Environmental Aspect of the Cement Manufacturing in the Świętokrzyskie Mountains (Southeastern Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Measurements
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
Soil | Al > Fe > Zn > Mn > Cr > Pb > Sr > Cu > Ni > Co > Cd |
Bark | Al > Fe > Zn > Mn > Pb > Sr > Cu > Ni > Cd > Cr > Co |
Needles | Al > Mn > Fe > Zn > Sr > Ni > Cu > Cd > Cr > Pb > Co |
Wood | Fe > Mn > Zn > Al > Ni > Cr > Cu > Cd > Sr > Co > Pb |
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kozłowski, R. The functioning of selected Polish geoecosystems under diverse anthropopressure conditions: The case of low mountains and foothills. Landf. Anal. 2013, 23, 1–150. [Google Scholar]
- Jóźwiak, M.A.; Jóźwiak, M. Influence of cement industry on accumulation of heavy metals in bioindicators. Ecol. Chem. Eng. 2009, 16, 323–334. [Google Scholar]
- Barga-Więcławska, A.J.; Świercz, A. A long-term influence of anthropogenic alkalization on molluscs biodiversity in an area affected by cement industry, Świętokrzyskie Mountains, South-Central Poland. Arch. Environ. Prot. 2015, 41, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Kozłowski, R.; Jóźwiak, M. Transformacja opadów atmosferycznych w strefie drzew wybranych ekosystemów leśnych w Górach Świętokrzyskich. Przegląd Geogr. 2017, 89, 133–153. [Google Scholar] [CrossRef] [Green Version]
- Kozłowski, R.; Kruszyk, R.; Małek, S. The Effect of Environmental Conditions on Pollution Deposition and Canopy Leaching in Two Pine Stands (West Pomerania and Świętokrzyskie Mountains, Poland). Forests 2020, 11, 535. [Google Scholar] [CrossRef]
- Szwed, M.; Kozłowski, R.; Żukowski, W. Assessment of Air Quality in the South-Western Part of the Świętokrzyskie Mountains Based on Selected Indicators. Forests 2020, 11, 499. [Google Scholar] [CrossRef]
- Ciupa, T.; Suligowski, R.; Biernat, T. Ingerencja człowieka w środowisko wodne Chęcińsko-Kieleckiego Parku Krajobrazowego. Prądnik. Pr. i Mater. Muz. im. Prof. Wł. Szafera 2010, 20, 151–164. [Google Scholar]
- Szwed, M.; Żukowski, W.; Kozłowski, R. The Presence of Selected Elements in the Microscopic Image of Pine Needles as an Effect of Cement and Lime Pressure within the Region of Białe Zagłębie (Central Europe). Toxics 2021, 9, 15. [Google Scholar] [CrossRef]
- Gruca-Królikowska, S.; Wacławek, W. Metale w środowisku. Cz. II. Wpływ metali ciężkich na rośliny. Chem. Didact. Ecol. Metrol. 2006, 11, 41–56. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements; Polish Scientific Publisher: Warsaw, Poland, 2002. [Google Scholar]
- Dmuchowski, W.; Bytnerowicz, A. Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles. Environ. Pollut. 1995, 87, 87–104. [Google Scholar] [CrossRef]
- Berger, A.; Iams, W. Geoindicators: Assessing Rapid Environmental Changes in Earth Systems; A.A. Balkema: Rotterdam, The Netherlands; Brookfield, VT, USA, 1996; p. xi + 466. ISBN 90-5410-631-X. [Google Scholar]
- Kozłowski, R.; Jóźwiak, M. The use of selected geoindicators to assess the functioning of the geoecosystem in the central part of the Holy Cross Mountains. Monit. Nat. Environ. 2015, 17, 21–26. [Google Scholar]
- Grodzinski, W.; Yorks, T.P. Species and ecosystem level bioindicators of airborne pollution: An analysis of two major studies. Water Air Soil Pollut. 1981, 16, 33–53. [Google Scholar] [CrossRef]
- Świercz, A. Rola biowskaźników w monitoringu zanieczyszczeń środowiska i rekultywacji terenów poprzemysłowych. Probl. Ekol. Kraj. PAEK 2004, 1, 235–241. [Google Scholar]
- Asif, N.; Nazir, F.; Malik, M. A Review of on Environmental Pollution Bioindicators. Pollution 2018, 4, 111–118. [Google Scholar]
- Świercz, A.; Gandzel, A.; Tomczyk-Wydrych, I. Dynamics of Changes in Selected Soil Traits in the Profiles of Arable Soils Anthropogenically Alkalised by the Cement and Lime Industry within the Kielecko-Łagowski Vale (Poland). Land 2021, 10, 84. [Google Scholar] [CrossRef]
- Chudzińska, E.; Celiński, K.; Pawlaczyk, E.M.; Wojnicka-Półtorak, A.; Diatta, J.B. Trace element contamination differentiates the natural population of Scots pine: Evidence from DNA microsatellites and needle morphology. Environ. Sci. Pollut. Res. 2016, 23, 22151–22162. [Google Scholar] [CrossRef] [Green Version]
- Jansen, W.; Block, A.; Knaack, J. Acid rain. History, generation, results. Aura 1988, 4, 18–19. [Google Scholar]
- Gałuszka, A.; Migaszewski, Z. Geochemical background—an environmental perspective. Mineralogia 2011, 42, 7–17. [Google Scholar] [CrossRef]
- Dziadek, K.; Wacławek, W. Metale w środowisku. Cz. I. Metale ciężkie (Zn, Cu, Ni, Pb, Cd) w środowisku glebowym. Chem. Didact. Ecol. Metrol. 2005, 10, 33–44. [Google Scholar]
- Badora, A. Wpływ pH na mobilność pierwiastków w glebach. Zesz. Probl. Post. Nauk. Roln. 2002, 482, 21–36. [Google Scholar]
- Adriano, D.C. Trace Elements in the Terrestrial Environment; Springer: New York, NY, USA; Heidelberg, Germany, 1986. [Google Scholar]
- Alloway, R.J. Heavy Metals in Soils; Backie Glasgow: London, UK; John Wiley & Sons: New York, USA, 1990. [Google Scholar]
- Sporek, M. Effect of the cement and limestone industry on the chemical properties of water beneath tree canopies. Ecol. Chem. Eng. A 2018, 25, 207–214. [Google Scholar]
- Lu, P.; Han, G.; Wu, Q. Chemical characteristics of rainwater in karst rural areas, Guizhou Province, Southwest China. Acta Geochim. 2017, 36, 572–576. [Google Scholar] [CrossRef]
- Kosior, G.; Samecka-Cymerman, A.; Brudzinska-Kosior, A. Transplanted moss Hylocomium splendens as a bioaccumulator of trace elements from different categories of sampling sites in the Upper Silesia area (SW Poland): Bulk and dry deposition impact. Bull. Environ. Contam. Toxicol. 2018, 101, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.P.; Balasubramanian, R. Wet deposition of trace metals in Singapore. Water Air Soil Pollut. 2003, 144, 285–300. [Google Scholar] [CrossRef]
- Conko, K.M.; Rice, K.C.; Kennedy, M.M. Atmospheric wet deposition of trace elements to a suburban environment, Reston, Virginia, USA. Atmos. Environ. 2004, 38, 4025–4033. [Google Scholar] [CrossRef]
- Zhang, Q.; Kang, S.; Cong, Z.; Hou, S.; Liu, Y. Elemental composition in surface snow from the ultra-high elevation area of Mt. Qomolangma (Everest). China Sci. Bull. 2008, 53, 289–294. [Google Scholar] [CrossRef]
- Aizen, V.B.; Mayewski, P.A.; Aizen, E.M.; Joswiak, D.R.; Surazakov, A.B.; Kaspari, S.; Grigholm, B.; Krachler, M.; Handley, M.; Finaev, A. Stable-isotope and trace element time series from Fedchenko glacier (Pamirs) snow/firn cores. J. Glaciol. 2009, 55, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Koulousaris, M.; Aloupi, M.; Angelidis, M.O. Total metal concentrations in atmospheric precipitation from the northern Aegean Sea. Water Air Soil Pollut. 2009, 201, 389–403. [Google Scholar] [CrossRef]
- Ozsoy, T.; Ornektekin, S. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean. Atmos. Res. 2009, 94, 203–219. [Google Scholar] [CrossRef]
- Sakata, M.; Asakura, K. Factors contributing to seasonal variations in wet deposition fluxes of trace elements at sites along Japan Sea coast. Atmos. Environ. 2009, 43, 3867–3875. [Google Scholar] [CrossRef]
- Cong, Z.; Kang, S.; Zhang, Y.; Li, X. Atmospheric wet deposition of trace elements to central Tibetan Plateau. Appl. Geochem. 2010, 25, 1415–1421. [Google Scholar] [CrossRef]
- Degórski, M. Wskaźnikowa rola gleby w ocenie przemian i jakości środowiska geograficznego na poziomie badań krajobrazowych—Przegląd koncepcji. In Idee i Praktyczny Uniwersalizm Geografii; Gierszewski, P., Karasiewicz, M.T., Eds.; Geografia Fizyczna, Dok Geog: Warsaw, Poland, 2006; Volume 32, pp. 55–56. [Google Scholar]
- De Alba, S.; Lindstrom, M.; Schumacher, T.; Malo, D. Soil landscape evolution due to soil redistribution by tillage: A new conceptual model of soil catena evolution in agriculture landscapes. Catena 2004, 58, 77–100. [Google Scholar] [CrossRef] [Green Version]
- Parzych, A.; Mochnacký, S.; Sobisz, Z.; Kurhaluk, N.; Polláková, N. Accumulation of heavy metals in needles and bark of Pinus species. Folia For. Pol. 2017, 59, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Shcherbenko, T.A.; Koptsik, G.N.; Groenenberg, B.J.; Lukina, N.Y.; Livantsova, S.Y. Uptake of nutrients and heavy metals by pine trees under atmospheric pollution. Mosc. Univ. Soil. Sci. Bull. 2008, 63, 51–59. [Google Scholar] [CrossRef]
- Butkus, D. Transport of heavy metals from soil to Pinus sylvestris L. and Betula pendula trees. Ekologija 2007, 53, 29–36. [Google Scholar]
Metals | ERM CA713 | ICP-MS-TOF | Difference * % | ||
---|---|---|---|---|---|
Content (µg·dm−3) | Uncertainty (µg·dm−3) | Content (µg·dm−3) | Standard Deviation | ||
Cd | 5.09 | 0.3 | 4.99 | ±2.7 | −2.0 |
Cr | 20.9 | 0.2 | 19.7 | ±2.0 | −5.0 |
Cu | 101.0 | 1.3 | 99.4 | ±1.9 | −1.0 |
Fe | 445.0 | 27.0 | 430.0 | ±1.8 | −3.0 |
Mn | 95.0 | 4.0 | 97.8 | ±2.8 | 2.9 |
Ni | 50.3 | 1.4 | 53.0 | ±4.3 | 5.0 |
Pb | 49.7 | 1.7 | 51.8 | ±3.7 | 4.0 |
Indicator | Feature | Pb | Cd | Cr | Co | Cu | Mn | Ni | Zn | Al. | Fe | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mg·kg−1 d.m. | [-] | |||||||||||
wooden core | Min | <0.096 | <0.056 | 1.01 | <0.031 | 0.02 | 3.34 | 0.45 | 4.05 | 0.18 | <0.024 | 4.00 |
Max | 0.13 | 2.58 | 3.80 | 0.62 | 4.09 | 14.0 | 4.88 | 6.02 | 9.48 | 127.6 | 4.83 | |
Avg | 0.10 | 1.64 | 2.26 | 0.30 | 2.25 | 7.23 | 2.41 | 5.25 | 4.33 | 57.0 | 4.45 | |
SD | 0.02 | 1.02 | 1.11 | 0.23 | 1.36 | 4.25 | 1.64 | 0.77 | 3.05 | 56.5 | 0.27 | |
CV | 16.0 | 61.1 | 49.3 | 72.6 | 60.4 | 58.9 | 68.1 | 14.8 | 70.3 | 99.0 | 6.27 | |
reference sample | <0.096 | 0.20 | 0.38 | <0.031 | 0.70 | 3.83 | <0.018 | 1.60 | 4.17 | 10.2 | 3.57 | |
needles | Min | <0.096 | <0.056 | <0.116 | <0.031 | 0.18 | 9.98 | <0.018 | 20.7 | 88.9 | 24.1 | 4.64 |
Max | 1.40 | 2.94 | 2.68 | 0.32 | 3.72 | 143.0 | 5.64 | 32.4 | 211.1 | 68.7 | 6.01 | |
Avg | 0.50 | 1.15 | 0.78 | 0.14 | 1.51 | 50.3 | 2.26 | 26.2 | 118.6 | 44.1 | 5.15 | |
SD | 0.63 | 1.36 | 0.95 | 0.12 | 1.51 | 48.0 | 2.53 | 4.74 | 45.8 | 16.3 | 0.55 | |
CV | 126.3 | 118.5 | 122.7 | 90.2 | 100.1 | 95.2 | 112.2 | 18.1 | 38.6 | 36.9 | 10.7 | |
reference sample | 0.17 | 0.39 | 1.56 | <0.031 | 1.36 | 585.9 | 1.49 | 15.5 | 57.4 | 18.1 | 4.53 | |
bark | Min | 0.82 | <0.056 | <0.116 | <0.031 | 0.42 | 6.55 | <0.018 | 11.7 | 102.5 | 51.0 | 4.91 |
Max | 17.3 | 2.01 | 2.83 | 1.10 | 8.26 | 25.70 | 4.40 | 26.4 | 756.6 | 345.2 | 6.50 | |
Avg | 8.32 | 1.20 | 0.77 | 0.35 | 3.98 | 14.70 | 2.20 | 16.8 | 387.1 | 175.4 | 5.48 | |
SD | 5.70 | 0.82 | 1.12 | 0.41 | 2.88 | 8.88 | 2.06 | 6.21 | 283.3 | 126.7 | 0.57 | |
CV | 68.6 | 68.1 | 145.1 | 119.3 | 72.3 | 60.4 | 93.9 | 37.0 | 73.2 | 72.2 | 10.5 | |
reference sample | 7.25 | 1.04 | 0.61 | 0.00 | 3.83 | 35.6 | 1.98 | 12.44 | 378.0 | 250.2 | 4.47 | |
soil | Min | 12.4 | <0.056 | 46.4 | <0.031 | 0.45 | 76.0 | <0.018 | 24.0 | 1523 | 1257 | 7.20 |
Max | 123.3 | <0.056 | 138.0 | 6.54 | 17.9 | 504.6 | 27.5 | 699.4 | 29,334 | 10,545 | 8.44 | |
Avg | 47.7 | <0.056 | 88.9 | 1.76 | 8.27 | 194.9 | 5.90 | 195.0 | 8520 | 3885 | 7.53 | |
SD | 43.2 | 30.3 | 2.42 | 6.27 | 154.9 | 11.0 | 263.6 | 10,523 | 3470 | 0.46 | ||
CV | 90.5 | 34.0 | 137.5 | 75.8 | 79.49 | 187.2 | 135.2 | 123.5 | 89.3 | 6.17 | ||
reference sample | 8.28 | 0.53 | 20.4 | 1.64 | 7.72 | 1583 | 4.43 | 61.6 | 60,463 | 9245 | 5.11 |
Features | PC1 | PC2 | PC3 |
---|---|---|---|
pH | 0.234 | −0.360 | −0.732 * |
EC | −0.526 | −0.479 | −0.238 |
Pb | −0.701 * | −0.175 | 0.418 |
Cd | −0.637 | −0.541 | 0.297 |
Cr | −0.445 | 0.650 | 0.082 |
Co | −0.804 * | 0.479 | −0.075 |
Cu | −0.827 * | −0.457 | 0.032 |
Mn | −0.768 * | 0.533 | −0.211 |
Ni | −0.599 | 0.759 * | −0.172 |
Sr | −0.586 | −0.525 | −0.432 |
Al | −0.837 * | −0.432 | 0.232 |
Fe | −0.936 * | 0.145 | −0.222 |
% variance | 47 | 24 | 10 |
Total % | 47 | 71 | 81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowski, R.; Szwed, M.; Żelezik, M. Environmental Aspect of the Cement Manufacturing in the Świętokrzyskie Mountains (Southeastern Poland). Minerals 2021, 11, 277. https://doi.org/10.3390/min11030277
Kozłowski R, Szwed M, Żelezik M. Environmental Aspect of the Cement Manufacturing in the Świętokrzyskie Mountains (Southeastern Poland). Minerals. 2021; 11(3):277. https://doi.org/10.3390/min11030277
Chicago/Turabian StyleKozłowski, Rafał, Mirosław Szwed, and Monika Żelezik. 2021. "Environmental Aspect of the Cement Manufacturing in the Świętokrzyskie Mountains (Southeastern Poland)" Minerals 11, no. 3: 277. https://doi.org/10.3390/min11030277
APA StyleKozłowski, R., Szwed, M., & Żelezik, M. (2021). Environmental Aspect of the Cement Manufacturing in the Świętokrzyskie Mountains (Southeastern Poland). Minerals, 11(3), 277. https://doi.org/10.3390/min11030277