Origin of the Moroccan Touissit-Bou Beker and Jbel Bou Dahar Supergene Non-Sulfide Biomineralization and Its Relevance to Microbiological Activity, Late Miocene Uplift and Climate Changes
Abstract
:1. Introduction
1.1. Regional Geological Setting and Mineralization
1.2. Touissit-Bou Beker District Geology
1.3. Jbel Bou Dahar District Geology
1.3.1. Mining History
1.3.2. Geologic Setting
2. Materials and Methods
3. Results
3.1. Introduction
3.2. Mode of Occurrence
3.3. Mineralogy and Geochemistry
3.4. Paragenetic Sequence
3.5. Carbon and Oxygen Isotope Geochemistry
3.6. Sulfur Isotope Geochemistry
4. Discussion
4.1. Origin of the Supergene Mineralizing Fluid(s)
4.2. Source(s) of Carbon and Sulfur: Evidence for Microbial Activity
4.3. Proposed Evolution of the Atlasic Non-Sulfide Pb-Zn ± Cu Deposits
4.4. Early Pre-Non-Sulfide Gossanous Stage
4.5. Main Stage of Sulfide Oxidation: The “Red Calamine” Ore Stage
4.6. Late Stage of Sulfide Oxidation: The “White Calamine” Ore Stage
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Large, D. The Geology of Non-Sulfide Zinc Deposit—An Overview. Erzmetall 2001, 54, 264–276. [Google Scholar]
- Boni, M.; Large, D. Nonsulfide Zinc Mineralization in Europe: An Overview. Econ. Geol. 2003, 98, 715–729. [Google Scholar] [CrossRef]
- Hitzman, M.W.; Reynolds, N.A.; Sangster, D.F.; Allen, C.R.; Carman, C.E. Classification, genesis, and exploration guides for nonsulfide zinc deposits. Econ. Geol. 2003, 98, 685–714. [Google Scholar] [CrossRef]
- Johnson, C.A.; Skinner, B.J. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the New Jersey highlands. Econ. Geol. 2003, 98, 837–854. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Sangster, D.F.; Leach, D.L.; Brown, A.C.; Johnson, C.A.; Emsbo, P. Genesis of the Touissit-Bou Beker Mississippi valley-type district (Morocco-Algeria) and its relationship to the Africa-Europe collision. Econ. Geol. 2012, 107, 117–146. [Google Scholar] [CrossRef]
- Mondillo, N.; Herrington, R.; Boyce, A.J.; Wilkinson, C.; Santoro, L.; Rumsey, M. Critical elements in non-sulfide Zn deposits: A reanalysis of the Kabwe Zn-Pb ores (central Zambia). Mineral. Mag. 2018, 82, S89–S114. [Google Scholar] [CrossRef] [Green Version]
- Choulet, F.; Richard, J.; Boiron, M.-C.; Dekoninck, A.; Yans, J. Distribution of trace elements in willemite from the Belgium non-sulphide deposits. Eur. J. Mineral. 2019, 31, 983–997. [Google Scholar] [CrossRef]
- Santoro, L.; Putzolu, F.; Mondillo, N.; Herrington, R.; Najorka, J.; Boni, M.; Dosbaba, M.; Maczurad, M.; Balassone, G. Quantitative mineralogical evaluation of Ni-Co laterite ores through XRPD-QPA- and automated SEM-based approaches: The Wingellina (Western Australia) case study. J. Geochem. Explor. 2021, 223, 106695. [Google Scholar] [CrossRef]
- Melchiorre, E.B.; Enders, M.S. Stable Isotope Geochemistry of Copper Carbonates at the Northwest Extension Deposit, Morenci District, Arizona: Implications for Conditions of Supergene Oxidation and Related Mineralization. Econ. Geol. 2003, 98, 607–621. [Google Scholar] [CrossRef]
- Höll, R.; Kling, M.; Schroll, E. Metallogenesis of germanium—A review. Ore Geol. Rev. 2007, 30, 145–180. [Google Scholar] [CrossRef]
- Woollett, A. The processing of non-sulphide zinc deposits. In Proceedings of the Workshop on Nonsulfide Zn–Pb Deposits, Iglesias, Italy, 21–23 April 2005; Boni, M., Gilg, H.A., Eds.; European Science Foundation: Strasbourg, France, 2005. [Google Scholar]
- De Wet, J.R.; Singleton, J.D. Development of a viable process for the recovery of zinc from oxide ores. J. S. Afr. Inst. Min. Metall. 2008, 108, 253–259. [Google Scholar]
- Boni, M.; Mondillo, N. The “Calamines” and the “Others”: The great family of supergene nonsulfide zinc ores. Ore Geol. Rev. 2015, 67, 208–233. [Google Scholar] [CrossRef]
- Sangameshwar, S.R.; Barnes, H.L. Supergene process in zinc-lead-silver sulfide ores in carbonates. Econ. Geol. 1983, 78, 1379–1397. [Google Scholar] [CrossRef]
- De Putter, T.; Ruffet, G. Supergene manganese ore records 75 Myr-long Campanian to Pleistocene geodynamic evolution and weathering history of the Central African Great Lakes Region—Tectonics drives, climate assists. Gondwana Res. 2020, 83, 96–117. [Google Scholar] [CrossRef]
- Heyl, A.V.; Bozion, C.N. Oxidized zinc deposits of the United States, part I. General geology. Geol. Surv. Bull. 1962, 1135, 1–52. [Google Scholar]
- Reichert, J.; Borg, G. Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits. Ore Geol. Rev. 2008, 33, 134–151. [Google Scholar] [CrossRef]
- Recheirt, J. Geochemical model of supergene carbonate-hosted nonsulphide zinc deposits. In Supergene Environments, Processes, and Products; Society of Economic Geologists: Littleton, CO, USA, 2009. [Google Scholar]
- Paradis, S.; Simandl, G.J.; Keevil, H.; Raudsepp, M. Carbonate-hosted nonsulfide Pb-Zn deposits of the Quesnel Lake District, British Columbia, Canada. Econ. Geol. 2016, 111, 179–198. [Google Scholar] [CrossRef]
- Southam, G.; Saunders, J.A. The geomicrobiology of ore deposits. Econ. Geol. 2005, 100, 1067–1084. [Google Scholar] [CrossRef]
- Lengke, M.F.; Southam, G. The deposition of elemental gold from gold(I)-thiosulfate complexes mediated by sulfate-reducing bacterial conditions. Econ. Geol. 2007, 102, 109–126. [Google Scholar] [CrossRef]
- Kucha, H.; Schroll, E.; Raith, J.G.; Halas, S. Microbial sphalerite formation in carbonate-hosted Zn-Pb ores, Bleiberg, Austria: Micro- to nanotextural and sulfur isotope evidence. Econ. Geol. 2010, 105, 1005–1023. [Google Scholar] [CrossRef]
- Tornos, F.; Velasco, F.; Menor-Salván, C.; Delgado, A.; Slack, J.F.; Escobar, J.M. Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity. Nat. Commun. 2014, 5, 4800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisato, N.; Torriani, S.F.F.; Monteux, S.; Sauro, F.; De Waele, J.; Tavagna, M.L.; D’Angeli, I.M.; Chailloux, D.; Renda, M.; Eglinton, T.I.; et al. Microbial mediation of complex subterranean mineral structures. Sci. Rep. 2015, 5, 15525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, C.T.S.; Johannessen, K.C.; Bengtson, S.; Chan, C.S.; Ivarsson, M.; Slack, J.F.; Broman, C.; Thorseth, I.H.; Grenne, T.; Rouxel, O.J.; et al. A late Paleoproterozoic (1.74 Ga) deep-sea, low-temperature, iron-oxidizing microbial hydrothermal vent community from Arizona, USA. Geobiology 2021. [Google Scholar] [CrossRef] [PubMed]
- Bouabdellah, M.; Sangster, D.F. Geology, Geochemistry, and Current Genetic Models for Major Mississippi Valley-Type Pb—Zn Deposits of Morocco. In Mineral Deposits of North Africa; Bouabdellah, M., Slack, J.F., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 463–495. [Google Scholar]
- Adil, S.; Bouabdellah, M.; Grandia, F.; Cardellach, E.; Canals, À. Caractérisation géochimique des fluides associés aux minéralisations Pb-Zn de Bou-Dahar (Maroc). C. R. Geosci. 2004, 336, 1265–1272. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Niedermann, S.; Velasco, F. The Touissit-Bou Beker Mississippi Valley-type district of northeastern Morocco: Relationships to the Messinian salinity crisis, late Neogene-Quaternary alkaline magmatism, and buoyancy-driven fluid convection. Econ. Geol. 2015, 110, 1455–1484. [Google Scholar] [CrossRef]
- Rddad, L.; Bouhlel, S. The Bou Dahar Jurassic carbonate-hosted Pb-Zn-Ba deposits (Oriental High Atlas, Morocco): Fluid-inclusion and C-O-S-Pb isotope studies. Ore Geol. Rev. 2016, 72, 1072–1087. [Google Scholar] [CrossRef] [Green Version]
- Choulet, F.; Charles, N.; Barbanson, L.; Branquet, Y.; Sizaret, S.; Ennaciri, A.; Badra, L.; Chen, Y. Non-sulfide zinc deposits of the moroccan high atlas: Multi-scale characterization and origin. Ore Geol. Rev. 2014, 56, 115–140. [Google Scholar] [CrossRef] [Green Version]
- Choulet, F.; Barbanson, L.; Buatier, M.; Richard, J.; Vennemann, T.; Ennaciri, A.; Zouhair, M. Characterization and origin of low-T willemite (Zn2SiO4) mineralization: The case of the Bou Arhous deposit (High Atlas, Morocco). Miner. Depos. 2017, 52, 1085–1102. [Google Scholar] [CrossRef]
- Choulet, F.; Buatier, M.; Barbanson, L.; Guégan, R.; Ennaciri, A. Zinc-rich clays in supergene non-sulfide zinc deposits. Miner. Depos. 2016, 51, 467–490. [Google Scholar] [CrossRef] [Green Version]
- Rajlich, P. Geology of Oued Mekta, a Mississippi Valley-type deposit, Touissit-Bou Beker region, eastern Morocco. Econ. Geol. 1983, 78, 1239–1254. [Google Scholar] [CrossRef]
- Dupuy, J.-J.; Touray, J.-C. Multistage ore deposition at the Oued Mekta strata-bound lead deposit, Touissit-Bou Beker District, eastern Morocco. Econ. Geol. 1986, 81, 1558–1561. [Google Scholar] [CrossRef]
- Makhoukhi-Marrakchi, S. Le Gisement de Plomb de Beddiane (Maroc Oriental): Gitologie et Élément de Modélisation d’une Mineralisation de Type Mississipi Valley. Ph.D. Thesis, École Normale Supérieure, Paris, France, 1993. [Google Scholar]
- Bouabdellah, M.; Brown, A.C.; Héroux, Y. Pétrographie et altération de la matière organiquedu gisement de plomb–zinc–cuivre de tourist–Bou Beker, Maroc nord oriental. Can. J. Earth Sci. 1996, 33, 1363–1374. [Google Scholar] [CrossRef]
- Laville, E.; Pique, A. La Distension crustale atlantique et atlasique au Maroc au debut du Mesozoique; le rejeu des structures hercyniennes. Bull. Soc. Géol. Fr. 1991, 162, 1161–1171. [Google Scholar]
- Beauchamp, W.; Allmendinger, R.W.; Barazangi, M.; Demnati, A.; El Alji, M.; Dahmani, M. Inversion tectonics and the evolution of the High Atlas Mountains, Morocco, based on a geological geophysical transect. Tectonics 1999, 18, 163–184. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, W.; Barazangi, M.; Demnati, A.; El Alji, M. Intracontinental rifting and inversion: Missour basin and Atlas mountains, Morocco. Am. Assoc. Pet. Geol. Bull. 1996, 80, 1459–1482. [Google Scholar]
- Teixell, A.; Barnolas, A.; Rosales, I.; Arboleya, M.L. Structural and facies architecture of a diapir-related carbonate minibasin (lower and middle Jurassic, High Atlas, Morocco). Mar. Pet. Geol. 2017, 81, 334–360. [Google Scholar] [CrossRef] [Green Version]
- Teixell, A.; Arboleya, M.-L.; Julivert, M.; Charroud, M. Tectonic shortening and topography in the central High Atlas (Morocco). Tectonics 2003, 22, 1051. [Google Scholar] [CrossRef] [Green Version]
- Leprêtre, R.; Missenard, Y.; Barbarand, J.; Gautheron, C.; Jouvie, I.; Saddiqi, O. Polyphased Inversions of an Intracontinental Rift: Case Study of the Marrakech High Atlas, Morocco. Tectonics 2018, 37, 818–841. [Google Scholar] [CrossRef]
- Lanari, R.; Fellin, M.G.; Faccenna, C.; Balestrieri, M.L.; Pazzaglia, F.J.; Youbi, N.; Maden, C. Exhumation and Surface Evolution of the Western High Atlas and Surrounding Regions as Constrained by Low-Temperature Thermochronology. Tectonics 2020, 39. [Google Scholar] [CrossRef]
- Lanari, R.; Faccenna, C.; Fellin, M.G.; Essaifi, A.; Nahid, A.; Medina, F.; Youbi, N. Tectonic Evolution of the Western High Atlas of Morocco: Oblique Convergence, Reactivation, and Transpression. Tectonics 2020, 39. [Google Scholar] [CrossRef] [Green Version]
- Voirin, J. Géologie du gisement plombo-zincifère de Bou Beker. Colloque sur les gîtes stratiformes de plomb, zinc et manganèse du Maroc 1962. Notes Mém. Serv. Géol. Maroc 1965, 181, 21–68. [Google Scholar]
- Jébrak, M.; Marcoux, É.; Nasloubi, M.; Zaharaoui, M. From sandstone- to carbonate-hosted strata bound deposits: An isotope study of galena in the Upper-Moulouya District (Morocco). Miner. Depos. 1998, 33, 406–415. [Google Scholar] [CrossRef]
- Torbi, A.; Gélard, J.P. Paléocontraintes enregistrées par la microfracturation, depuis l’Hercynien jusqu’à l’Actuel, dans les Monts du Sud-Est d’Oujda (Meseta orientale, Maroc). C. R. Acad. Sci. Paris 1994, 318, 131–135. [Google Scholar]
- Bouhlel, S.; Leach, D.L.; Johnson, C.A.; Marsh, E.; Salmi-Laouar, S.; Banks, D.A. A salt diapir-related Mississippi Valley-type deposit: The Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: Fluid inclusion and isotope study. Miner. Depos. 2016, 51, 749–780. [Google Scholar] [CrossRef]
- Samson, P. Un gisement plombo-zincifère en milieu récifal: Touissit (Maroc oriental). Notes Mém. Ser. Géol. Maroc 1973, 242, 1–133. [Google Scholar]
- Owodenko, B. Le Bassin Houiller de Jérada (Maroc Oriental): Essai de synthèse et de paléogéographie. Notes Mém. Ser. Géol. Maroc 1976, 207, 1–147. [Google Scholar]
- Valin, F.; Rakus, M. Rapport concernant l’étude géologique du Paléozoique et de la couverture mésozoique dans les Monts d’Oujda. Unpubl. Rep. Serv. Géol. Oujda 1979, 60, 73. [Google Scholar]
- Verati, C.; Rapaille, C.; Féraud, G.; Marzoli, A.; Bertrand, H.; Youbi, N. 40Ar/39Ar ages and duration of the Central Atlantic Magmatic Province volcanism in Morocco and Portugal and its relation to the Triassic-Jurassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 244, 308–325. [Google Scholar] [CrossRef]
- Crevello, P.D. Stratigraphic Evolution of Lower Jurassic Carbonate Platforms: Record of Rift Tectonics and Eustatsy, Central and Eastern High Atlas, Morocco. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 1990. [Google Scholar]
- Blomeier, D.P.; Reijmer, J.J. Drowning of a Lower Jurassic carbonate platform: Jbel Bou Dahar, High Atlas, Morocco. Facies 1999, 4, 81–110. [Google Scholar] [CrossRef]
- Campbell, A.E.; Stafleu, J. Seismic modeling of an Early Jurassic, drowned carbonate platform: Djebel Bou Dahar, High Atlas, Morocco. AAPG Bull. 1992, 76, 1760–1777. [Google Scholar]
- Dresnay, D.R. Sédiments jurassiques du domaine des chaînes atlasiques du Maroc. Symposium “Sédimentation jurassique W européenne.”. ASF Publ. Spec. 1979, 1, 345–365. [Google Scholar]
- Agard, J.; Dresnay, D.R. Les gîtes plombo-zincifères du Jbel Bou Dahar près de Beni-Tajjite (Haut Atlas oriental). Notes Mém. Ser. Géol. Maroc. 1965, 181, 135–166. [Google Scholar]
- Coplen, T.B. Discontinuance of SMOW and PDB. Nature 1995, 375, 285. [Google Scholar] [CrossRef]
- Gilg, H.A.; Boni, M.; Hochleitner, R.; Struck, U. Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Zn-Pb deposits. Ore Geol. Rev. 2008, 33, 117–133. [Google Scholar] [CrossRef]
- Füger, A.; Méheut, M.; Mavromatis, V.; Leis, A.; Dietzel, M. Oxygen isotope fractionation during smithsonite formation from aqueous solutions. Chem. Geol. 2018, 495, 76–89. [Google Scholar] [CrossRef]
- Melchiorre, E.B.; Criss, R.E.; Rose, T.P. Oxygen and carbon isotope study of natural and synthetic malachite. Econ. Geol. 1999, 94, 245–259. [Google Scholar] [CrossRef]
- Melchiorre, E.B.; Criss, R.E.; Rose, T.P. Oxygen and Carbon Isotope Study of Natural and Synthetic Azurite. Econ. Geol. 2000, 95, 621–628. [Google Scholar] [CrossRef]
- O’Neil, J.R.; Clayton, R.N.; Mayeda, T.K. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 1969, 51, 5547–5558. [Google Scholar] [CrossRef]
- Melchiorre, E.B.; McLaughlin, D.; Bottrill, R.; Hight, J. Primary diagenetic copper carbonate at the Malbunka copper deposit, Amadeus Basin, Northern Territory, Australia. Ore Geol. Rev. 2017, 82, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Melchiorre, E.B.; Williams, P.A. Stable Isotope Characterization of the Thermal Profile and Subsurface Biological Activity during Oxidation of the Great Australia Deposit, Cloncurry, Queensland, Australia. Econ. Geol. 2001, 96, 1685–1693. [Google Scholar] [CrossRef]
- Navarro-Ciurana, D.; Campos-Quispe, L.A.; Cardellach, E.; Vindel, E.; Gómez-Gras, D.; Griera, A.; Corbella, M. Mineralogical and geochemical characterization of the Riópar non-sulfide Zn-(Fe-Pb) deposits (Prebetic Zone, SE Spain). Ore Geol. Rev. 2016, 79, 515–532. [Google Scholar] [CrossRef]
- Mondillo, N.; Lupone, F.; Boni, M.; Joachimski, M.; Balassone, G.; De Angelis, M.; Zanin, S.; Granitzio, F. From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy). Miner. Depos. 2020, 55, 953–970. [Google Scholar] [CrossRef] [Green Version]
- Boni, M.; Gilg, H.A.; Aversa, G.; Balassone, G. The “Calamine” of Southwest Sardinia: Geology, Mineralogy, and Stable Isotope Geochemistry of Supergene Zn Mineralization. Econ. Geol. 2003, 98, 731–748. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Garden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Jenkyns, H.C.; Jones, C.E.; Gröcke, D.R.; Hesselbo, S.P.; Parkinson, D.N. Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography. J. Geol. Soc. Lond. 2002, 159, 351–378. [Google Scholar] [CrossRef]
- Choquette, P.W.; James, N.P. DIAGENESIS #12. Diagenesis in Limestones—3. The Deep Burial Environment. Geosci. Can. 1987, 14, 3–35. [Google Scholar]
- Garnit, H.; Boni, M.; Buongiovanni, G.; Arfè, G.; Mondillo, N.; Joachimski, M.; Bouhlel, S.; Balassone, G. C-O stable isotopes geochemistry of Tunisian nonsulfide zinc deposits: A first look. Minerals 2018, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Claypool, G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Kampschulte, A.; Strauss, H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem. Geol. 2004, 204, 255–286. [Google Scholar] [CrossRef]
- Verhaert, M.; Bernard, A.; Dekoninck, A.; Lafforgue, L.; Saddiqi, O.; Yans, J. Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the oriental High Atlas, Morocco. Miner. Depos. 2017, 52, 1049–1068. [Google Scholar] [CrossRef]
- Poot, J.; Verhaert, M.; Dekoninck, A.; Oummouch, A.; Basbas, A.E.; Maacha, L.; Yans, J. Characterization of weathering processes of the giant copper deposit of tizert (Igherm inlier, anti-atlas, Morocco). Minerals 2020, 10, 620. [Google Scholar] [CrossRef]
- Fontaine, L.; De Putter, T.; Bernard, A.; Decrée, S.; Cailteux, J.; Wouters, J.; Yans, J. Complex mineralogical-geochemical sequences and weathering events in the supergene ore of the Cu–Co Luiswishi deposit (Katanga, D.R. Congo). J. Afr. Earth Sci. 2020, 161, 103674. [Google Scholar] [CrossRef]
- Barbarand, J.; Bour, I.; Pagel, M.; Quesnel, F.; Delcambre, B.; Dupuis, C.; Yans, J. Post-Paleozoic evolution of the northern Ardenne Massif constrained by apatite fission-track thermochronology and geological data. BSGF Earth Sci. Bull. 2018, 189, 16. [Google Scholar] [CrossRef]
- Ouda, B.; El Hamdaoui, A.; Ibn Majah, M. Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; IAEA TECDOC 1453; International Atomic Energy Agency: Vienna, Austria, 2005; pp. 125–140. [Google Scholar]
- Tassi, F.; Vaselli, O.; Moratti, G.; Piccardi, L.; Minissale, A.; Poreda, A.; Huertas, A.D.; Bendkik, A.; Chenakeb, M.; Tedesco, D. Fluid geochemistry versus tectonic setting: The case study of Morocco. In Tectonics of the Western Mediterranean and North Africa; Moratti, G., Chalouan, A., Eds.; Geological Society of London: London, UK, 2006; Volume 262, pp. 131–145. [Google Scholar]
- Bouchaou, L.; Warner, N.R.; Tagma, T.; Hssaisoune, M.; Vengosh, A. The origin of geothermal waters in Morocco: Multiple isotope tracers for delineating sources of water-rock interactions. Appl. Geochem. 2017, 84, 244–253. [Google Scholar] [CrossRef]
- Coppola, V.; Boni, M.; Gilg, A.H.; Strzelska-Smakowska, B. Nonsulfide zinc deposits in the Silesia-Cracow district, Southern Poland. Miner. Depos. 2009, 44, 559–580. [Google Scholar] [CrossRef]
- Criss, R.E. Principles of Stable Isotope Distribution; Oxford University Press: Oxford, UK, 1999; p. 254. [Google Scholar]
- Deines, P. The carbon isotopic composition of diamonds: Relationship to diamond shape, color, occurrence and vapor composition. Geochim. Cosmochim. Acta 1980, 44, 943–961. [Google Scholar] [CrossRef]
- Cerling, T.E.; Quade, J. Stable Carbon and Oxygen Isotopes in Soil Carbonates. In Climate Change in Continental Isotopic Records; American Geophysical Union (AGU): Washington, DC, USA, 1993; pp. 217–231. [Google Scholar]
- Schmitt, H. Equilibrium Diagrams for Minerals at Low Temperature and Pressure; Harvard University: Cambridge, MA, USA, 1962; p. 23. [Google Scholar]
- Garrels, R.M.; Christ, C. Solutions, Minerals, and Equilibria; Harper and Row: New York, NY, USA, 1965; p. 450. [Google Scholar]
- Williams, P.A. Oxide Zone Geochemistry; Ellis Horwood Limited: Chichester, UK, 1990; p. 286. [Google Scholar]
- Enders, M.S.; Knickerbocker, C.; Southam, G.; Titley, S.R. The occurrence of acidophilic iron oxidizing bacteria and their role in supergene enrichment of the Morenci porphyry copper deposit, Greenlee County, Arizona [abs]. In Proceedings of the Geological Society of America, Abstracts with Programs; Geological Society of America: Bolder, CO, USA, 1998; Volume 30, p. A205. [Google Scholar]
- Zerkle, A.L.; Farquhar, J.; Johnston, D.T.; Cox, R.P.; Canfield, D.E. Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim. Cosmochim. Acta 2009, 73, 291–306. [Google Scholar] [CrossRef]
- Dravis, J.J. Hardened subtidal stromatolites, Bahamas. Science 1983, 219, 385–386. [Google Scholar] [CrossRef]
- Podda, F.; Zuddas, P.; Minacci, A.; Pepi, M.; Baldi, F. Heavy metal coprecipitation with hydrozincite [Zn5 (CO3) 2 (OH) 6] from mine waters caused by photosynthetic microorganisms. Appl. Environ. Microbiol. 2000, 66, 5092–5098. [Google Scholar] [CrossRef] [Green Version]
- De Giudici, G.; Podda, F.; Sanna, R.; Musu, E.; Tombolini, R.; Cannas, C.; Musinu, A.; Casu, M. Structural properties of biologically controlled hydrozincite: An HRTEM and NMR spectroscopic study. Am. Mineral. 2009, 94, 1698–1706. [Google Scholar] [CrossRef]
- Ngwenya, B.T.; Magennis, M.; Podda, F.; Gromov, A. Self-preservation strategies during bacterial biomineralization with reference to hydrozincite and implications for fossilization of bacteria. J. R. Soc. Interface 2014, 11, 20140845. [Google Scholar] [CrossRef]
- Velasco, F.; Herrero, J.M.; Suárez, S.; Yusta, I.; Alvaro, A.; Tornos, F. Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt. Ore Geol. Rev. 2013, 53, 181–203. [Google Scholar] [CrossRef]
- Barbero, L.; Teixell, A.; Arboleya, M.L.; del Río, P.; Reiners, P.W.; Bougadir, B. Jurassic-to-present thermal history of the central High Atlas (Morocco) assessed by low-temperature thermochronology. Terra Nova 2007, 19, 58–64. [Google Scholar] [CrossRef]
- Missenard, Y.; Saddiqi, O.; Barbarand, J.; Leturmy, P.; Ruiz, G.; El Haimer, F.Z.; de Lamotte, D.F. Cenozoic denudation in the Marrakech High Atlas, Morocco: Insight from apatite fission-track thermochronology. Terra Nova 2008, 20, 221–228. [Google Scholar] [CrossRef]
- Balestrieri, M.L.; Moratti, G.; Bigazzi, G.; Algouti, A. Neogene exhumation of the Marrakech High Atlas (Morocco) recorded by apatite fission-track analysis. Terra Nova 2009, 21, 75–82. [Google Scholar] [CrossRef]
- Ghorbal, B. Mesozoic to Quaternary Thermo-Tectonic Evolution of Morocco (NW Africa): An Integrated Study of the High Atlas Orogen and Adjacent Regions Assessed From Low-Temperature Geochronology. Ph.D. Thesis, Vrije University, Amsterdam, The Netherlands, 2009. [Google Scholar]
- Domènech, M. Rift Opening and Inversion in the Marrakech High Atlas: Integrated Structural and Thermochronologic Study. Ph.D. Thesis, Universitat Autonoma de Barcelona, Barcelona, Spain, 2015. [Google Scholar]
- Domènech, M.; Teixell, A.; Stockli, D.F. Magnitude of rift-related burial and orogenic contraction in the Marrakech High Atlas revealed by zircon (U-Th)/He thermochronology and thermal modeling. Tectonics 2016, 35, 2609–2635. [Google Scholar] [CrossRef] [Green Version]
- Maley, J. Les changements climatiques de la fin du Tertiaire en Afrique: Leurs conséquences sur l’apparition du Sahara et de sa végétation. In The Sahara and the Nile; Williams, A.J., Faure, H., Eds.; Balkema: Rotterdam, The Netherlands, 1980; pp. 63–86. [Google Scholar]
- Le Houérou, H.N. Climate, flora and fauna changes in the sahara over the past 500 million years. J. Arid Environ. 1997, 37, 619–647. [Google Scholar] [CrossRef] [Green Version]
- Cheddadi, R.; Lamb, H.F.; Guiot, J.; van der Kaars, S. Holocene climatic change in Morocco: A quantitative reconstruction from pollen data. Clim. Dyn. 1998, 14, 883–890. [Google Scholar] [CrossRef]
- Rognon, P. Late quaternary climatic reconstruction for the maghreb (North Africa). Palaeogeogr. Palaeoclimatol. Palaeoecol. 1987, 58, 11–34. [Google Scholar] [CrossRef]
- Leach, D.L.; Bradley, D.C.; Huston, D.; Pisarevsky, S.A.; Taylor, R.D.; Gardoll, S.J. Sediment-Hosted Lead-Zinc Deposits in Earth History. Econ. Geol. 2010, 105, 593–625. [Google Scholar] [CrossRef]
- Leach, D.L.; Taylor, R.D.; Fey, D.L.; Diehl, S.F.; Saltus, R.W. A deposit model for Mississippi Valley-type lead-zinc ores. Dans Mineral deposit models for resource assessment. In Critical Reviews of Oxidative Stress and Aging; Cutler, R.G., Boucher, D., Eds.; World Scientific Publishing Co. Pte. Ltd: Singapore, 2010; pp. 48–64. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, T. Supergene alteration of zinc and lead deposits in limestone. Econ. Geol. 1960, 55, 1083–1115. [Google Scholar] [CrossRef]
- McPhail, D.C.; Summerhayes, E.; Welch, S.; Brugger, J. The geochemistry and mobility of zinc in the regolith. In Advances in Regolith; Roach, I.C., Ed.; Cooperative Research Centre for Landscape Environments and Mineral Exploration: Millaa Millaa, QLD, Australia, 2003; pp. 287–291. [Google Scholar]
- Leprêtre, R.; Missenard, Y.; Barbarand, J.; Gautheron, C.; Saddiqi, O.; Pinna-Jamme, R. Postrift history of the eastern central Atlantic passive margin: Insights from the Saharan region of South Morocco: Postrift Evolution Moroccan Margin. J. Geophys. Res. Solid Earth 2015, 120, 4645–4666. [Google Scholar] [CrossRef]
- Verhaert, M.; Bernard, A.; Saddiqi, O.; Dekoninck, A.; Essalhi, M.; Yans, J. Mineralogy and genesis of the polymetallic and polyphased low grade Fe-Mn-Cu ore of Jbel Rhals deposit (Eastern High Atlas, Morocco). Minerals 2018, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Dekoninck, A.; Ruffet, G.; Missenard, Y.; Parizot, O.; Magoua, M.; Mouttaqi, A.; Rochez, G.; Yans, J. Multistage genesis of the late Cretaceous manganese karst-hosted Tasdremt deposit (High Atlas, Morocco). Miner. Depos. 2020, 1–22. [Google Scholar] [CrossRef]
- Bladh, K.W. The formation of goethite, jarosite, and alunite during the weathering of sulfide-bearing felsic rocks. Econ. Geol. 1982, 77, 176–184. [Google Scholar] [CrossRef]
- Boyle, D.R. Oxidation of massive sulfide deposits in the Bathurst mining camp, New Brunswick: Natural analogues for acid drainage in temperate climates In Environmental Geochemistry of Sulfide Oxidation; ACS Publications: Washington, DC, USA, 1994; pp. 534–550. [Google Scholar]
- Lafforgue, L.; Dekoninck, A.; Barbarand, J.; Brigaud, B.; Bouabdellah, M.; Verhaert, M.; Mouttaqi, A.; Yans, J. Geological and geochemical constrains on the genesis of the sedimentary-hosted Bou Arfa Mn(-Fe) deposit (Eastern High Atlas, Morocco). Ore Geol. Rev. 2021, 133, 104094. [Google Scholar] [CrossRef]
- Jurjovec, J.; Ptacek, C.J.; Blowes, D.W. Acid neutralization mechanisms and metal release in mine tailings: A laboratory column experiment. Geochim. Cosmochim. Acta 2002, 66, 1511–1523. [Google Scholar] [CrossRef]
- Nordstrom, D.K. The effect of sulfate on aluminum concentrations in natural waters: Some stability relations in the system Al2O3-SO3-H2O at 298 K. Geochim. Cosmochim. Acta 1982, 46, 681–692. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Alpers, C.N. The geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits: Part A: Processes, Methods and Health Issues; Plumlee, G.S., Logsdon, M.J., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1999; pp. 133–160. [Google Scholar]
- Nordstrom, D.K.; Alpers, C.N. Negative pH, efflorescent mineralogy, and consequences for environment restoration at the Iron Mountain Superfund site, California. Proc. Natl. Acad. Sci. USA 1999, 96, 3455–3462. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J. A geochemical model of supergene carbonate-hosted nonsulfide zinc deposits. Soc. Econ. Geol. Spec. Publ. 2009, 14, 69–76. [Google Scholar]
- White, A.F.; Blum, A.E. Effects of climate on chemical-weathering in watersheds. Geochim. Cosmochim. Acta 1995, 59, 1729–1747. [Google Scholar] [CrossRef]
- Retallack, G.J. Lateritization and Bauxitization Events. Econ. Geol. 2010, 105, 655–667. [Google Scholar] [CrossRef]
- Yans, J.; Verhaert, M.; Gautheron, C.; Antoine, P.-O.; Moussi, B.; Dekoninck, A.; Decrée, S.; Chaftar, H.-R.; Hatira, N.; Dupuis, C.; et al. (U-Th)/He Dating of Supergene Iron (Oxyhydr-)Oxides of the Nefza-Sejnane District (Tunisia): New Insights into Mineralization and Mammalian Biostratigraphy. Minerals 2021, 11, 260. [Google Scholar] [CrossRef]
- Bouabdellah, M.; Castorina, F.; Bodnar, R.J.; Banks, D.; Jébrak, M.; Prochaska, W.; Lowry, D.; Klügel, A.; Hoernle, K. Petroleum Migration, Fluid Mixing, and Halokinesis as the Main Ore-Forming Processes at the Peridiapiric Jbel Tirremi Fluorite-Barite Hydrothermal Deposit, Northeastern Morocco. Econ. Geol. 2014, 109, 1223–1256. [Google Scholar] [CrossRef]
- Dewey, J.F.; Helman, M.L.; Knott, S.D.; Turco, E.; Hutton, D.H.W. Kinematics of the western Mediterranean. Geol. Soc. Lond. Spec. Publ. 1989, 45, 265–283. [Google Scholar] [CrossRef]
- Serpelloni, E.; Vannucci, G.; Pondrelli, S.; Argnani, A.; Casula, G.; Anzidei, M.; Baldi, P.; Gasperini, P. Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys. J. Int. 2007, 169, 1180–1200. [Google Scholar] [CrossRef]
- Gomez, F.; Beauchamp, W.; Barazangi, M. Role of the Atlas Mountains (northwest Africa) within the African-Eurasian plate-boundary zone. Geology 2000, 28, 775–778. [Google Scholar] [CrossRef] [Green Version]
Sample ID | Mineral | Brief Description/Paragenesis | δ13CV-PDB | δ18OV-SMOW | δ34S | T (°C) |
---|---|---|---|---|---|---|
TB1 | Cerussite | Transparent cerussite lining vug (Cer-2) | −12.95 | 12.48 | - | 36 |
TB2 | Cerussite | Cerussite post saddle dolomite crowing on massive galena (Cer-1) | −15.09 | 12.59 | - | 35 |
TB3 | Cerussite | Transparent cerussite encrusted on massive galena (Cer-1) | −12.76 | 10.36 | - | 50 |
TB4.1 | Cerussite | Transparent cerussite encrusted on galena (Cer-1) | −14.21 | 20.23 | - | −4 |
TB4.2 | Smithsonite | Massive smithsonite from high-grade ore (Sm-1) | −1.44 | 29.37 | - | −2 |
TB5 | Azurite | Crystalline azurite associated with late fibrous malachite (Az-2) | −7.68 | 26.21 | - | 29 |
TB6 | Azurite | Crystalline azurite (Az-1) | −2.77 | 26.80 | - | 26 |
TB7 | Azurite | Crystalline azurite with subordinate malachite (Az-1) | −7.40 | 26.17 | - | 30 |
US-TB8 | Azurite | Azurite | −7.51 | 26.02 | - | 30 |
US-TB9 | Azurite | Azurite | −7.37 | 26.53 | - | 28 |
US-TB10 | Azurite | Azurite | −7.72 | 26.21 | - | 29 |
US-TB11-1 | Azurite | Azurite | −7.73 | 26.19 | - | 30 |
TB12 | Malachite | Bothroidal malachite (Mal-2) | −4.06 | 25.70 | - | 24 |
TB13 | Malachite | Bothroidal malachite | −5.19 | 24.85 | - | 25 |
US-TB11-2 | Malachite | Bothroidal malachite | −4.67 | 25.24 | - | 23 |
TB15 | Calcite | Late stage calcite calcite encrusted on dolomite | −8.77 | 20.65 | - | 25 |
TB16 | Calcite | Late-stage rhombohedral calcite | −8.69 | 21.70 | - | 20 |
TB17 | Calcite | Late-stage rhombohedral calcite | −1.17 | 21.60 | - | 20 |
TB18 | Calcite | Late-stage rhombohedral calcite | −3,09 | 19.20 | - | 32 |
TB19 | Calcite | Late-stage rhombohedral calcite | −8.51 | 23.30 | - | 13 |
TB20 | Calcite | Late-stage rhombohedral calcite | −8.51 | 21.80 | - | 19 |
US-TB11-3 | Calcite | Late-stage euhedral calcite | −2.89 | 22.75 | - | 15 |
TB22 | Gypsum | Transparent gypsum encrusted on galena (Gyp-1) | - | 0.60 | 6.70 | - |
TB23 | Gypsum | Fibrous gypsum encrusted on dolostone (Gyp-2) | - | 2.40 | −15.80 | - |
TB24 | Gypsum | Fibrous gypsum encrusted on dolomite (Gyp-2) | - | 3.70 | −11.30 | - |
TB25 | Gypsum | Fibrous secondary gypsum (Gyp-2) | - | - | −6.18 | - |
TB26 | Gypsum | Fibrous secondary gypsum (Gyp-2) | - | - | −7.25 | - |
TB27 | Gypsum | Fibrous secondary gypsum (Gyp-2) | - | - | −13.46 | - |
TB28 | Gypsum | Fibrous secondary gypsum (Gyp-2) | - | - | −14.11 | - |
TB29 | Gypsum | Fibrous secondary gypsum (Gyp-2) | - | - | 2.28 | - |
TB30 | Pyrite | Euhedral late-stage pyrite encrusted on saddle dolomite | - | - | −12.60 | - |
TB31 | Pyrite | Euhedral late-stage pyrite encrusted on saddle dolomite | - | - | −16.80 | - |
TB32 | Pyrite | Euhedral late-stage pyrite encrusted on saddle dolomite | - | - | −16.80 | - |
TB33 | Pyrite | Euhedral late-stage pyrite encrusted on saddle dolomite | - | - | −16.20 | - |
TB34 | Pyrite | Euhedral late-stage pyrite encrusted on saddle dolomite | - | - | −16.60 | - |
JBD1 | Smithsonite | Layered smithsonite (Sm-1) | −6.44 | 24.22 | - | 18 |
JBD2 | Smithsonite | Bothroidal smithsonite from high-grade ore (Sm-1) | −5.43 | 21.93 | - | 28 |
JBD3 | Smithsonite | Smithsonite from mixed Pb-Zn ore (Sm-1) | −6.15 | 24.52 | - | 17 |
JBD4 | Smithsonite | Layered red ore smithsonite (Sm-1) | −1.31 | 23.61 | - | 21 |
JBD5 | Smithsonite | Bothroidal smithsonite (Sm-1) | −5.64 | 25.05 | - | 14 |
JBD6 | Smithsonite | Smithsonite from mixed ore (Sm-2) | −5.01 | 25.70 | - | 12 |
JBD8 | Smithsonite | Bothroidal Smithsonite (Sm-2) | −4.83 | 25.88 | - | 11 |
JBD9 | Calcite | Late stage “en dents de cochon” calcite | −3.07 | 18.65 | - | 34 |
JBD10 | Calcite | Late stage columnar calcite | −8.92 | 21.55 | - | 20 |
JBD11 | Calcite | Late stage stalactitic calcite encrusted on dolomitized limestone | −7.74 | 24.37 | - | 9 |
JBD12 | Gypsum | Transparent gypsum associated with sphalerite | - | - | 5.1 | - |
JBD13 | Gypsum | Transparent gypsum associated with sphalerite | - | - | 9.6 | - |
JBD14 | Gypsum | Transparent gypsum associated with sphalerite | - | - | 6.1 | - |
Sample No. | Mn | Fe | Cd | Sb | Cu | Pb | As | Ag | Co | In | Ga | Ge | Se | Tl | Bi |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JBD-Sp1 | 2.9 | 1285.9 | 298.1 | 1.2 | 32.1 | 77.8 | 3.3 | 0.00 | 11.9 | 0.00 | 1.59 | 0.02 | 0.000 | 0.000 | 0.000 |
JBD-Sp2 | 1.8 | 584.6 | 333.2 | 7.7 | 39.1 | 154.4 | 2.3 | 0.81 | 19.4 | 0.00 | 0.03 | 0.01 | 0.001 | 0.010 | 0.000 |
JBD-Sp3 | 0.1 | 121.6 | 471.9 | 0.2 | 33.7 | 0.1 | 0.1 | 0.03 | 12.6 | 0.01 | 22.08 | 0.00 | 0.031 | 0.000 | 0.000 |
JBD-Sp4 | 0.1 | 131.9 | 551.4 | 0.3 | 33.8 | 0.1 | 0.1 | 0.02 | 13.6 | 0.02 | 22.18 | 0.00 | 0.030 | 0.000 | 0.000 |
JBD-Sp5 | 0.9 | 298.9 | 1265.5 | 0.1 | 1.6 | 10.3 | 0.1 | 0.04 | 22.5 | 0.01 | 2.01 | 0.01 | 0.047 | 0.000 | 0.000 |
JBD-Sp6 | 6.1 | 1696.9 | 877.1 | 5.8 | 31.7 | 30.6 | 1.2 | 0.05 | 23.2 | 0.00 | 0.46 | 0.02 | 0.002 | 0.001 | 0.000 |
JBD-Sp7 | 0.9 | 372.6 | 799.4 | 4.8 | 17.6 | 15.8 | 0.2 | 0.05 | 44.3 | 0.00 | 8.36 | 0.01 | 0.001 | 0.000 | 0.000 |
JBD-Sp8 | 1.4 | 390.1 | 926.1 | 0.8 | 6.6 | 102.4 | 1.1 | 0.02 | 37.1 | 0.00 | 5.86 | 0.01 | 0.001 | 0.000 | 0.000 |
JBD-Sp9 | 5.2 | 1570.1 | 854.1 | 5.5 | 25.2 | 321.8 | 1.1 | 0.08 | 24.3 | 0.00 | 0.98 | 0.03 | 0.008 | 0.000 | 0.001 |
JBD-Sp10 | 6.8 | 2110.6 | 1462.2 | 56.6 | 98.8 | 10.7 | 11.4 | 3.82 | 39.3 | 0.01 | 0.38 | 0.03 | 0.002 | 0.011 | 0.000 |
JBD-Sp11 | 5.6 | 6271.3 | 1112.1 | 23.5 | 183.2 | 55.9 | 84.1 | 0.21 | 78.9 | 0.01 | 0.35 | 0.14 | 0.002 | 0.004 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouabdellah, M.; Boukirou, W.; Potra, A.; Melchiorre, E.; Bouzahzah, H.; Yans, J.; Zaid, K.; Idbaroud, M.; Poot, J.; Dekoninck, A.; et al. Origin of the Moroccan Touissit-Bou Beker and Jbel Bou Dahar Supergene Non-Sulfide Biomineralization and Its Relevance to Microbiological Activity, Late Miocene Uplift and Climate Changes. Minerals 2021, 11, 401. https://doi.org/10.3390/min11040401
Bouabdellah M, Boukirou W, Potra A, Melchiorre E, Bouzahzah H, Yans J, Zaid K, Idbaroud M, Poot J, Dekoninck A, et al. Origin of the Moroccan Touissit-Bou Beker and Jbel Bou Dahar Supergene Non-Sulfide Biomineralization and Its Relevance to Microbiological Activity, Late Miocene Uplift and Climate Changes. Minerals. 2021; 11(4):401. https://doi.org/10.3390/min11040401
Chicago/Turabian StyleBouabdellah, Mohammed, Wissale Boukirou, Adriana Potra, Erik Melchiorre, Hassan Bouzahzah, Johan Yans, Khadra Zaid, Mohammed Idbaroud, Julien Poot, Augustin Dekoninck, and et al. 2021. "Origin of the Moroccan Touissit-Bou Beker and Jbel Bou Dahar Supergene Non-Sulfide Biomineralization and Its Relevance to Microbiological Activity, Late Miocene Uplift and Climate Changes" Minerals 11, no. 4: 401. https://doi.org/10.3390/min11040401
APA StyleBouabdellah, M., Boukirou, W., Potra, A., Melchiorre, E., Bouzahzah, H., Yans, J., Zaid, K., Idbaroud, M., Poot, J., Dekoninck, A., & Levresse, G. (2021). Origin of the Moroccan Touissit-Bou Beker and Jbel Bou Dahar Supergene Non-Sulfide Biomineralization and Its Relevance to Microbiological Activity, Late Miocene Uplift and Climate Changes. Minerals, 11(4), 401. https://doi.org/10.3390/min11040401