Adsorption Properties of Waste Building Sludge for Environmental Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Original and Fe-Modified WBS Sorbents
2.2. Model Solutions
2.3. Adsorption Process
2.4. Analytical Methods
3. Results and Discussion
3.1. Structural and Surface Characterization of Used WBS
3.2. Adsorption of Cations (Cd2+, Pb2+, Cs+) on CSW and TSW
3.3. Adsorption of Anions (AsO43−, PO43−, CrO42−) on CSW/TSW and CSWFe/TSWFe
3.4. Adsorption Efficiency as Indicator of Potential Environmental Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xuan, D.; Zhan, B.; Poon, C.S.; Zheng, W. Innovative reuse of concrete slurry waste from readymixed concrete plants in construction products. J. Hazard. Mater. 2016, 321, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Kubissa, W.; Jaskulski, R.; Reiterman, P. Ecological concrete based on blast-furnace cement with incorporated coarse recycled concrete aggregate and fly ash addition. J. Renew. Mater. 2017, 5, 53–61. [Google Scholar] [CrossRef]
- Dousova, B.; Kolousek, D.; Keppert, M.; Machovic, V.; Lhotka, M.; Urbanova, M.; Brus, J.; Holcova, L. Use of waste ceramics in adsorption technologies. Appl. Clay Sci. 2016, 134, 145–152. [Google Scholar] [CrossRef]
- Doušová, B.; Koloušek, D.; Lhotka, M.; Keppert, M.; Urbanová, M.; Kobera, L.; Brus, J. Waste Brick Dust as Potential Sorbent of Lead and Cesium from Contaminated Water. Materials 2019, 12, 1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiol, N.; Villaescusa, I. Determination of sorbent point zero charge: Usefulness in sorption studies. Environ. Chem. Lett. 2009, 7, 79–84. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, Q.; Jin, X.; Chen, Z. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay. J. Hazard. Mater. 2009, 170, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Sherman, D.M.; Randall, S.R. Surface complexation of arsenic (V) to iron (III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 2003, 67, 4223–4230. [Google Scholar] [CrossRef]
- Doušová, B.; Grygar, T.; Martaus, A.; Fuitová, L.; Koloušek, D.; Machovič, V. Sorption of AsV on aluminosilicates treated with FeII nanoparticles. J. Colloid Interface Sci. 2006, 302, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Njati, S.Y.; Maguta, M.M. Lead-based paints and children’s PVC toys are potential sources of domestic lead poisoning – A review. Environ. Pollut. 2019, 249, 1091–1105. [Google Scholar] [CrossRef]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Cornell, R.M. Adsorption of cesium on minerals: A review. J. Radioanal. Nuclear Chem. 1993, 171, 483–500. [Google Scholar] [CrossRef]
- Jalali, R.R.; Ghafourian, H.; Asef, Y.; Dalir, S.T.; Sahafipour, M.H.; Gharanjik, B.M. Biosorption of cesium by native and chemically modified biomass of marine algae: Introduce the new biosorbents for biotechnology applications. J. Hazard. Mater. 2004, B116, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Su, H.; Gu, Y.; Song, X.; Zhao, J. Carcinogenicity of chromium and chemoprevention: A brief update. OncoTargets and Therapy 2017, 10, 4065–4079. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.; Saha, A. Metabolism and toxicity of arsenic: A human carcinogen. Current Sci. 2002, 82, 38–45. [Google Scholar]
- Weiner, M.L.; Salminen, W.F.; Larson, P.R.; Barter, R.A.; Kranetz, J.L.; Simon, G.S. Toxicological review of inorganic phosphates. Food Chem. Toxicol. 2001, 39, 759–786. [Google Scholar] [CrossRef]
- Lambkin, D.C.; Alloway, B.J. Arsenate-induced phosphate release from soils and its effect on plant phosphorus. Water Air Soil Pollut. 2003, 144, 41–56. [Google Scholar] [CrossRef]
- Bonin, D. Method of removing arsenic species from an aqueous medium using modified zeolite minerals. U.S. Patent no. 6,042,731, 28 March 2000. [Google Scholar]
- Misak, N.Z. Langmuir isotherm and its application in ion-exchange reactions. React. Polym. 1993, 21, 53–64. [Google Scholar] [CrossRef]
- Han, R.; Lu, Z.; Zou, W.; Daotong, W.; Shi, J.; Jiujun, Y. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand. II. Equilibrium study and competitive adsorption. J. Hazard. Mater. 2006, B137, 480–488. [Google Scholar] [CrossRef]
- Tsai, W.T.; Lai, C.W.; Hsien, K.J. Effect of Particle Size of Activated Clay on the Adsorption of Paraquat from Aqueous Solution. J. Colloid Interface Sci. 2003, 263, 29–34. [Google Scholar] [CrossRef]
- Marcus, Y. Thermodynamics of Solvation of Ions. Part 5-Gibbs Free Energy of Hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1991, 87, 2995–2999. [Google Scholar] [CrossRef]
- Doušová, B.; Riterman, P. Recycling of powdered building wastes in environmental technologies. In Proceedings of the SGEM 2019 (19th International Multidisciplinary Scientific GeoConference), Vienna, Austria, 9–11 December 2019; STEF92 Tehnology Ltd.: Sofia, Bulgaria, 2019; Volume 19, pp. 121–126. [Google Scholar]
- Grossl, P.R.; Eick, M.; Sparks, D.L.; Goldberg, S.; Ainworth, C.C. Arsenate and Chromate retention Mechanisms on Goethite. 2. Kinetic Evaluation Using a Pressure-Jump Relaxation Technique. Environ. Sci. Technol. 1997, 31, 321–326. [Google Scholar] [CrossRef]
- Khaodhiar, S.; Azizian, M.F.; Osathaphan, K.; Nelson, P.O. Copper, Chromium and Arsenic Adsorption and Equilibrium Modeling in an Iron-oxide-coated sand. Background Electrolyte System. Water Air Soil Pollut. 2000, 119, 105–120. [Google Scholar] [CrossRef]
- Antelo, J.; Fiol, S.; Gondar, D.; Lopez, R.; Arce, F. Comparison of arsenate, chromate and molybdate binding on schwertmannite: Surface adsorption vs anion-exchange. J. Colloid Interface Sci. 2012, 386, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.P.; Chrysochoou, M. Mechanisms of chromate adsorption on boehmite. J. Hazard. Mater. 2015, 281, 56–63. [Google Scholar] [CrossRef]
- Rajec, P.; Macasek, F.; Feder, M.; Misaelides, P.; Samajova, E. Sorption of caesium and strontium on clinoptilolite- and mordenite-containing sedimentary rocks. J. Radioanal. Nucl. Chem. 1998, 229, 49–56. [Google Scholar] [CrossRef]
- Faghihian, H.; Marageh, M.G.; Kazemian, H. The use of clinoptilolite and its sodium form for removal of radioactive cesium and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater. Appl. Radiat. Isot. 1999, 50, 655–660. [Google Scholar] [CrossRef]
Sample | Chemical Composition (wt%) | SBET (m2·g−1) | Vpore * (cm3·g−1) | pHZPC | |||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | TiO2 | CaO | MgO | ||||
CSW | 32.3 | 6.6 | 1.3 | <0.1 | 46.9 | 1.8 | 38.2 | 0.1295 | 10.3 |
CSWFe | 26.6 | 4.3 | 29.8 | 0.4 | 18.7 | 2.1 | 118.2 | 0.1802 | 7.5 |
TSW | 85.2 | 35.2 | 0.01 | 0.0 | 3.6 | 1.8 | 2.1 | 0.0049 | 6.2 |
TSWFe | 75.6 | 28.9 | 5.4 | 0.06 | 2.8 | 1.9 | 14.9 | 0.0033 | 6.7 |
C0 = 0.1 mM | C0 = 0.5 mM | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cation | Sorbent | qmax (mmol·g−1) | Qtheor * (mmol·g−1) | KL * (L·mmol−1) | R2 * | qmax (mmol·g−1) | Qtheor * (mmol·g−1) | KL * (L·mmol−1) | R2 * |
Pb2+ | CSW | 0.2 | 0.2 | 218.0 | 0.984 | 0.5 | 0.2 | 283.6 | 0.982 |
TSW | 0.2 | 0.1 | 182.4 | 0.940 | 0.1 | 0.1 | 910.3 | 0.953 | |
Cd2+ | CSW | 0.2 | 0.3 | 198.3 | 0.981 | 0.5 | 0.3 | 294.1 | 0.946 |
TSW | 0.07 | 0.05 | 28.5 | 0.980 | 0.1 | 0.1 | 26.2 | 0.911 | |
Cs+ | CSW | 7 × 10−3 | 0.01 | 5.3 | 0.892 | 0.01 | 0.02 | 0.7 | 0.880 |
TSW | 0.02 | 0.02 | 12.9 | 0.868 | 0.03 | 0.03 | 7.7 | 0.901 |
C0 = 0.1 mM | C0 = 0.5 mM | ||||||||
---|---|---|---|---|---|---|---|---|---|
Anion | Sorbent | qmax (mmol·g−1) | Qtheor * (mmol·g−1) | KL * (L·mmol−1) | R2 * | qmax (mmol·g−1) | Qtheor * (mmol·g−1) | KL * (L·mmol−1) | R2 * |
PO43− | CSW | 0.1 | 0.05 | 975.1 | 0.902 | 0.3 | 0.2 | 37 | 0.840 |
CSWFe | 0.2 | 0.1 | 3858.8 | 0.913 | 0.6 | 0.4 | 1963.8 | 0.814 | |
TSW | 0.2 | 0.03 | |||||||
TSWFe | 0.06 | 0.04 | 465.8 | 0.930 | 0.3 | 0.1 | 699.7 | 0.622 | |
AsO43− | CSW | 0.1 | 0.1 | 149.7 | 0.974 | 0.4 | 0.2 | 142.7 | 0.974 |
CSWFe | 0.1 | 0.2 | 3362.8 | 0.987 | 0.3 | 0.3 | 3717.4 | 0.958 | |
TSW | 0.01 | 0.01 | |||||||
TSWFe | 0.1 | 0.1 | 1050.2 | 0.833 | 0.1 | 0.1 | 462.8 | 0.979 | |
CrO42− | CSW | 0.01 | 0.05 | <1 | 0.966 | 0.03 | 0.02 | <1 | 0.959 |
CSWFe | 0.1 | 0.1 | 5.8 | 0.925 | 0.01 | 0.05 | 3.5 | 0.726 | |
TSW | <0.01 | 0.01 | |||||||
TSWFe | 0.08 | 0.1 | 6.4 | 0.972 | 0.07 | 0.1 | 3.2 | 0.899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doušová, B.; Bedrnová, E.; Reiterman, P.; Keppert, M.; Koloušek, D.; Lhotka, M.; Mastný, L. Adsorption Properties of Waste Building Sludge for Environmental Protection. Minerals 2021, 11, 309. https://doi.org/10.3390/min11030309
Doušová B, Bedrnová E, Reiterman P, Keppert M, Koloušek D, Lhotka M, Mastný L. Adsorption Properties of Waste Building Sludge for Environmental Protection. Minerals. 2021; 11(3):309. https://doi.org/10.3390/min11030309
Chicago/Turabian StyleDoušová, Barbora, Eva Bedrnová, Pavel Reiterman, Martin Keppert, David Koloušek, Miloslav Lhotka, and Libor Mastný. 2021. "Adsorption Properties of Waste Building Sludge for Environmental Protection" Minerals 11, no. 3: 309. https://doi.org/10.3390/min11030309
APA StyleDoušová, B., Bedrnová, E., Reiterman, P., Keppert, M., Koloušek, D., Lhotka, M., & Mastný, L. (2021). Adsorption Properties of Waste Building Sludge for Environmental Protection. Minerals, 11(3), 309. https://doi.org/10.3390/min11030309