(U-Th)/He Dating of Supergene Iron (Oxyhydr-)Oxides of the Nefza-Sejnane District (Tunisia): New Insights into Mineralization and Mammalian Biostratigraphy
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
5. Discussion
5.1. (U-Th)/He Age Significance Using Petrographic Examination of Goethite
5.2. Age of the Meteoric Fe-Fluids Circulation in the Nefza-Sejnane District
5.2.1. Late Tortonian Weathering Event (8.6 ± 0.9 Ma)
5.2.2. Late Pleistocene Weathering Event (0.8 ± 0.2 Ma)
5.3. Stratigraphic Frame of the Nefza-Sejnane District
5.4. Significance of the Weathering Episodes at a Regional Scale
5.5. Revision and Refined Age of the Mammalian Fauna in the Douahria Fe-Deposit
6. Conclusions
- meteoric fluids circulated during late Tortonian (8.6 ± 0.9 Ma) and late Pleistocene (0.8 ± 0.2 Ma) time intervals, confirming the polyphased and mixed (hydrothermal/meteoric) fluid circulations in the district and their role in the genesis of part of the mineralization,
- these events allow refining the ages previously suggested for weathering episodes in Tunisia, confirming that (U-Th)/He on rigorously sampled and well-characterized (using petrography and δD-δ18O analyses) goethite is a very powerful method to decipher weathering periods,
- these episodes are coeval with geodynamic events and wet climates in North Africa, confirming a temporal link between weathering events and both regional tectonics and humid periods, as already stressed by other studies in other areas,
- matched with previous stratigraphic data, the chronological frame of the district is refined, allowing the integration of the numerous regional deposits (Pb, Zn, Fe, Mn, LREE, U, clays),
- consequently, the deposition of the Douahria fossils in a ferruginous crust, here taxonomically revisited, occurred no longer prior to the late Tortonian circulation of the meteoric Fe-fluids, here dated by (U-Th)/He method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Decrée, S.; De Putter, T.; Yans, J.; Moussi, B.; Recourt, P.; Jamoussi, F.; Bruyère, D.; Dupuis, C. Iron mineralisation in Mio-Pliocene sediments of the Tamra iron mine (Nefza mining district, Tunisia): Mixed influence of pedogenesis and hydrothermal alteration. Ore Geol. Rev. 2008, 33, 397–410. [Google Scholar] [CrossRef]
- Decrée, S.; Ruffet, G.; De Putter, T.; Baele, J.-M.; Recourt, P.; Jamoussi, F.; Yans, J. Mn oxides as efficient traps for metal pollutants in a polyphase low-temperature Pliocene environment: A case study in the Tamra iron mine, Nefza mining district, Tunisia. J. Afr. Earth Sci. 2010, 57, 249–261. [Google Scholar] [CrossRef]
- Moussi, B.; Medhioub, M.; Hatira, N.; Yans, J.; Hajjaji, W.; Rocha, F.; Labrincha, J.A.; Jamoussi, F. Identification and use of white clayey deposits from the area of Tamra (northern Tunisia) as ceramic raw materials. Clay Miner. 2011, 46, 165–175. [Google Scholar] [CrossRef]
- Dekoninck, A.; Moussi, B.; Vennemann, T.; Jamoussi, F.; Mattielli, N.; Decrée, S.; Chaftar, H.-R.; Hatira, N.; Yans, J. Mixed hydrothermal and meteoric fluids evidenced by unusual H- and O-isotope compositions of kaolinite-halloysite in the Fe(-Mn) Tamra deposit (Nefza district, NW Tunisia). Appl. Clay Sci. 2018, 163, 33–45. [Google Scholar] [CrossRef]
- Decrée, S.; Marignac, C.; De Putter, T.; Yans, J.; Clauer, N.; Dermech, M.; Aloui, K.; Baele, J.-M. The Oued Belif Hematite-Rich Breccia: A Miocene iron oxide Cu-Au-(UREE) deposit in the Nefza Mining District, Tunisia. Econ. Geol. 2013, 108, 1425–1457. [Google Scholar] [CrossRef]
- Chargui, H.; Hajjaji, W.; Wouters, J.; Yans, J.; Jamoussi, F. Orange Selophenyl TGL dye fixation by modified kaolin. Clay Miner. 2018, 53, 271–287. [Google Scholar] [CrossRef]
- Moussi, B.; Hajjaji, W.; Hachani, M.; Hatira, N.; Labrincha, J.-A.; Yans, J.; Jamoussi, F. Numidian clay deposits as raw material for ceramics tile manufacturing. J. Afr. Earth Sci. 2020, 164, 103775. [Google Scholar] [CrossRef]
- Jallouli, C.; Mickus, K.; Turki, M.M.; Rihane, C. Gravity and aeromagnetic constraints on the extent of Cenozoic rocks within the Nefza-Tabarka region, northwestern Tunisia. J. Volcanol. Geotherm. Res. 2003, 122, 51–68. [Google Scholar] [CrossRef]
- Decrée, S.; Marignac, C.; Liégeois, J.-P.; Yans, J.; Ben Abdallah, R.; Demaiffe, D. Miocene magmatic evolution in the Nefza district (Northern Tunisia) and its relationship with the genesis of polymetallic mineralizations. Lithos 2014, 192–195, 240–258. [Google Scholar]
- Decrée, S.; De Putter, T.; De Jong, J.; Marignac, C.; Yans, J. Iron and trace elements cycling in mineralized paleoalterites from NW Tunisia. In Proceedings of the Goldschmidt Conference 2008, Vancouver, BC, Canada, 13–18 July 2008. [Google Scholar]
- Roman, F.; Solignac, M. Découverte d’un gisement de Mammifères pontiens à Douahria (Tunisie septentrionale). Comptes Rendus de l’Académie des Sci. 1934, 199, 1649–1659. [Google Scholar]
- Rouvier, H.; Perthuisot, V.; Mansouri, A. Pb-Zn deposits and salt-bearing diapirs in Southern Europe and North Africa. Econ. Geol. 1985, 80, 666–687. [Google Scholar] [CrossRef]
- Bouaziz, S.; Barrier, E.; Soussi, M.; Turki, M.M.; Zouari, H. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 2002, 357, 227–253. [Google Scholar] [CrossRef]
- Decrée, S.; Marignac, C.; Abidi, R.; Jemmali, N.; Deloule, E.; Souissi, F. Tectonomagmatic Context of Sedex Pb–Zn and Polymetallic Ore Deposits of the Nappe Zone Northern Tunisia, and Comparisons with MVT Deposits in the Region. In Mineral Deposits of North Africa; Bouabdellah, M., Slack, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 497–525. [Google Scholar]
- Riahi, S.; Soussi, M.; Bou Khalfa, K.; Ben Ismail-Lattrache, K.; Stow, D.; Khomsi, S.; Bedir, M. Stratigraphy, sedimentology and structure of the Numidian flysch thrust belt in northern Tunisia. J. Afr. Earth Sci. 2010, 57, 109–126. [Google Scholar]
- Rouvier, H. Notice Explicative de la Carte Géologique de la Tunisie au 1:50.000 Nefza, feuille n°10 (Notice); Office National des Mines, Direction de la Géologie: Tunis, Tunisia, 1994. [Google Scholar]
- Rouvier, H. Géologie de L’extrême Nord-Tunisien: Tectoniques et Paléogéographie Superposées à L’extrémité Orientale de la chaîne Nord-Maghrebine. Ph.D. Thesis, Université Pierre et Marie Curie-Paris VI, Paris, France, 1977. [Google Scholar]
- Guérin, C. Diceros douariensis nov. sp., un rhinocéros du Mio-Pliocène de Tunisie du Nord. Doc. du Lab. de Géologie de la Fac. des Sci. Lyon 1966, 16, 1–50. [Google Scholar]
- Geraads, D. Rhinocerotidae. In Cenozoic Mammals of Africa; Werdelin, L., Sanders, W.J., Eds.; University of California Press: Berkeley, CA, USA, 2010; pp. 669–683. [Google Scholar]
- Harris, J.; Solounias, N.; Geraads, D. Giraffoidea. In Cenozoic Mammals of Africa; Werdelin, L., Sanders, W.J., Eds.; University of California Press: Berkeley, CA, USA, 2010; pp. 797–811. [Google Scholar]
- Farley, K.A. (U–Th)/He dating: Techniques, calibrations, and applications. Rev. Mineral. Geochem. 2002, 47, 819–844. [Google Scholar] [CrossRef]
- Allard, T.; Gautheron, C.; Bressan Riffel, S.; Balan, E.; Soares, B.F.; Pinna-Jamme, R.; Derycke, A.; Morin, G.; Bueno, G.T.; do Nascimento, N. Combined dating of goethites and kaolinites from ferruginous duricrusts. Deciphering the Late Neogene erosion history of Central Amazonia. Chem. Geol. 2018, 479, 136–150. [Google Scholar] [CrossRef]
- Monteiro, H.; Vasconcelos, P.M.; Farley, K.A.; Spier, C.A.; Mello, C.L. (U-Th)/He geochronology of goethite and the origin and evolution of cangas. Geochim. Cosmoch. Acta 2014, 131, 267–289. [Google Scholar] [CrossRef]
- Riffel, S.B.; Vasconcelos, P.M.; Carmo, I.O.; Farley, K.A. Goethite (U–Th)/He geochronology and precipitation mechanisms during weathering of basalts. Chem. Geol. 2016, 446, 18–32. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Gautheron, C.; Tassan-Got, L. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: Refinement of the baseline case. Geochim. Cosmochim. Acta 2011, 75, 7779–7791. [Google Scholar] [CrossRef]
- Ault, A.K.; Gautheron, C.; King, G.E. Innovations in (U-Th)/He, fission-track, and trapped-charge thermochronometry with applications to earthquakes, weathering, surface-mantle connections, and the growth and decay of mountains. Tectonics 2019, 38, 3705–3739. [Google Scholar] [CrossRef] [Green Version]
- Shuster, D.; Vasconcelos, P.; Heim, J.; Farley, K.A. Weathering geochronology by (U-Th)/He dating of goethite. Geochim. Cosmochim. Acta 2005, 69, 659–673. [Google Scholar] [CrossRef]
- De Putter, T.; Ruffet, G.; Yans, J.; Mees, F. The age of supergene manganese deposits in Katanga and its implications for the Neogene evolution of the African Great Lakes Region. Ore Geol. Rev. 2015, 71, 350–362. [Google Scholar] [CrossRef] [Green Version]
- Verhaert, M.; Madi, A.; El Basbas, A.; El Harkaty, M.; Oummouch, A.; Oumohou, L.; Malfliet, A.; Maacha, L.; Yans, J. Genesis of an As-Pb-rich supergene mineralization: The Tazalaght and Agoujgal Cu deposits (Moroccan Anti-Atlas Copperbelt). Econ. Geol. 2020, 115, 1725–1748. [Google Scholar] [CrossRef]
- Bellon, N. Séries Magmatiques Néogènes et Quaternaires du Pourtour de la Méditerranée Occidentale Comparées Dans Leur Cadre Géodynamique: Implications Géodynamiques. Ph.D. Thesis, Université Paris-Sud/Orsay, Orsay, France, 1976. [Google Scholar]
- Pallary, P. Sur les mollusques fossiles terrestres, lacustres et saumâtres de l’Algérie. Mém. Soc. Géol. France 1901, 22, 1–213. [Google Scholar]
- Bank, R.A.; Menkhorst, P.M.G. A revised bibliography of the malacological papers of Paul Pallary. Zool. Meded. 2009, Leiden 83, 537–546. [Google Scholar]
- Sanz-Rubio, E.; Sánchez-Moral, S.; Cañaveras, J.C.; Calvo, J.P.; Rouchy, J.M. Calcitization of Mg–Ca carbonate and Ca sulphate deposits in a continental Tertiary Basin (Calatayud Basin, NE Spain). Sediment. Geol. 2001, 140, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Ben Abdallah, R.; Medhioub, M.; Hatira, N.; Chaftar, H.R.; Baele, J.-M.; Yans, J.; Jamoussi, F. Hydrothermal and meteoric alteration of Triassic materials in the Oued Belif structure (Nefza, Northern Tunisia). Eur. J. Sci. Res. 2013, 98, 470–480. [Google Scholar]
- Garnit, H.; Boni, M.; Buongiovanni, G.; Arfè, G.; Mondillo, N.; Joachimski, M.; Bouhlel, S.; Balassone, G. C-O stable isotopes geochemistry of Tunisian nonsulfide zinc deposits: A first look. Minerals 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Bruyère, D.; De Putter, T.; Decrée, S.; Dupuis, C.; Fuchs, Y.; Jamoussi, F.; Perruchot, A.; Arbey, F. Miocene karsts and associated Fe–Zn-rich minerals in Aïn Khamouda (Central Tunisia). J. Afr. Earth Sci. 2009. [Google Scholar] [CrossRef]
- Maher, K.; Chamberlain, C.P. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science 2014, 343, 1502–1504. [Google Scholar] [CrossRef]
- Beauvais, A.; Chardon, D. Modes, tempo, and spatial variability of Cenozoic cratonic denudation: The West African example. Geochem. Geophys. Geosyst. 2013, 14, 1590–1608. [Google Scholar] [CrossRef] [Green Version]
- Chardon, D.; Grimaud, J.L.; Rouby, D.; Beauvais, A.; Christophoul, F. Stabilization of large drainage basins over geological time scales: Cenozoic West Africa, hot spot swell growth, and the Niger River. Geochem. Geophys. Geosyst. 2016, 17, 1164–1181. [Google Scholar] [CrossRef] [Green Version]
- De Menocal, P.B.; Ortiz, J.; Guilderson, T.; Adkins, J.; Sarnthein, M.; Baker, L.; Yarusinsky, M. Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quatern. Sci. Rev. 2000, 19, 347–361. [Google Scholar] [CrossRef]
- Gladstone, R.; Flecker, R.; Valdes, P.; Lunt, D.; Marckwick, P. The Mediterranean hydrologic budget from a Late Miocene global climate simulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 251, 254–267. [Google Scholar] [CrossRef]
- Pound, M.J.; Haywood, A.M.; Salzmann, U.; Riding, J.B.; Lunt, D.J.; Hunter, S.J. A Tortonian (Late Miocene, 11.61–7.25Ma) global vegetation reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 300, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Quan, C.; Liu, Y.-S.; Tang, H.; Utescher, T. Miocene shift of European atmospheric circulation from trade wind to westerlies. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, D.L. Aridity and humidity: Two aspects of the late Miocene climate of North Africa and the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 182, 65–91. [Google Scholar] [CrossRef]
- Fontaine, L.; De Putter, T.; Bernard, A.; Decrée, S.; Cailteux, J.; Wouters, J.; Yans, J. Complex mineralogical-geochemical sequences in the supergene ore of the Cu-Co Luiswishi deposit (Katanga, D.R. Congo). J. Afr. Earth Sci. 2020, 161, 103674. [Google Scholar] [CrossRef]
- De Putter, T.; Ruffet, G. Supergene manganese ore records 75 Myr-long Campanian to Pleistocene geodynamic evolution and weathering history of the Central African Great Lakes Region–Tectonics drives, climate assists. Gondwana Res. 2020, 83, 96–117. [Google Scholar] [CrossRef]
- Dekoninck, A.; Monié, P.; Blockmans, S.; Hatert, F.; Rochez, G.; Yans, J. Genesis and 40Ar/39Ar dating of K-Mn oxides from the Stavelot Massif (Ardenne, Belgium): New insights on Oligocene to Pliocene weathering periods in Europe. Ore Geol. Rev. 2019, 115, 103191. [Google Scholar] [CrossRef]
- Choulet, F.; Charles, N.; Barbanson, L.; Branquet, Y.; Sizaret, S.; Ennaciri, A.; Badra, L.; Chena, Y. Non-sulfide zinc deposits of theMoroccan High Atlas: Multi-scale characterization and origin. Ore Geol. Rev. 2014, 56, 115–140. [Google Scholar] [CrossRef] [Green Version]
- Verhaert, M.; Bernard, A.; Dekoninck, A.; Lafforgue, L.; Saddiqi, O.; Yans, J. Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the Oriental High Atlas, Morocco. Mineral. Depos. 2017, 52, 1049–1062. [Google Scholar] [CrossRef]
- Dekoninck, A.; Ruffet, G.; Missenard, Y.; Parizot, O.; Magoua, M.; Mouttaqi, A.; Rochez, G.; Yans, J. Multistage genesis of late Cretaceous manganese karst-hosted deposits along the High Atlas (Morocco) based on the Tasdremt case study (Souss Basin). Miner. Depos. 2020. [Google Scholar] [CrossRef]
- Velasco, F.; Herrero, J.-M.; Suárez, S.; Yusta, I.; Alvaro, A.; Tornos, F. Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt. Ore Geol. Rev. 2013, 53, 181–203. [Google Scholar] [CrossRef]
- Capella, W.; Flecker, R.; Hernández-Molina, F.J.; Simon, D.; Meijer, P.T.; Rogerson, M.; Sierro, F.J.; Krijgsman, W. Mediterranean isolation preconditioning the Earth System for late Miocene climate cooling. Sci. Rep. 2019, 9, 3795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hinsbergen, D.J.J.; Vissers, R.L.M.; Spakman, W. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 2014, 33, 393–419. [Google Scholar] [CrossRef]
- Osborn, H.-F. Phylogeny of the rhinoceroses of Europe. Bull. Am. Mus. Nat. Hist. 1900, 13, 229–267. [Google Scholar]
- Antoine, P.-O.; Saraç, G. The late Miocene mammalian locality of Akkasdagi, Turkey: Rhinocerotidae. Geodiversitas 2005, 27, 601–632. [Google Scholar]
- Gaudry, A.; Lartet, E. Sur les résultats des recherches paléontologiques entreprises dans l’Attique sous les auspices de l’Académie. C. R. Séances Acad. Sci. 1856, 43, 271–274. [Google Scholar]
- Böhme, M.; Spassov, N.; Ebner, M.; Geraads, D.; Hristova, L.; Kirscher, U.; Kötter, S.; Linnemann, U.; Prieto, J.; Roussiakis, S.; et al. Messinian age and savannah environment of the possible hominin Graecopithecus from Europe. PLoS ONE 2017, 12, e0177347. [Google Scholar] [CrossRef]
- Werdelin, L. Chronology of Neogene mammal localities. In Cenozoic Mammals of Africa; Werdelin, L., Ed.; University of California Press: Berkeley, CA, USA, 2010; pp. 27–43. [Google Scholar]
- Lihoreau, F.; Barry, J.; Blondel, C.; Chaimanee, Y.; Jaeger, J.-J.; Brunet, M. Anatomical revision of the genus Merycopotamus (Artiodactyla; Anthracotheriidae): Its significance on late Miocene mammal dispersions in Asia. Palaeontology 2007, 50, 503–524. [Google Scholar] [CrossRef]
- Holroyd, P.A.; Lihoreau, F.; Gunnell, G.F.; Miller, E.R.; Werdelin, L.; Sanders, W.J. Anthracotheriidae. In Cenozoic Mammals of Africa; Werdelin, L., Ed.; University of California Press: Berkeley, CA, USA, 2010; pp. 843–851. [Google Scholar]
- Lihoreau, F.; Boisserie, J.-R.; Blondel, C.; Jacques, L.; Likius, A.; Mackaye, H.T.; Vignaud, P.; Brunet, M. Description and palaeobiology of a new species of Libycosaurus (Cetartiodactyla, Anthracotheriidae) from the Late Miocene of Toros-Menalla, northern Chad. J. System. Palaeont. 2014, 12, 761–798. [Google Scholar] [CrossRef]
- Black, C. A new species of Merycopotamus (Artiodactyla: Anthracotheriidae) from the late Miocene of Tunisia. Notes du Service Géologique de Tunisie 37. Travaux de Géologie Tunisienne 1972, 6, 5–39. [Google Scholar]
- Lihoreau, F.; (University of Montpellier, Montpellier, France). Personal communication, 2018.
- Guérin, C. The Neogene rhinoceroses of Namibia. Palaeontol. Afr. 2000, 36, 119–138. [Google Scholar]
- Antoine, P.-O.; Orliac, M.J.; Albayrak, E.; Ulusoy, I.; Şen, E.; Çubukçu, E.; Atıcı, G.; Aydar, E.; Sen, S. A Rhinocerotid Skull Cooked-to-Death in a 9.2 Ma-old Ignimbrite Flow of South Central Anatolia, Turkey. PLoS ONE 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoine, P.-O. Phylogénie et Évolution des Elasmotheriina (Mammalia, Rhinocerotidae); Mémoires du Muséum National d’Histoire Naturelle: Paris, France, 2002; Volume 188, p. 359. [Google Scholar]
- Antoine, P.-O. Middle Miocene elasmotheriine Rhinocerotidae from China and Mongolia: Taxonomic revision and phylogenetic relationships. Zool. Scripta 2003, 32, 95–118. [Google Scholar] [CrossRef] [Green Version]
- Handa, N.; Nakatsukasa, M.; Kunimatsu, Y.; Nakaya, H. A new Elasmotheriini (Perissodactyla, Rhinocerotidae) from the upper Miocene of Samburu Hills and Nakali, northern Kenya. Geobios 2017, 50, 197–209. [Google Scholar] [CrossRef]
- Aguirre, E.; Guérin, C. Première découverte d’un Iranotheriinae (Mammalia, Perissodactyla, Rhinocerotidae) en Afrique: Kenyatherium bishopi nov. gen. nov. sp. de la formation vallésienne (Miocène supérieur) de Nakali (Kénya). Estudios geologicos 1974, 30, 229–233. [Google Scholar]
- Guérin, C.; Pickford, M. Ougandatherium napakense nov. gen. nov. sp., le plus ancien Rhinocerotidae Iranotheriinae d’Afrique. Ann. Paléontol. 2003, 89, 1–35. [Google Scholar] [CrossRef]
- Geraads, D.; Lehmann, T.; Peppe, D.J.; McNulty, K.P. New Rhinocerotidae from the Kisingiri localities (lower Miocene of Western Kenya). J. Vertebr. Pal. 2016. [Google Scholar] [CrossRef]
- Van Couvering, J.A.; Delson, E. African Land Mammal Ages. J. Vert. Paleont. 2020, 40, e1803340. [Google Scholar] [CrossRef]
Geological Characterization | (U-Th)/He Data | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Geological Context | Mineralogy | Geographical Coordinates | Interpretation δD-δ18O [4] | Label | Weight (mg) | 4He (nccSTP */g) | ±1σ ** (nccSTP/g) | U (ppm) | Th (ppm) | eU *** (ppm) | Th/U | Raw Age (Ma) | ±1σ (Ma) | Age (Ma) + 10% | ±10% (Ma) 1σ |
Fe ore in breccia [5] | Euhedral goethite in vein | N 37°02′1.7″; E 9°06′31.5″ | In equilibrium with meteoric waters | 14BK-11-A | 10.4 | 1517 | 30 | 1.7 | 0.02 | 1.7 | 0.01 | 7.5 | 0.4 | 8.2 | 0.8 |
14BK-11-B | 13.3 | 1892 | 38 | 1.9 | 0.23 | 2.0 | 0.12 | 7.9 | 0.4 | 8.7 | 0.9 | ||||
Tamra Fe ore [2] | Botryoidal goethite in Mn zone | N37°3′27.76″; E 9°6′14.10″ | In equilibrium with meteoric waters | 14MN-TAM-A | 6.6 | 1039 | 21 | 1.1 | 0.02 | 1.1 | 0.02 | 8.1 | 0.4 | 8.9 | 0.9 |
14MN-TAM-B | 17.9 | 671 | 13 | 0.7 | 0.02 | 0.7 | 0.03 | 7.9 | 0.4 | 8.7 | 0.9 | ||||
14MN-TAM-C | 9.7 | 984 | 20 | 1.1 | 0.04 | 1.1 | 0.04 | 7.7 | 0.4 | 8.4 | 0.8 | ||||
Tamra Fe ore [2] | Goethite-hematite poorly crystallized, rich in Mn, mixing of several phases | N 37°03′25.6″; E 9°06′4.8″ | In equilibrium with meteoric waters | 14TAM-07-A | 11.0 | 210 | 4 | 0.4 | 0.73 | 0.6 | 1.81 | 3.0 | 0.2 | 3.3. | 0.3 |
14TAM-07-B | 12.3 | 371 | 7 | 0.4 | 0.72 | 0.6 | 1.86 | 5.5 | 0.3 | 6.1 | 0.6 | ||||
14TAM-07-C | 13.7 | 381 | 8 | 0.4 | 0.63 | 0.6 | 1.57 | 5.7 | 0.3 | 6.3 | 0.6 | ||||
Tamra Fe ore [2] | Goethite-hematite in vein | N 37°3′23.77″; E 9°6′4.48″ | N.A (similar and close to samples CP04-3 and CP04-35, not in equilibrium with meteoric waters) | 13NEFTA-A | 11.4 | 165 | 3 | 0.6 | 0.06 | 0.6 | 0.11 | 2.4 | 0.1 | 2.6 | 0.3 |
13NEFTA-B | 7.6 | 56 | 1 | 0.5 | 0.03 | 0.5 | 0.07 | 0.9 | 0.0 | 1.0 | 0.1 | ||||
13NEFTA-C | 11.5 | 225 | 4 | 0.9 | 0.06 | 0.9 | 0.07 | 2.0 | 0.1 | 2.3 | 0.2 | ||||
Weathered Triassic | Goethite-Pseudomorphose of pyrite | N 37°00′38.8″; E 8°58′9.4″ | sample “Ouchtata” in ref. [4], in equilibrium with meteoric waters | 14OU03-1 | 0.9 | 230 | 5 | 2.3 | 0.02 | 2.3 | 0.01 | 0.8 | 0.0 | 0.9 | 0.1 |
14OU03-2 | 0.5 | 202 | 4 | 1.9 | 0.06 | 1.9 | 0.03 | 0.9 | 0.0 | 0.9 | 0.1 | ||||
14OU03-3 | 0.5 | 400 | 8 | 3.8 | 0.05 | 3.8 | 0.01 | 0.9 | 0.0 | 1.0 | 0.1 | ||||
Weathered Triassic | Euhedral goethite | N 37°00′38.8″; E 8°58′9.4″ | N.A. | 13OULI-A | 11.4 | 149 | 3 | 1.8 | 0.02 | 1.8 | 0.01 | 0.7 | 0.0 | 0.7 | 0.1 |
13OULI-B | 8.6 | 120 | 2 | 1.9 | 0.03 | 1.9 | 0.02 | 0.5 | 0.0 | 0.6 | 0.1 | ||||
13OULI-C | 9.1 | 129 | 3 | 1.8 | 0.03 | 1.8 | 0.02 | 0.6 | 0.0 | 0.7 | 0.1 | ||||
Breccia [5] | Euhedral goethite close to quartz and K-feldspars | N 37°01′33.0″; E 9°06′13.0″ | Unknown for pure goethite. Isotopic values contaminated by quartz and feldspars | 140B-02-A | 7.3 | 547 | 11 | 6.7 | 1.08 | 7.0 | 0.16 | 0.7 | 0.0 | 0.7 | 0.1 |
140B-02-B | 12.7 | 359 | 7 | 2.8 | 0.34 | 2.9 | 0.12 | 1.0 | 0.1 | 1.1 | 0.1 | ||||
140B-02-C | 9.2 | 332 | 7 | 4.7 | 0.86 | 4.9 | 0.18 | 0.6 | 0.0 | 0.6 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yans, J.; Verhaert, M.; Gautheron, C.; Antoine, P.-O.; Moussi, B.; Dekoninck, A.; Decrée, S.; Chaftar, H.-R.; Hatira, N.; Dupuis, C.; et al. (U-Th)/He Dating of Supergene Iron (Oxyhydr-)Oxides of the Nefza-Sejnane District (Tunisia): New Insights into Mineralization and Mammalian Biostratigraphy. Minerals 2021, 11, 260. https://doi.org/10.3390/min11030260
Yans J, Verhaert M, Gautheron C, Antoine P-O, Moussi B, Dekoninck A, Decrée S, Chaftar H-R, Hatira N, Dupuis C, et al. (U-Th)/He Dating of Supergene Iron (Oxyhydr-)Oxides of the Nefza-Sejnane District (Tunisia): New Insights into Mineralization and Mammalian Biostratigraphy. Minerals. 2021; 11(3):260. https://doi.org/10.3390/min11030260
Chicago/Turabian StyleYans, Johan, Michèle Verhaert, Cecile Gautheron, Pierre-Olivier Antoine, Béchir Moussi, Augustin Dekoninck, Sophie Decrée, Hédi-Ridha Chaftar, Nouri Hatira, Christian Dupuis, and et al. 2021. "(U-Th)/He Dating of Supergene Iron (Oxyhydr-)Oxides of the Nefza-Sejnane District (Tunisia): New Insights into Mineralization and Mammalian Biostratigraphy" Minerals 11, no. 3: 260. https://doi.org/10.3390/min11030260
APA StyleYans, J., Verhaert, M., Gautheron, C., Antoine, P. -O., Moussi, B., Dekoninck, A., Decrée, S., Chaftar, H. -R., Hatira, N., Dupuis, C., Pinna-Jamme, R., & Jamoussi, F. (2021). (U-Th)/He Dating of Supergene Iron (Oxyhydr-)Oxides of the Nefza-Sejnane District (Tunisia): New Insights into Mineralization and Mammalian Biostratigraphy. Minerals, 11(3), 260. https://doi.org/10.3390/min11030260