Study on Optimization of Tungsten Ore Flotation Wastewater Treatment by Response Surface Method (RSM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Water
2.2. Experimental Methods
2.3. Chemicals and Analyses
3. Results and Discussion
3.1. Optimization of Coagulant
3.2. Design Results and Analysis of Central Combination Experiment
3.3. Response Surface Analysis
3.4. Verification of Values Predicted by Quadratic Regression Response Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.P.; Wu, S.N.; Song, X.J.; Cheng, X.N.; Zhang, X.; Jiao, X.F. Study on treatment of difficult settling wastewater from tungsten mineral processing. J. Min. Sci. Technol. 2020, 5, 687–695. [Google Scholar]
- Kang, J.; Chen, C.; Sun, W.; Tang, H.; Yin, Z.; Liu, R.; Hu, Y.; Nguyen, A.V. A significant improvement of scheelite recovery using recycled flotation wastewater treated by hydrometallurgical waste acid. J. Clean. Prod. 2017, 151, 419–426. [Google Scholar] [CrossRef]
- Liu, S.P.; Zhang, X.W.; Wei, F. Recovery of dissolved metals from beneficiation wastewater by electrochemical oxidation. Int. J. Electrochem. 2016, 11, 7173–7181. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, Z.; Sun, W.; Hu, Y. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process. 2016, 154, 10–15. [Google Scholar] [CrossRef]
- Wang, J.; Bai, J.; Yin, W.; Liang, X. Flotation separation of scheelite from calcite using carboxyl methyl cellulose as depressant. Miner. Eng. 2018, 127, 329–333. [Google Scholar] [CrossRef]
- Feng, Z.; He, F.; Qiu, T. Research status and prospects of mineral processing wastewater treatment and cyclic utilization technology. Met. Mine 2016, 7, 71–77. [Google Scholar]
- Kyzas, G.Z.; Matis, K.A. Flotation in water and wastewater treatment. Processes 2018, 6, 116–131. [Google Scholar] [CrossRef] [Green Version]
- Tian, C.; Deng, M.; Wang, H.; Lin, C. Cyclic utilization of wastewater from scheelite dressing. Hydrometall. China 2015, 34, 253–255. [Google Scholar]
- Liu, Y.; Yang, X.; Liu, F.; Yang, X.; Wang, F. Study on coagulation settlement test of mineral processing wastewater from a tungsten-molybdenum mine. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Shanghai, China, 16–18 September 2019. [Google Scholar]
- Dong, Y.H.; Chen, D.X.; Zhou, Y.C.; Hu, B.; Xiao, J. Application of combined flocculants on the reutilization of copper oxide ore dressing wastewater. Multipurp. Util. Miner. Resour. 2017, 1, 85–88. [Google Scholar]
- Yang, W.; Cao, H.; Zhang, K.; Li, M.Y.; Li, J.H. Study on the effect of reusing wastewater of a Copper-Zinc mine in Xinjiang on flotation index. Nonferrous Met. Eng. 2019, 9, 69–75. [Google Scholar]
- Li, H.S.; Liu, D.W.; Song, K.W. Impact of mineral processing wastewater on flotation process. Min. Metall. 2012, 21, 94–96. [Google Scholar]
- Feng, Z.B.; Qiu, T.S.; Chen, J.G. Application and development on treating mineral processing wastewater by coagulation. Nonferrous Met. Sci. Eng. 2016, 7, 86–92. [Google Scholar]
- Jiang, S.H.; Li, D.Q.; Zhou, C.B.; Zhang, L.M. Capabilities of stochastic response surface method and response surface method in reliability analysis. Struct. Eng. Mech. 2014, 49, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Chen, L.; Liu, R. Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system. Chemosphere 2016, 155, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Y.; Zhang, Y.M.; Liang, D.W. Applying hybrid coagulants and polyacrylamide flocculants in the treatment of high-phosphorus hematite flotation wastewater (HHFW): Optimization through response surface methodology. Sep. Purif. Technol. 2010, 76, 72–78. [Google Scholar] [CrossRef]
- Dawood, A.S.; Li, Y. Response surface methodology (RSM) for wastewater flocculation by a novel (AlCl3-PAM) hybrid polymer. In Proceedings of the Spring International Conference on Material Sciences and Technology, Xi’an, China, 27–30 May 2012; pp. 529–537. [Google Scholar]
- Gao, Y.; Gao, Z.; Sun, W.; Yin, Z.; Wang, J.; Hu, Y. Adsorption of a novel reagent scheme on scheelite and calcite causing an effective flotation separation. J. Colloid Interface Sci. 2017, 512, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Qin, W.; Chen, C.; Liu, R. Interactions between sodium oleate and polyoxyethylene ether and the application in the low-temperature flotation of scheelite at 283K. J. Surfactants Deterg. 2016, 19, 1289–1295. [Google Scholar] [CrossRef]
- Shao, P.; Qiu, Q.; Chen, H.J.; Zhu, J.Y.; Sun, P.L. Physicochemical stability of curcumin emulsions stabilized by Ulva fasciata polysaccharide under different metallic ions. Int. J. Biol. Macromol. 2017, 105, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.Q.; Liang, R.; Zhong, F.; Ye, A.Q.; Harjinde, S. Interactions between octenyl succinic anhydride modified starches and calcium in oil-in-water emulsions. Food Hydrocoll. 2018, 77, 30–39. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Zhou, S.Q.; Qin, F.H.; Ye, X.Y.; Zheng, K. Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM). J. Hazard. Mater. 2010, 180, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.L.; Gunst, R.F.; Hess, J.L. Statistical Design and Analysis of Experiments, Eighth Applications to Engineering and Science, 2nd ed.; Willey Press: New York, NY, USA, 2003; pp. 25–50. ISBN 978-04-7137-216-5. [Google Scholar]
Symbol | Independent variables | Range and Level | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
A | CaCl2 dosage (mg/L) | 200 | 400 | 600 |
B | PAM dosage (mg/L) | 20 | 30 | 40 |
C | pH value | 11 | 12 | 13 |
Run | A | B | C | Y (Turbidity Removal Ratio) (%) |
---|---|---|---|---|
1 | 600 | 40 | 13 | 99.52 |
2 | 400 | 30 | 12 | 90.13 |
3 | 400 | 30 | 13.68 | 83.96 |
4 | 400 | 30 | 10.32 | 87.68 |
5 | 600 | 20 | 13 | 99.58 |
6 | 400 | 30 | 12 | 92.31 |
7 | 400 | 13.18 | 12 | 96.51 |
8 | 200 | 20 | 11 | 79.71 |
9 | 200 | 20 | 13 | 75.83 |
10 | 736.36 | 30 | 12 | 99.99 |
11 | 600 | 40 | 11 | 99.71 |
12 | 400 | 30 | 12 | 91.37 |
13 | 63.64 | 30 | 12 | 73.53 |
14 | 600 | 20 | 11 | 99.79 |
15 | 200 | 40 | 11 | 86.17 |
16 | 400 | 46.82 | 12 | 97.64 |
17 | 400 | 30 | 12 | 91.42 |
18 | 400 | 30 | 12 | 91.27 |
19 | 400 | 30 | 12 | 92.71 |
20 | 200 | 40 | 13 | 82.80 |
Source of Variance | Sum of Square | Degree of Freedom (df) | Mean Square | F Value | P Value |
---|---|---|---|---|---|
Model | 1253.23 | 9 | 139.25 | 79.12 | <0.0001 (significant) |
A | 1029.79 | 1 | 1029.79 | 585.1 | <0.0001 |
B | 16.9 | 1 | 16.9 | 9.6 | 0.0113 |
C | 14.16 | 1 | 14.16 | 8.05 | 0.0177 |
AB | 23.02 | 1 | 23.02 | 13.08 | 0.0047 |
AC | 5.87 | 1 | 5.87 | 3.33 | 0.0979 |
BC | 0.035 | 1 | 0.035 | 0.02 | 0.8905 |
A2 | 35.11 | 1 | 35.11 | 19.95 | 0.0012 |
B2 | 62.72 | 1 | 62.72 | 35.63 | 0.0001 |
C2 | 51.65 | 1 | 51.65 | 29.35 | 0.0003 |
Residual | 17.6 | 10 | 1.76 | ||
Lack-of-fit test | 13.53 | 5 | 2.71 | 3.33 | 0.1065 (insignificant) |
Error | 4.07 | 5 | 0.81 | ||
Total dispersion | 1270.83 | 19 |
Parameter | Value |
---|---|
Correlation coefficient (R2) | 0.9862 |
Adjusted correlation coefficient (Radj2) | 0.9737 |
Prediction correlation coefficient | 0.9145 |
Signal-to-noise ratio | 31.14 |
Standard deviation | 1.33 |
Coefficient variation (CV) (%) | 1.46 |
CaCl2 Dosage (mg/L) | PAM Dosage (mg/L) | pH Value | Turbidity (NTU) | Turbidity Removal Ratio (%) |
---|---|---|---|---|
595 | 21 | 11.58 | 0.23 | 99.98 |
595 | 21 | 11.63 | 0.31 | 99.98 |
595 | 21 | 11.59 | 0.18 | 99.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Jiao, X.; Wu, S.; Song, X.; Yao, R. Study on Optimization of Tungsten Ore Flotation Wastewater Treatment by Response Surface Method (RSM). Minerals 2021, 11, 184. https://doi.org/10.3390/min11020184
Zhang L, Jiao X, Wu S, Song X, Yao R. Study on Optimization of Tungsten Ore Flotation Wastewater Treatment by Response Surface Method (RSM). Minerals. 2021; 11(2):184. https://doi.org/10.3390/min11020184
Chicago/Turabian StyleZhang, Liping, Xiaofei Jiao, Shengnian Wu, Xuejing Song, and Ruihan Yao. 2021. "Study on Optimization of Tungsten Ore Flotation Wastewater Treatment by Response Surface Method (RSM)" Minerals 11, no. 2: 184. https://doi.org/10.3390/min11020184
APA StyleZhang, L., Jiao, X., Wu, S., Song, X., & Yao, R. (2021). Study on Optimization of Tungsten Ore Flotation Wastewater Treatment by Response Surface Method (RSM). Minerals, 11(2), 184. https://doi.org/10.3390/min11020184