Characterization of Particle Size and Composition of Respirable Coal Mine Dust
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Sampling
2.2. Scanning Electron Microscopy (SEM)
2.2.1. Imaging and Chemical Composition Analysis
2.2.2. Image Analysis
2.3. Particle Size Analysis
2.4. Scanning Transmission Electron Microscopy (S-TEM)
3. Result and Discussion
3.1. Particle-by-Particle Characterization of Micron-Sized RCMD
3.2. Particle Size Distribution
3.3. Particle Size Analysis of Nano-Sized Fraction of RCMD
3.4. Mineralogy of Nano-Sized RCMD
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colinet, J.; Listak, J.M.; Organiscak, J.A.; Rider, J.P.; Wolfe, A.L. Best Practices for Dust Control in Coal Mining; Department of Health and Human Services: Washington, DC, USA, 2010.
- Castranova, V.; Vallyathan, V. Silicosis and coal workers’ pneumoconiosis. Environ. Health Perspect. 2000, 108 (Suppl. 4), 675–684. [Google Scholar] [PubMed] [Green Version]
- Laney, A.S.; Petsonk, E.L.; Attfield, M.D. Pneumoconiosis among underground bituminous coal miners in the United States: Is silicosis becoming more frequent? Occup. Environ. Med. 2010, 67, 652–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barone, T.L.; Patts, J.R.; Janisko, S.J.; Colinet, J.F.; Patts, L.D.; Beck, T.W.; Mischler, S.E. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust. J. Occup. Environ. Hyg. 2016, 13, 284–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sellaro, R.; Sarver, E.; Baxter, D. A standard characterization methodology for respirable coal mine dust using SEM-EDX. Resources 2015, 4, 939–957. [Google Scholar] [CrossRef]
- Blackley, D.J.; Halldin, C.N.; Laney, A.S. Continued increase in prevalence of coal workers’ pneumoconiosis in the United States, 1970–2017. Am. J. Public Health 2018, 108, 1220–1222. [Google Scholar] [CrossRef] [PubMed]
- Schlecht, P.C.; O’Connor, P.F. NIOSH Manual of Analytical Methods (NMAM), 4th ed.; 3rd Supplement; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS: Cincinnati, OH, USA, 2003.
- Joy, G.J. Evaluation of the approach to respirable quartz exposure control in U.S. coal mines. J. Occup. Environ. Hyg. 2012, 9, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Johann-Essex, V.; Keles, C.; Sarver, E. A computer-controlled SEM-EDX routine for characterizing respirable coal mine dust. Minerals 2017, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Johann-Essex, V.; Keles, C.; Rezaee, M.; Scaggs-Witte, M.; Sarver, E. Respirable coal mine dust characteristics in samples collected in central and northern Appalachia. Int. J. Coal Geol. 2017, 182, 85–93. [Google Scholar] [CrossRef]
- Parobeck, P.; Tomb, T. MSHA’s programs to quantify the crystalline silica content of respirable mine dust samples. In Proceedings of the 2000 SME Annual Meeting, Salt Lake City, UT, USA, 28 February–1 March 2000. Preprint 00-159. [Google Scholar]
- Cantrell, B.K.; Stein, S.W.; Patashnick, H.; Hassel, D. Status of a tapered element, oscillating microbalance-based continuous respirable coal mine dust monitor. Appl. Occup. Environ. Hyg. 1996, 11, 624–629. [Google Scholar] [CrossRef]
- Page, S.J.; Volkwein, J.C.; Vinson, R.P.; Joy, G.J.; Mischler, S.E.; Tuchman, D.P.; McWilliams, L.J. Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler. J. Environ. Monit. 2008, 10, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Sapko, M.J.; Cashdollar, K.L.; Green, G.M. Coal dust particle size survey of US mines. J. Loss Prev. Process. Ind. 2007, 20, 616–620. [Google Scholar] [CrossRef]
- Page, S.J. Comparison of coal mine dust size distributions and calibration standards for crystalline silica analysis. AIHA J. 2003, 64, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Bruch, J.; Hilscher, W. Effects of particle size of coal mine dusts in experimental anthracosilicosis: III. tissue reactions in lymph nodes. Ann. Occup. Hyg. 1988, 32, 603–610. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assemi, S.; Tadjiki, S.; Donose, B.C.; Nguyen, A.V.; Miller, J.D. Aggregation of fullerol C60(OH)24nanoparticles as revealed using flow field-flow fractionation and atomic force microscopy. Langmuir 2010, 26, 16063–16070. [Google Scholar] [CrossRef] [PubMed]
- Vander Wal, R.L.; Yezerets, A.; Currier, N.W.; Kim, D.H.; Wang, C.M. HRTEM Study of diesel soot collected from diesel particulate filters. Carbon 2007, 45, 70–77. [Google Scholar] [CrossRef]
Label | C (%) | O (%) | Mg (%) | Al (%) | Si (%) | S (%) | Ca (%) | Fe (%) | Size (μm) | Type |
---|---|---|---|---|---|---|---|---|---|---|
1 | 45.11 | 38.86 | 0.38 | - | - | - | 15.65 | - | 1.69 | Calcite |
2 | 23.50 | 41.51 | 0.08 | - | - | - | 34.91 | - | 2.76 | Calcite |
3 | 63.62 | 30.19 | - | 2.88 | 3.31 | - | - | - | 3.58 | Kaolin |
4 | 80.10 | 19.90 | - | - | - | - | - | - | 1.24 | Coal |
5 | 52.96 | 37.99 | 2.53 | - | - | 1.09 | 5.42 | - | 1.12 | Dolomite |
6 | 44.56 | 41.07 | - | 2.31 | 12.06 | - | - | - | 1.08 | Kaolin |
7 | 38.53 | 46.53 | 5.82 | - | - | - | 9.13 | - | 1.86 | Dolomite |
8 | 77.49 | 22.51 | - | - | - | - | - | - | 1.12 | Coal |
9 | - | 67.20 | 12.90 | - | - | - | 19.91 | - | 1.40 | Dolomite |
10 | 75.90 | 24.10 | - | - | - | - | - | - | 2.05 | Coal |
11 | 58.02 | 33.92 | 1.37 | - | - | - | 6.68 | - | 2.50 | Dolomite |
12 | 40.57 | 46.43 | 5.13 | - | - | - | 7.87 | - | 1.00 | Dolomite |
13 | 80.40 | 19.60 | - | - | - | - | - | - | 1.30 | Coal |
Location | Coal (%) | Diesel (%) | Calcite (%) | Dolomite (%) | Illite (%) | Kaolin (%) | Quartz (%) | Others (%) |
---|---|---|---|---|---|---|---|---|
Intake | 66.67 | 0.00 | 7.94 | 14.29 | 3.17 | 6.35 | 1.59 | 0.00 |
Bolter | 45.50 | 3.15 | 3.60 | 26.58 | 5.86 | 10.36 | 2.25 | 2.70 |
Miner | 71.78 | 0.00 | 3.47 | 8.42 | 5.94 | 3.47 | 5.45 | 1.49 |
Return | 53.43 | 0.00 | 11.34 | 21.49 | 6.57 | 5.37 | 3.88 | 2.39 |
Samples | Peak #1 | Peak #2 | Peak #3 | |||
---|---|---|---|---|---|---|
dh (nm) | % Intensity | dh (nm) | % Intensity | dh (nm) | % Intensity | |
Miner | 405 | 98% | 5560 | 2% | - | - |
Bolter | 200 | 42% | 858 | 52% | 4816 | 6% |
Feeder | 62 | 10% | 327 | 90.4% | - | - |
Particle | C (%) | O (%) | Mg (%) | Ca (%) | Type |
---|---|---|---|---|---|
Particle 1 | 93.14 | 6.23 | 0.32 | 0.21 | Coal |
Particle 2 | 26.73 | 53.72 | 11.63 | 7.86 | Dolomite |
Particle 3 | 43.21 | 43.47 | 1.48 | 11.83 | Calcite |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Golden, S.; Assemi, S.; Sime, M.F.; Wang, X.; Gao, Y.; Miller, J. Characterization of Particle Size and Composition of Respirable Coal Mine Dust. Minerals 2021, 11, 276. https://doi.org/10.3390/min11030276
Pan L, Golden S, Assemi S, Sime MF, Wang X, Gao Y, Miller J. Characterization of Particle Size and Composition of Respirable Coal Mine Dust. Minerals. 2021; 11(3):276. https://doi.org/10.3390/min11030276
Chicago/Turabian StylePan, Lei, Sean Golden, Shoeleh Assemi, Marc Freddy Sime, Xuming Wang, Yuesheng Gao, and Jan Miller. 2021. "Characterization of Particle Size and Composition of Respirable Coal Mine Dust" Minerals 11, no. 3: 276. https://doi.org/10.3390/min11030276
APA StylePan, L., Golden, S., Assemi, S., Sime, M. F., Wang, X., Gao, Y., & Miller, J. (2021). Characterization of Particle Size and Composition of Respirable Coal Mine Dust. Minerals, 11(3), 276. https://doi.org/10.3390/min11030276