan, J.B. The trace and rare elements in scheelites and their implication for the mineralization in Dulong Sn-Zn polymetal ore deposit, Yunnan Province. J. Nanjing Univ. (Nat. Sci.) 2018, 54, 245–258. [Google Scholar]
- Liu, S.Y.; Liu, Y.P.; Ye, L.; Su, G.L. A Study on Metallogenic Temperature Field of The Dulong Sn-Zn Polymetallic Deposit. Acta Miner. Sin. 2018, 3, 280–289, (Chinese with english abstracts). [Google Scholar]
- Aja, S.U.; Wood, S.A.; Williams-Jones, A.E. The aqueous geochemistry of Zr and the solubility of some zirconium-bearing minerals. Appl. Geochem. 1995, 10, 603–620. [Google Scholar] [CrossRef]
- Aja, S.U.; Wood, S.A.; Williams-Jones, A.E. The solubility of some Alkali-Bearing Zr minerals in hydrothermal solutions. MRS Proc. 1996, 432. [Google Scholar] [CrossRef]
Sample Types | Spots | Common Pb (ppm) | Total Pb (ppm) | 232Th (ppm) | 238U (ppm) | Isotopic Ratios | Isotopic Ages (Ma) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 206Pb/238U | 1σ | ||||||
Cassiterite-sulfide ore (Cst II) | |||||||||||||
DL18-153-1 | 1.94 | 1.50 | 0.15 | 4.79 | 0.76496 | 0.05783 | 9.94093 | 0.81685 | 0.09252 | 0.00383 | 570.5 | 22.6 | |
DL18-153-2 | 1.18 | 1.07 | 0.17 | 5.51 | 0.67073 | 0.05057 | 5.92840 | 0.48218 | 0.06204 | 0.00254 | 388.0 | 15.4 | |
DL18-153-3 | 0.27 | 0.56 | 0.21 | 4.68 | 0.64264 | 0.04305 | 3.68992 | 0.23391 | 0.04228 | 0.00111 | 267.0 | 6.9 | |
DL18-153-4 | - | 0.48 | 0.34 | 4.51 | 0.63222 | 0.06081 | 3.40888 | 0.27759 | 0.04027 | 0.00157 | 254.5 | 9.7 | |
DL18-153-5 | 0.64 | 0.36 | 0.04 | 3.88 | 0.61718 | 0.05941 | 3.04216 | 0.27287 | 0.03619 | 0.00128 | 229.1 | 7.9 | |
DL18-153-6 | 0.33 | 0.38 | 0.03 | 5.72 | 0.46023 | 0.03693 | 1.76507 | 0.13231 | 0.02827 | 0.00101 | 179.7 | 6.4 | |
DL18-153-7 | - | 0.14 | 0.31 | 2.23 | 0.46849 | 0.07299 | 1.53256 | 0.16313 | 0.02789 | 0.00174 | 177.3 | 10.9 | |
DL18-153-8 | 0.12 | 0.22 | 0.23 | 4.25 | 0.44295 | 0.04637 | 1.38334 | 0.13034 | 0.02339 | 0.00074 | 149.1 | 4.7 | |
DL18-153-9 | 0.05 | 0.10 | 0.05 | 3.24 | 0.32858 | 0.03885 | 0.80266 | 0.08402 | 0.01953 | 0.00081 | 124.7 | 5.1 | |
DL18-153-10 | 0.58 | 0.14 | 0.02 | 4.68 | 0.26312 | 0.02798 | 0.63991 | 0.05689 | 0.01854 | 0.00071 | 118.4 | 4.5 | |
DL18-153-11 | 0.14 | 0.08 | 0.11 | 2.84 | 0.27731 | 0.03630 | 0.56330 | 0.05742 | 0.01824 | 0.00101 | 116.5 | 6.4 | |
DL18-153-12 | 0.39 | 0.16 | 0.12 | 6.04 | 0.22185 | 0.02101 | 0.51469 | 0.04456 | 0.01766 | 0.00063 | 112.8 | 4.0 | |
DL18-153-13 | - | 0.14 | 0.07 | 5.71 | 0.24848 | 0.02185 | 0.52537 | 0.03870 | 0.01693 | 0.00055 | 108.2 | 3.5 | |
DL18-153-14 | 0.02 | 0.02 | 0.02 | 1.01 | 0.33968 | 0.06501 | 0.63821 | 0.10233 | 0.01674 | 0.00120 | 107.0 | 7.6 | |
DL18-153-15 | 0.12 | 0.12 | 0.10 | 5.19 | 0.15675 | 0.01964 | 0.35159 | 0.04125 | 0.01648 | 0.00060 | 105.4 | 3.8 | |
DL18-153-16 | 0.51 | 0.08 | 0.01 | 2.98 | 0.25403 | 0.03346 | 0.51395 | 0.05781 | 0.01642 | 0.00073 | 105.0 | 4.7 | |
DL18-153-17 | 0.03 | 0.09 | 0.02 | 4.03 | 0.22029 | 0.02845 | 0.39972 | 0.04192 | 0.01610 | 0.00068 | 103.0 | 4.3 | |
DL18-153-18 | - | 0.10 | 0.03 | 4.00 | 0.23632 | 0.03035 | 0.47869 | 0.05260 | 0.01605 | 0.00073 | 102.7 | 4.6 | |
DL18-153-19 | 0.01 | 0.01 | 0.01 | 0.71 | 0.27260 | 0.05929 | 0.54487 | 0.08337 | 0.01575 | 0.00136 | 100.8 | 8.6 | |
DL18-153-20 | - | 0.11 | 0.01 | 5.40 | 0.18607 | 0.03307 | 0.34811 | 0.05863 | 0.01560 | 0.00056 | 99.8 | 3.6 | |
DL18-153-21 | 0.20 | 0.08 | 0.06 | 4.14 | 0.17853 | 0.01889 | 0.35007 | 0.03227 | 0.01546 | 0.00057 | 98.9 | 3.6 | |
DL18-153-22 | 0.27 | 0.09 | 0.02 | 5.08 | 0.10905 | 0.01411 | 0.21539 | 0.02693 | 0.01512 | 0.00051 | 96.7 | 3.3 | |
DL18-153-23 | 0.30 | 0.07 | 0.01 | 3.77 | 0.10084 | 0.01537 | 0.20033 | 0.02924 | 0.01510 | 0.00065 | 96.6 | 4.1 | |
DL18-153-24 | 0.08 | 0.10 | - | 5.90 | 0.16070 | 0.05001 | 0.29892 | 0.10809 | 0.01484 | 0.00062 | 94.9 | 3.9 | |
DL18-153-25 | - | 0.08 | - | 4.81 | 0.12056 | 0.01605 | 0.22115 | 0.02671 | 0.01463 | 0.00060 | 93.6 | 3.8 | |
DL18-153-26 | - | 0.10 | 0.01 | 6.93 | 0.06756 | 0.00892 | 0.13140 | 0.01648 | 0.01454 | 0.00043 | 93.0 | 2.7 | |
DL18-153-27 | - | 0.08 | 0.04 | 5.04 | 0.11404 | 0.01839 | 0.19321 | 0.02394 | 0.01450 | 0.00066 | 92.8 | 4.2 | |
DL18-153-28 | 0.25 | 0.10 | - | 6.10 | 0.06714 | 0.00946 | 0.12492 | 0.01465 | 0.01417 | 0.00055 | 90.7 | 3.5 | |
Cassiterite-quartz vein ore (Cst III) | |||||||||||||
DL18-23-1 | 0.25 | 0.08 | 0.02 | 0.29 | 0.82174 | 0.10892 | 8.02528 | 0.76264 | 0.07127 | 0.00597 | 443.8 | 35.9 | |
DL18-23-2 | - | 0.01 | - | 0.12 | 0.33867 | 0.07385 | 5.49101 | 0.88852 | 0.06226 | 0.00969 | 389.4 | 58.8 | |
DL18-23-3 | 0.22 | 0.09 | 0.03 | 0.48 | 0.88755 | 0.11209 | 6.09920 | 0.55820 | 0.06021 | 0.00338 | 376.9 | 20.5 | |
DL18-23-4 | 0.34 | 0.02 | 0.00 | 0.15 | 0.43087 | 0.07936 | 5.28741 | 0.56324 | 0.05336 | 0.00503 | 335.1 | 30.8 | |
DL18-23-5 | 0.25 | 0.05 | 0.02 | 0.37 | 0.85089 | 0.14860 | 3.70567 | 0.35982 | 0.04601 | 0.00325 | 290.0 | 20.0 | |
DL18-23-6 | 0.12 | 0.03 | 0.02 | 0.23 | 0.84975 | 0.16550 | 4.93755 | 0.55685 | 0.04601 | 0.00426 | 290.0 | 26.3 | |
DL18-23-7 | 0.25 | 0.20 | 0.04 | 1.67 | 0.69616 | 0.06205 | 3.40158 | 0.21752 | 0.04071 | 0.00159 | 257.2 | 9.9 | |
DL18-23-8 | 0.26 | 0.08 | 0.02 | 0.83 | 0.83449 | 0.10304 | 3.15972 | 0.25282 | 0.03794 | 0.00256 | 240.1 | 15.9 | |
DL18-23-9 | 0.14 | 0.03 | 0.01 | 0.32 | 0.53889 | 0.10979 | 2.28925 | 0.32303 | 0.03182 | 0.00241 | 201.9 | 15.1 | |
DL18-23-10 | 0.44 | 0.04 | 0.02 | 0.39 | 0.47061 | 0.07025 | 1.98190 | 0.23786 | 0.03131 | 0.00237 | 198.7 | 14.8 | |
DL18-23-11 | - | 0.07 | 0.02 | 0.89 | 0.62347 | 0.07884 | 2.43991 | 0.32825 | 0.03122 | 0.00233 | 198.2 | 14.6 | |
DL18-23-12 | 0.41 | 0.02 | 0.01 | 0.35 | 0.18949 | 0.06204 | 0.75608 | 0.13889 | 0.02032 | 0.00300 | 129.7 | 18.9 | |
DL18-23-13 | - | 0.02 | - | 0.48 | 0.36227 | 0.07173 | 1.21293 | 0.17219 | 0.01966 | 0.00148 | 125.5 | 9.3 | |
DL18-23-14 | - | 0.05 | 0.03 | 0.87 | 0.56242 | 0.10075 | 1.13504 | 0.11522 | 0.01960 | 0.00140 | 125.1 | 8.9 | |
DL18-23-15 | - | 0.02 | 0.01 | 0.44 | 0.20230 | 0.04294 | 0.89495 | 0.13713 | 0.01836 | 0.00140 | 117.3 | 8.9 | |
DL18-23-16 | 0.20 | 0.03 | 0.02 | 1.06 | 0.32221 | 0.09983 | 0.57415 | 0.09827 | 0.01761 | 0.00128 | 112.5 | 8.1 | |
DL18-23-17 | - | 0.01 | - | 0.33 | 0.14783 | 0.05881 | 0.74420 | 0.22048 | 0.01687 | 0.00207 | 107.9 | 13.1 | |
DL18-23-18 | 0.12 | 0.03 | - | 1.18 | 0.32308 | 0.08333 | 0.53180 | 0.07505 | 0.01629 | 0.00105 | 104.2 | 6.7 | |
DL18-23-19 | 0.20 | 0.02 | - | 0.74 | 0.13434 | 0.04707 | 0.28979 | 0.05965 | 0.01478 | 0.00105 | 94.6 | 6.7 | |
DL18-23-20 | 0.67 | 0.02 | - | 0.19 | 0.00987 | 0.00271 | 0.11606 | 0.02068 | 0.01244 | 0.00146 | 79.7 | 9.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liu, Y.; Ye, L.; Wei, C.; Cai, Y.; Chen, W. Genesis of Dulong Sn-Zn-In Polymetallic Deposit in Yunnan Province, South China: Insights from Cassiterite U-Pb Ages and Trace Element Compositions. Minerals 2021, 11, 199. https://doi.org/10.3390/min11020199
Liu S, Liu Y, Ye L, Wei C, Cai Y, Chen W. Genesis of Dulong Sn-Zn-In Polymetallic Deposit in Yunnan Province, South China: Insights from Cassiterite U-Pb Ages and Trace Element Compositions. Minerals. 2021; 11(2):199. https://doi.org/10.3390/min11020199
Chicago/Turabian StyleLiu, Shiyu, Yuping Liu, Lin Ye, Chen Wei, Yi Cai, and Weihong Chen. 2021. "Genesis of Dulong Sn-Zn-In Polymetallic Deposit in Yunnan Province, South China: Insights from Cassiterite U-Pb Ages and Trace Element Compositions" Minerals 11, no. 2: 199. https://doi.org/10.3390/min11020199
APA StyleLiu, S., Liu, Y., Ye, L., Wei, C., Cai, Y., & Chen, W. (2021). Genesis of Dulong Sn-Zn-In Polymetallic Deposit in Yunnan Province, South China: Insights from Cassiterite U-Pb Ages and Trace Element Compositions. Minerals, 11(2), 199. https://doi.org/10.3390/min11020199