Stable Bromine Isotopic Composition of Coal Bed Methane (CBM) Produced Water, the Occurrence of Enriched 81Br, and Implications for Fluid Flow in the Midcontinent, USA
Abstract
:1. Introduction
2. Cherokee Basin and Study Site
3. Materials and Methods
4. Results
5. Discussion
5.1. Geochemical Relationships of Cherokee Basin CBM Produced Waters to Regional Aquifers
5.2. Sources and Processes along Line 1: Development of Enriched Br/Cl, High δ81Br, and Changing δ37Cl
5.2.1. Evaporation of Seawater or Dissolution of Evaporites
5.2.2. Gas–Halide Interactions
5.2.3. Water–Rock Interaction/Water–Organic Matter Interaction
6. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanor, J.S. Chemical Properties of Subsurface Brines—Origin and Migration of Subsurface Sedimentary Brines; Hanor, J.S., Ed.; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1987; Volume 21. [Google Scholar]
- Carpenter, A.B.; Carpenter, A.B. Origin and Chemical Evolution of Brines in Sedimentary Basins. In Proceedings of the SPE Annual Fall Technical Conference and Exhibition, Houston, TX, USA, 1–3 October 1978; Ohnson, K.S., Russell, J.A., Eds.; Society of Petroleum Engineers: Houston, TX, USA, 1978; pp. 60–77. [Google Scholar]
- Rittenhouse, G. Bromine in oil-field waters and its use in determining possibilities of origin of these waters. AAPG Bull. 1967, 51, 2430–2440. [Google Scholar] [CrossRef]
- Kharaka, Y.K.; Hanor, J.S. 7.14—Deep Fluids in Sedimentary Basins. In Treatise on Geochemistry, 2nd ed.; Drever, J.I., Ed.; Elsevier: Oxford, UK, 2014. [Google Scholar] [CrossRef]
- Davis, S.N.; Whittemore, D.O.; Fabryka-Martin, J. Uses of chloride/bromide ratios in studies of potable water. Ground Water 1998, 36, 338–350. [Google Scholar] [CrossRef]
- Whittemore, D.O. Fate and identification of oil-brine contamination in different hydrogeologic settings. Appl. Geochem. 2007, 22, 2099–2114. [Google Scholar] [CrossRef]
- McCaffrey, M.A.; Lazar, B.; Holland, H.D. The evaporation path of seawater and the coprecipitation of Br− and K+ with halite. J. Sediment. Petrol. 1987, 57, 928–937. [Google Scholar]
- Eggenkamp, H.G.M. Why are variations in bromine isotope compositions in the Earth’s history larger than chlorine isotope compositions? Ann. Univ. Mariae-Curie-Sklodowska Sect. AAA Phys. 2015, 70, 185–196. [Google Scholar]
- Eggenkamp, H.G.M.; Agrinier, P.; Coleman, M.L.; Bonifacie, M.; Ader, M.; Griffioen, J.; Strydom, J.; Sterpenich, J.; Gaucher, E.; Louvat, P. Halogen stable isotope studies in formation waters, a comparison between their chlorine and bromine isotope systematics. In Proceedings of the Second EAGE Workshop on Geochemistry in Petroleum Operations and Production, Muscat, Oman, 1–4 October 2018. [Google Scholar]
- Eggenkamp, H.G.M.; Coleman, M.L. Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples. Chem. Geol. 2000, 167, 393–402. [Google Scholar] [CrossRef]
- Frape, S.K.; Shouakar-Stash, O.; Paces, T.; Stotler, R. Geochemical and isotopic characteristics of the waters from crystalline and sedimentary structures of the Bohemian Massif. In Proceedings of the Water Rock Interaction 12, Kunming, China, 31 July–5 August 2007; pp. 727–733. [Google Scholar]
- Shouakar-Stash, O.; Alexeev, S.V.; Frape, S.K.; Alexeeva, L.P.; Drimmie, R.J. Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Appl. Geochem. 2007, 22, 589–605. [Google Scholar] [CrossRef]
- Stotler, R.L.; Frape, S.K.; Shouakar-Stash, O. An isotopic survey of d81Br and d37Cl of dissolved halides in the Canadian and Fennoscandian Shields. Chem. Geol. 2010, 274, 38–55. [Google Scholar] [CrossRef]
- Boschetti, T.; Toscani, L.; Shouakar-Stash, O.; Iacumin, P.; Venturelli, G.; Mucchino, C.; Frape, S.K. Salt waters of the Northern Apennine Foredeep Basin (Italy): Origin and evolution. Aquat. Geochem. 2011, 17, 71–108. [Google Scholar] [CrossRef]
- Bagheri, R.; Nadri, A.; Raeisi, E.; Eggenkamp, H.G.M.; Kazemi, G.A.; Montaseri, A. Hydrochemical and isotopic (d18O, d2H, 87Sr/86Sr, d37Cl and d81Br) evidence for the origin of saline formation water in a gas reservoir. Chem. Geol. 2014, 384, 62–75. [Google Scholar] [CrossRef]
- Chen, L.Z.; Ma, T.; Du, Y.; Yang, J.; Liu, L.; Shan, H.M.; Liu, C.F.; Cai, H.S. Origin and evolution of formation water in North China Plain based on hydrochemistry and stable isotopes (2H, 18O, 37Cl and 81Br). J. Geochem. Explor. 2014, 145, 250–259. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Chen, L.Z.; Shan, H.M.; Xiao, C.; Lu, Y.; Liu, C.F.; Cai, H.S. Genesis of salinized groundwater in Quaternary aquifer system of coastal plain, Laizhou Bay, China: Geochemical evidences, especially from bromine stable isotope. Appl. Geochem. 2015, 59, 155–165. [Google Scholar] [CrossRef]
- Eissa, M.A.; Thomas, J.M.; Pohll, G.; Shouakar-Stash, O.; Hershey, R.L.; Dawoud, M. Groundwater recharge and salinization in the arid coastal plain aquifer of the Wadi Watir delta, Sinai, Egypt. Appl. Geochem. 2016, 71, 48–62. [Google Scholar] [CrossRef]
- Yu, H.; Ma, T.; Du, Y.; Chen, L. Genesis of formation water in the northern sedimentary basin of South China Sea: Clues from hydrochemistry and stable isotopes (D, 18O, 37Cl and 81Br). J. Geochem. Explor. 2019, 196, 57–65. [Google Scholar] [CrossRef]
- Pinti, D.L.; Shouakar-Stash, O.; Castro, M.C.; Lopez-Hernández, A.; Hall, C.M.; Rocher, O.; Shibata, T.; Ramírez-Montes, M. The bromine and chlorine isotopic composition of the mantle as revealed by deep geothermal fluids. Geochim. Cosmochim. Acta 2020, 276, 14–30. [Google Scholar] [CrossRef]
- Hussain, M.; Al-Shaibani, A.; Al-Ramadan, K.; Wood, W.W. Geochemistry and isotopic analysis of brines in the coastal sabkhas, Eastern region, Kingdom of Saudi Arabia. J. Arid. Environ. 2020, 178, 104142. [Google Scholar] [CrossRef]
- Giunta, T.; Devauchelle, O.; Ader, M.; Locke, R.; Louvat, P.; Bonifacie, M.; Métivier, F.; Agrinier, P. The gravitas of gravitational isotope fractionation revealed in an isolated aquifer. Geochem. Perspect. Lett. 2017, 4, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Eggenkamp, H.G.M.; Coleman, M.L. The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes. Geochim. Cosmochim. Acta 2009, 73, 3539–3548. [Google Scholar] [CrossRef]
- Czarnacki, M.; Halas, S. Isotope fractionation in aqua-gas systems: Cl2-HCl-Cl−, Br2-HBr-Br− and H2S-S2−. Isot. Environ. Health Stud. 2012, 48, 55–64. [Google Scholar] [CrossRef]
- Eggenkamp, H.G.M.; Bonifacie, M.; Ader, M.; Agrinier, P. Experimental determination of stable chlorine and bromine isotope fractionation during precipitation of salt from a saturated solution. Chem. Geol. 2016, 433, 46–56. [Google Scholar] [CrossRef]
- Hanlon, C.; Stotler, R.; Frape, S.; Gwynne, R. Comparison of δ81Br and δ37Cl composition of volatiles, salt precipitates, and associated water in terrestrial evaporative saline lake systems. Isot. Environ. Health Stud. 2017, 53, 446–465. [Google Scholar] [CrossRef]
- Eggenkamp, H.G.M.; Louvat, P.; Griffioen, J.; Agrinier, P. Chlorine and bromine isotope evolution within a fully developed Upper Permian natural salt sequence. Geochim. Cosmochim. Acta 2019, 245, 316–326. [Google Scholar] [CrossRef] [Green Version]
- Horst, A.; Bonifacie, M.; Bardoux, G.; Richnow, H.H. Isotopic Characterization (2H, 13C, 37Cl, 81Br) of Abiotic Degradation of Methyl Bromide and Methyl Chloride in Water and Implications for Future Studies. Environ. Sci. Technol. 2019, 53, 8813–8822. [Google Scholar] [CrossRef] [PubMed]
- Leri, A.C.; Hakala, J.A.; Marcus, M.A.; Lanzirotti, A.; Reddy, C.M.; Myneni, S.C.B. Natural organobromine in marine sediments: New evidence of biogeochemical Br cycling. Glob. Biogeochem. Cycle 2010, 24, 15. [Google Scholar] [CrossRef] [Green Version]
- Malcolm, S.J.; Price, N.B. The behavior of iodine and bromine in estuarine surface sediments. Mar. Chem. 1984, 15, 263–271. [Google Scholar] [CrossRef]
- Price, N.B.; Calvert, S.E. The contrasting geochemical behaviors of iodine and bromine in recent sediments from Namibian Shelf. Geochim. Cosmochim. Acta 1977, 41, 1769–1775. [Google Scholar] [CrossRef]
- Öberg, G. The natural chlorine cycle—fitting the scattered pieces. Appl. Microbiol. Biotechnol. 2002, 58, 565–581. [Google Scholar] [CrossRef]
- Cincinelli, A.; Pieri, F.; Zhang, Y.; Seed, M.; Jones, K.C. Compound Specific Isotope Analysis (CSIA) for chlorine and bromine: A review of techniques and applications to elucidate environmental sources and processes. Environ. Pollut. 2012, 169, 112–127. [Google Scholar] [CrossRef]
- Kaufmann, R.S. Bromine. In Geochemistry; Marshall, C.P., Fairbridge, R.W., Eds.; Springer: Dordrecht, The Netherlands, 1998; p. 49. [Google Scholar]
- Leri, A.C.; Ravel, B. Abiotic bromination of soil organic matter. Environ. Sci. Technol. 2015, 49, 13350–13359. [Google Scholar] [CrossRef] [Green Version]
- Leri, A.C.; Myneni, S.C.B. Natural organobromine in terrestrial ecosystems. Geochim. Cosmochim. Acta 2012, 77, 1–10. [Google Scholar] [CrossRef]
- Vainikka, P.; Hupa, M. Review on bromine in solid fuels. Part 1: Natural occurrence. Fuel 2012, 95, 1–14. [Google Scholar] [CrossRef]
- Horst, A.; Holmstrand, H.; Andersson, P.; Thornton, B.F.; Wishkerman, A.; Keppler, F.; Gustafsson, O. Stable bromine isotopic composition of methyl bromide released from plant matter. Geochim. Cosmochim. Acta 2014, 125, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Land, L.S.; Prezbindowski, D.R. The origin and evolution of saline formation water, lower Cretaceous carbonates, south-central Texas, USA. J. Hydrol. 1981, 54, 51–74. [Google Scholar] [CrossRef]
- Edmunds, W.M. Bromine geochemistry of British groundwaters. Mineral. Mag. 1996, 60, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, W.M. Geochemistry of brines in the coal measures of northeast England. Trans. Inst. Min. Metall. Sect. B Appl. Earth Sci. 1975, 84, B39–B52. [Google Scholar]
- Vassilev, S.V.; Eskenazy, G.M.; Vassileva, C.G. Contents, modes of occurrence and origin of chlorine and bromine in coal. Fuel 2000, 79, 903–921. [Google Scholar] [CrossRef]
- Kirk, M.F.; Wilson, B.H.; Marquart, K.A.; Zeglin, L.H.; Vinson, D.S.; Flynn, T.M. Solute concentrations influence microbial methanogenesis in coal-bearing strata of the Cherokee basin, USA. Front. Microbiol. 2015, 6, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, J.P. Stratigraphy, Depositional Environments and Coalbed Methane Resources of Cherokee Group Coals (Middle Pennsylvanian)—Southeastern Kansas; Open-File Report 2003-82; Kansas Geological Survey: Lawrence, KS, USA, 2003; Available online: www.kgs.ku.edu/PRS/publication/ofr2003-82/ofr2003-82.pdf (accessed on 28 March 2021).
- Bostic, J.L.; Brady, L.L.; Howes, M.; Burchett, R.R.; Pierce, B.S. Investigation of the Coal Properties and the Potential for Coal-Bed Methane in the Forest City Basin, Open-File Report no. 93–576; U.S. Geological Survey: Reston, VA, USA, 1993; p. 45. [Google Scholar]
- Newell, K.D.; Newell, K.D.; Birdie, T.R. Geothermal Anomalies on the Eastern-Flank of the Cherokee Basin; Midcontinent Geoscience: Southeastern Kansas, KS, USA, 2021. [Google Scholar]
- Jorgenson, D.G.; Helgesen, J.O.; Imes, J.L. Regional Aquifers in Kansas, Nebraska, and Parts of Arkansas, Colorado, Missouri, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming—Geohydrologic Framework, Professional Paper no. 1414–B.; U.S. Geological Survey: Reston, VA, USA, 1993. [Google Scholar]
- Macfarlane, P.A. Revisions to the nomenclature for Kansas aquifers. Kans. Geol. Surv. Bull. 2000, 244, 1–14. [Google Scholar]
- Wojcik, K.M.; Goldstein, R.H.; Walton, A.W. History of diagenetic fluids in a distant foreland area, Middle and Upper Pennsylvanian, Cherokee Basin, Kansas, USA—fluid inclusion evidence. Geochim. Cosmochim. Acta 1994, 58, 1175–1191. [Google Scholar] [CrossRef]
- Wojcik, K.M.; Goldstein, R.H.; Walton, A.W.; Montanez, I.P.; Gregg, J.M.; Shelton, K.L. Regional and Local Controls of Diagenesis Driven by Basin-Wide Flow System: Pennsylvanian Sandstones and Limestones, Cherokee Basin, Southeastern Kansas. In Basin-Wide Diagenetic Patterns: Integrated Petrologic, Geochemical, and Hydrologic Considerations; SEPM Society for Sedimentary Geology: Tulsa, OK, USA, 1997; Volume 57. [Google Scholar]
- Walton, A.W.; Wojcik, K.M.; Goldstein, R.H.; Barker, C.E. Diagenesis of Upper Carboniferous rocks in the Ouachita foreland shelf in mid-continent USA: An overview of widespread effects of a Variscan-equivalent orogeny. Geol. Rundsch. 1995, 84, 535–551. [Google Scholar] [CrossRef]
- Goldstein, R.H.; King, B.D.; Watney, W.L.; Pugliano, T.M. Drivers and history of late fluid flow impact on Midcontinent reservoir rocks. In Mississippian Reservoirs of the Midcontinent: AAPG Memoir 122; Grammer, G.M., Gregg, J.M., Puckette, J.O., Jaiswal, P., Mazzullo, S.J., Pranter, M.J., Goldstein, R.H., Eds.; The American Association of Petroleum Geologists: Tulsa, OK, USA, 2019; pp. 417–450. [Google Scholar] [CrossRef]
- Coveney, R.M., Jr.; Ragan, V.M.; Brannon, J.C. Temporal benchmarks for modeling Phanerozoic flow of basinal brines and hydrocarbons in the southern Midcontinent based on radiometrically dated calcite. Geology 2000, 28, 795–798. [Google Scholar] [CrossRef]
- Barker, C.E.; Goldstein, R.H.; Hatch, J.R.; Walton, A.W.; Wojcik, K.M. Burial history and thermal maturation of Pennsylvanian rocks, Cherokee Basin, southeastern Kansas. In Proceedings of the Source Rocks in the Southern Midcontinent, 1990 Symposium, Norman, OK, USA, 1990; pp. 299–310. [Google Scholar]
- Musgrove, M.; Banner, J.L. Regional Ground-Water Mixing and the Origin of Saline Fluids: Midcontinent, United States. Science 1993, 259, 1877–1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, T.R.; Merriam, D.F.; Bartley, J.D. Use of relational databases to evaluate regional petroleum accumulation, groundwater flow, and CO2 sequestration in Kansas. AAPG Bull. 2005, 89, 1607–1627. [Google Scholar] [CrossRef]
- Coleman , J.L., Jr.; Cahan, S.M. Preliminary Catalog of the Sedimentary Basins of the United States, no. 2012–1111; U.S. Geological Survey: Reston, VA, USA, 2012; p. 31. [Google Scholar]
- Jenden, P.D.; Newell, K.D.; Kaplan, I.R.; Watney, W.L. Composition and stable isotope geochemistry of natural gases from Kansas, Midcontinent, USA. Chem. Geol. 1988, 71, 117–147. [Google Scholar] [CrossRef]
- Bethke, C.M.; Marshak, S. Brine migrations across North America—The plate-tectonics of groundwater. Annu. Rev. Earth Planet. Sci. 1990, 18, 287–315. [Google Scholar] [CrossRef]
- Newell, K.D.; Sawin, R.S.; Brady, L.L. Natural Gas from Coal in Eastern Kansas. Available online: http://www.kgs.ku.edu/Publications/pic19/pic19_1.html (accessed on 26 March 2021).
- Lange, J.P.; Carr, T.R.; Newell, K.D. Stratigraphy, Depositional Environments and Coalbed Methane Resources of Cherokee Group Coals (Middle Pennsylvanian)—Southeastern Kansas; Open-File Report 2003-28; Kansas Geological Survey: Lawrence, KS, USA, 2003; Available online: http://129.237.140.42/PRS/publication/2003/ofr2003-28/P3-04.html (accessed on 28 March 2021).
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- McIntosh, J.; Martini, A.; Petsch, S.; Huang, R.; Nuesslein, K. Biogeochemistry of the Forest City Basin coalbed methane play. Int. J. Coal Geol. 2008, 76, 111–118. [Google Scholar] [CrossRef]
- EPA. Coalbed Methane Extraction: Detailed Study Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2010; p. 91.
- Kirk, M.F.; Martini, A.M.; Breecker, D.O.; Colman, D.R.; Takacs-Vesbach, C.; Petsch, S.T. Impact of commercial natural gas production on geochemistry and microbiology in a shale-gas reservoir. Chem. Geol. 2012, 332, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Stenger, V.A.; Shrader, S.A.; Beshgetoor, A.W. Analytical Methods for Methyl Bromide. Ind. Eng. Chem. Anal. Ed. 1939, 11, 121–125. [Google Scholar] [CrossRef]
- Shouakar-Stash, O.; Drimmie, R.J.; Frape, S.K. Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 121–127. [Google Scholar] [CrossRef]
- Shouakar-Stash, O.; Frape, S.K.; Drimmie, R.J. Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry. Anal. Chem. 2005, 77, 4027–4033. [Google Scholar] [CrossRef]
- McNutt, R.H.; Frape, S.K.; Fritz, P.; Jones, M.G.; Macdonald, I.M. The 87Sr/86Sr values of Canadian Shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology. Geochim. Cosmochim. Acta 1990, 54, 205–215. [Google Scholar] [CrossRef]
- Louvat, P.; Bonifacie, M.; Giunta, T.; Michel, A.; Coleman, M. Determination of bromine stable isotope ratios from saline solutions by “wet plasma” MC-ICPMS Including a comparison between high- and low-resolution modes, and three introduction systems. Anal. Chem. 2016, 88, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Shouakar-Stash, O. Evaluation of Stable Chlorine and Bromine Isotopes in Sedimentary Formation Fluids. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2008. [Google Scholar]
- Skuce, M.; Longstaffe, F.J.; Carter, T.R.; Potter, J. Isotopic fingerprinting of groundwaters in southwestern Ontario: Applications to abandoned well remediation. Appl. Geochem. 2015, 58, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Frape, S.K. Chlorine and Bromine Isotopic Analyses of Groundwater: DGR-3 and DGR-4. NWMO-TR-2015-20, NWMO-TR-2015-20; Nuclear Waste Management Organization: Toronto, ON, Canada, 2015; p. 41. [Google Scholar]
- Scheerhorn, R.V. Regional Geochemical Study of the Western Interior Plains Aquifer System and the Great Plains Aquifer System in the Mid-Continent, United States. Ph.D. Dissertation, University of Texas, Austin, TX, USA, 2006. [Google Scholar]
- Musgrove, M. Origin, evolution, and mixing of saline and dilute groundwaters in three regional flow systems, midcontinent, U.S.A. Master’s Thesis, University of Texas, Austin, TX, USA, 1993. [Google Scholar]
- Chaudhuri, S. Strontium isotopic composition of several oilfield brines from Kansas and Colorado. Geochim. Cosmochim. Acta 1978, 42, 329–331. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Broedel, V.; Clauer, N. Strontium isotopic evolution of oil-field waters from carbonate reservoir rocks in Bindley Field, central Kansas, USA. Geochim. Cosmochim. Acta 1987, 51, 45–53. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Broedel, V.; Nicastro, L.; Robinson, R. Strontium isotopic variations of oil-field waters—A clue to migration history of oils. AAPG Bull. Am. Assoc. Petr. Geol. 1983, 67, 1323–1324. [Google Scholar]
- Chaudhuri, S.; Clauer, N. Strontium isotopic compositions and potassium and rubidium contents of formation waters in sedimentary basins—clues to the origin of the solutes. Geochim. Cosmochim. Acta 1993, 57, 429–437. [Google Scholar] [CrossRef]
- Banner, J.L.; Wasserburg, G.J.; Dobson, P.F.; Carpenter, A.B.; Moore, C.H. Isotopic and trace-element constraints on the origin and evolution of saline groundwaters from central Missouri. Geochim. Cosmochim. Acta 1989, 53, 383–398. [Google Scholar] [CrossRef]
- Wood, H.K.; Macpherson, G.L. Sources of Sr and implications for weathering of limestone under tallgrass prairie, northeastern Kansas. Appl. Geochem. 2005, 20, 2325–2342. [Google Scholar] [CrossRef]
- King, B.D.; Goldstein, R.H. History of hydrothermal fluid flow in the midcontinent, USA: The relationship between inverted thermal structure, unconformities and porosity distribution. Geol. Soc. Lond. Spec. Publ. 2018, 435, 283–320. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S.; Gregg, J.M.; Shelton, K.L.; Appold, M.S.; Puckette, J.O. Influence of late diagenetic fluids on Mississippian carbonate rocks on the Cherokee-Ozark Platform, northeast Oklahoma, northwest Arkansas, southwest Missouri, and southeast Kansas. In AAPG Memoir 122: Mississippian Reservoirs of the Midcontinent; Grammer, G.M., Gregg, J.M., Puckette, J.O., Jaiswal, P., Mazzullo, S.J., Pranter, M.J., Goldstein, R.H., Eds.; The American Association of Petroleum Geologists: Tulsa, OK, USA, 2019; pp. 323–352. [Google Scholar]
- Hovorka, S.D.; Knauth, L.P.; Fisher, R.S.; Gao, G. Marine to nonmarine facies transition in Permian evaporites of the Palo Duro Basin, Texas: Geochemical response. GSA Bull. 1993, 105, 1119–1134. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Clauer, N. History of Marine Evaporites: Constraints from Radiogenic Isotopes; Springer: Berlin/Heidelberg, Germany, 1992; pp. 177–198. [Google Scholar]
- Veizer, J. Strontium isotopes in seawater through time. Annu. Rev. Earth Planet. Sci. 1989, 17, 141–167. [Google Scholar] [CrossRef]
- Denison, R.E.; Koepnick, R.B.; Burke, W.H.; Hetherington, E.A.; Fletcher, A. Construction of the Mississippian, Pennsylvanian and Permian seawater 87Sr/86Sr curve. Chem. Geol. 1994, 112, 145–167. [Google Scholar] [CrossRef]
- Denison, R.E.; Koepnick, R.B.; Burke, W.H.; Hetherington, E.A. Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve. Chem. Geol. 1998, 152, 325–340. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Clauer, N. Fluctuations of isotopic composition of strontium in seawater during the Phanerozoic Eon. Chem. Geol. 1986, 59, 293–303. [Google Scholar] [CrossRef]
- Hanor, J.S. Physical and chemical controls on the composition of waters in sedimentary basins. Mar. Pet. Geol. 1994, 11, 31–45. [Google Scholar] [CrossRef]
- Eggenkamp, H.G.M.; Kreulen, R.; Van Groos, A.F.K. Chlorine stable isotope fractionation in evaporites. Geochim. Cosmochim. Acta 1995, 59, 5169–5175. [Google Scholar] [CrossRef]
- Eastoe, C.J.; Peryt, T. Stable chlorine isotope evidence for non-marine chloride in Badenian evaporites, Carpathian mountain region. Terra Nova 1999, 11, 118–123. [Google Scholar] [CrossRef]
- Eastoe, C.J.; Peryt, T.M.; Petrychenko, O.Y.; Geisler-Cussey, D. Stable chlorine isotopes in Phanerozoic evaporites. Appl. Geochem. 2007, 22, 575–588. [Google Scholar] [CrossRef]
- Eastoe, C.J.; Long, A.; Land, L.S.; Kyle, J.R. Stable chlorine isotopes in halite and brine from the Gulf Coast Basin: Brine genesis and evolution. Chem. Geol. 2001, 176, 343–360. [Google Scholar] [CrossRef]
- Eastoe, C.J.; Long, A.; Knauth, L.P. Stable chlorine isotopes in the Palo Duro Basin, Texas: Evidence for preservation of Permian evaporite brines. Geochim. Cosmochim. Acta 1999, 63, 1375–1382. [Google Scholar] [CrossRef]
- Eastoe, C.J. Stable chlorine isotopes in arid non-marine basins: Instances and possible fractionation mechanisms. Appl. Geochem. 2016, 74, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.B.; Ma, H.Z.; Wei, H.Z.; Xu, J.X.; Li, T.W. Chlorine, sulfur and oxygen isotopic constraints on ancient evaporite deposit in the Western Tarim Basin, China. Geochem. J. 2006, 40, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Eggenkamp, H.G.M. Comment on “Stable isotope fractionation of chlorine during the precipitation of single chloride minerals’’ by Luo, C.-g., Xiao, Y.-k., Wen, H.-j., Ma, H.-z., Ma, Y.-q., Zhang, Y.-l., Zhang, Y.-x. and He, M.-y. Applied Geochemistry 47 (2014) 141–149. Appl. Geochem. 2015, 54, 111–116. [Google Scholar] [CrossRef]
- Benison, K.C.; Goldstein, R.H. Permian paleoclimate data from fluid inclusions in halite. Chem. Geol. 1999, 154, 113–132. [Google Scholar] [CrossRef]
- Benison, K.C.; Goldstein, R.H. Evaporites and siliciclastics of the Permian Nippewalla Group of Kansas, USA: A case for non-marine deposition in saline lakes and saline pans. Sedimentology 2001, 48, 165–188. [Google Scholar] [CrossRef] [Green Version]
- Ercan, H.Ü.; Karakaya, M.Ç.; Bozdağ, A.; Karakaya, N.; Delikan, A. Origin and evolution of halite based on stable isotopes (δ37Cl, δ81Br, δ11B and δ7Li) and trace elements in Tuz Gölü Basin, Turkey. Appl. Geochem. 2019, 105, 17–30. [Google Scholar] [CrossRef]
- Horst, A.; Thornton, B.F.; Holmstrand, H.; Andersson, P.; Crill, P.M.; Gustafsson, O. Stable bromine isotopic composition of atmospheric CH3Br. Tellus Ser. B Chem. Phys. Meteorol. 2013, 65, 8. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Chlorine in coal: A review. Int. J. Coal Geol. 2006, 67, 127–144. [Google Scholar] [CrossRef]
- Spears, D.A. A review of chlorine and bromine in some United Kingdom coals. Int. J. Coal Geol. 2005, 64, 257–265. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Palmer, C.A.; Wang, P. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 2018, 185, 138–160. [Google Scholar] [CrossRef]
- Huggins, F.E.; Huffman, G.P. Chlorine in coal: An XAFS spectroscopic investigation. Fuel 1995, 74, 556–569. [Google Scholar] [CrossRef]
- Strąpoć, D.; Mastalerz, M.; Dawson, K.; Macalady, J.; Callaghan, A.V.; Wawrik, B.; Turich, C.; Ashby, M. Biogeochemistry of Microbial Coal-Bed Methane. Annu. Rev. Earth Planet. Sci. 2011, 39, 617–656. [Google Scholar] [CrossRef]
- Woods, A.; Kuntze, K.; Gelman, F.; Halicz, L.; Nijenhuis, I. Variable dual carbon-bromine stable isotope fractionation during enzyme-catalyzed reductive dehalogenation of brominated ethenes. Chemosphere 2018, 190, 211–217. [Google Scholar] [CrossRef] [PubMed]
Well ID 1 | Group | Year | δ37Cl | Stdv | δ81Br | Stdv | 87Sr/86Sr | 2σ |
---|---|---|---|---|---|---|---|---|
SMOC | SMOB | NIST987 | ||||||
1 | A | 2013 | −0.04 | 0.07 | 2.56 | 0.09 | 0.708886 | 0.000015 |
2 | A | 2013 | −0.81 | 0.08 | 2.37 | 0.17 | 0.708797 | 0.000015 |
3 | A | 2013 | 0.68 | 0.10 | 2.71 | 0.09 | 0.708944 | 0.000015 |
4 | B | 2013 | −0.18 | 0.06 | 0.75 | 0.03 | 0.710558 | 0.000014 |
5 | A | 2013 | −0.59 | 0.08 | 2.43 | 0.04 | 0.708817 | 0.000015 |
6 | B | 2013 | 0.04 | 0.10 | 0.72 | 0.04 | 0.710477 | 0.000014 |
6 | B | 2017 | −0.25 | 0.03 | −0.63 | 0.13 | 0.710266 | 0.000015 |
6 2 | B | 2017 | −0.81 | 0.05 | ||||
7 | B | 2013 | −0.03 | 0.10 | −0.01 | 0.06 | 0.710726 | 0.000015 |
8 | A | 2013 | 0.07 | 0.09 | 2.35 | 0.13 | 0.708936 | 0.000015 |
9 | A | 2013 | 0.05 | 0.05 | 2.16 | 0.03 | 0.708922 | 0.000015 |
10 | A | 2013 | 0.09 | 0.08 | 1.10 | 0.05 | 0.709055 | 0.000015 |
11 | B | 2013 | −0.30 | 0.10 | 0.15 | 0.07 | 0.711091 | 0.000015 |
12 | A | 2013 | 0.27 | 0.09 | 2.57 | 0.11 | 0.708826 | 0.000015 |
13 | A | 2013 | 0.16 | 0.10 | 2.46 | 0.05 | 0.709048 | 0.000015 |
13 | A | 2017 | −0.03 | 0.06 | 3.17 | 0.10 | 0.708862 | 0.000011 |
14 | no water production | |||||||
15 | B | 2013 | 0.43 | 0.09 | 2.43 | 0.05 | 0.708999 | 0.000016 |
16 | B | 2013 | 0.11 | 0.07 | 1.86 | 0.01 | 0.708906 | 0.000016 |
Well ID 1 | Year | pH | Temp. | Sp. Cond. | Cl | Br | SO4 | Na | K | Mg | Ca | Sr |
---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | mS/cm | mg/L | ||||||||||
13 | 2017 | 6.56 | 21.1 | 57.4 | 25,400 | 110 | BQL | 14,200 | 110 | 640 | 1100 | 390 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stotler, R.L.; Kirk, M.F.; Newell, K.D.; Goldstein, R.H.; Frape, S.K.; Gwynne, R. Stable Bromine Isotopic Composition of Coal Bed Methane (CBM) Produced Water, the Occurrence of Enriched 81Br, and Implications for Fluid Flow in the Midcontinent, USA. Minerals 2021, 11, 358. https://doi.org/10.3390/min11040358
Stotler RL, Kirk MF, Newell KD, Goldstein RH, Frape SK, Gwynne R. Stable Bromine Isotopic Composition of Coal Bed Methane (CBM) Produced Water, the Occurrence of Enriched 81Br, and Implications for Fluid Flow in the Midcontinent, USA. Minerals. 2021; 11(4):358. https://doi.org/10.3390/min11040358
Chicago/Turabian StyleStotler, Randy L., Matthew F. Kirk, K. David Newell, Robert H. Goldstein, Shaun K. Frape, and Rhys Gwynne. 2021. "Stable Bromine Isotopic Composition of Coal Bed Methane (CBM) Produced Water, the Occurrence of Enriched 81Br, and Implications for Fluid Flow in the Midcontinent, USA" Minerals 11, no. 4: 358. https://doi.org/10.3390/min11040358
APA StyleStotler, R. L., Kirk, M. F., Newell, K. D., Goldstein, R. H., Frape, S. K., & Gwynne, R. (2021). Stable Bromine Isotopic Composition of Coal Bed Methane (CBM) Produced Water, the Occurrence of Enriched 81Br, and Implications for Fluid Flow in the Midcontinent, USA. Minerals, 11(4), 358. https://doi.org/10.3390/min11040358