Measurement on Diffusion Coefficients and Isotope Fractionation Factors by a Through-Diffusion Experiment
Abstract
:1. Introduction
2. Experimental Method
2.1. Samples
2.2. Through-Diffusion Experiment
- (1)
- Form sample to dimensions of about φ50 mm × H 10 mm.
- (2)
- Desalinization; dip the sample into NaNO3 solution.
- (3)
- Set the sample on the apparatus shown in Figure 1.
- (4)
- Pour 500 mL of background solution into the low-concentration tank and check that there is no flow.
- (5)
- Pour 500 mL of tracer into the high-concentration tank.
- (6)
- Sample 2 mL of solution from the low- and high-concentration tanks every few days.
- (7)
- Increase the amount of sampling solution to 20 mL for isotope measurement when the Cl concentration is higher than a few hundred mg/L.
- (8)
- End the experiment after taking samples approximately ten times.
2.3. Effective Porosity Experiment
- (1)
- Dip the sample into the high-concentration solution containing HDO, Cl, Br, and NAP.
- (2)
- Sample from the high-concentration solution after the concentration stabilizes.
- (3)
- Remove the sample and dip it into the low-concentration solution
- (4)
- Sample from the low-concentration solution after the concentration stabilizes.
- (5)
- Remove the sample and measure its weight when saturated.
- (6)
- Dry the sample in an oven at 110 °C for 24 h and measure the dry weight.
2.4. Measurements
3. Experimental Results
3.1. Through-Diffusion Experiment
3.2. Effective Porosity Experiment
4. Discussion
4.1. Corrections for Natural Samples Bound by Porous Stone and Glass Filters
4.2. Diffusion Coefficient
4.3. Isotope Fractionation Factor
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mazurek, M.; Alt-Epping, P.; Gimi, T.; Niklaus Waber, H.; Bath, A.; Gimmi, T. OECD Nuclear Energy Agency. In Natural Tracer Profiles across Argillaceous Formations: The CLAYTRAC Project; OECD Nuclear Energy Agency: Paris, France, 2009; 361p. [Google Scholar]
- Mazurek, M.; Alt-epping, P.; Bath, A.; Gimmi, T.; Waber, H.N.; Buschaert, S.; De Cannière, P.; De Craen, M.; Gautschi, A.; Savoye, S.; et al. Applied Geochemistry Natural tracer profiles across argillaceous formations. Appl. Geochem. 2011, 26, 1035–1064. [Google Scholar] [CrossRef]
- Hendry, M.J.; Solomon, D.K.; Person, M.; Wassenaar, L.I.; Gardner, W.P.; Clark, I.D.; Mayer, K.U.; Kunimaru, T.; Nakata, K.; Hasegawa, T. Can argillaceous formations isolate nuclear waste? Insights from isotopic, noble gas, and geochemical profiles. Geofluids 2015, 15, 381–386. [Google Scholar] [CrossRef]
- Mills, R. Self-diffusion in normal and heavy water in the range 1–45°. J. Phys. Chem. 1973, 77, 685–688. [Google Scholar] [CrossRef]
- Yuan-Hui, L.; Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 1974, 38, 703–714. [Google Scholar] [CrossRef]
- Rübel, A.P.; Sonntag, C.; Lippmann, J.; Pearson, F.J.; Gautschi, A. Solute transport in formations of very low permeability: Profiles of stable isotope and dissolved noble gas contents of pore water in the Opalinus Clay, Mont Terri, Switzerland. Geochim. Cosmochim. Acta 2002, 66, 1311–1321. [Google Scholar] [CrossRef]
- Pearson, F.J.; Arcos, D.; Bath, A.; Boisson, J.Y.; Fernández, A.M.; Gäbler, H.E.; Gaucher, E.; Gautschi, A.; Griffault, L.; Hernán, P.; et al. Mont Terri Project—Geochemistry of Water in the Opalinus Clay Formation at the Mont Terri Rock Laboratory—Reports of the Federal Office of Water and Geology (FOWG); Geology Series No.5; FOWG: Bern-lttigen, Switzerland, 2003; ISBN 3-906723-59-3. [Google Scholar]
- De Craen, M.; Wemaere, I.; Labat, S.; Van Geet, M. Geochemical Analyses of Boom Clay Pore Water and Underlying Aquifers in the Essen-1 Borehole; SCK•CEN: Mol, Belgium, 2006. [Google Scholar]
- Desaulniers, D.E.; Kaufmann, R.S.; Cherry, J.A.; Bentley, H.W. 37Cl-35Cl variations in a diffusion-controlled groundwater system. Geochim. Cosmochim. Acta 1986, 50, 1757–1764. [Google Scholar] [CrossRef]
- Eggenkamp, H.G.M.; Groos, A.F.K. Van Chlorine stable isotopes in carbonatites: Evidence for isotopic heterogeneity in the mantle. Chem. Geol. 1997, 140, 137–143. [Google Scholar] [CrossRef]
- Lavastre, V.; Jendrzejewski, N.; Agrinier, P.; Marc Javoy, M.E. Chlorine transfer out of a very low permeability clay sequence (Paris Basin, France). Geochim. Cosmochim. Acta 2005, 69, 4949–4961. [Google Scholar] [CrossRef]
- Rebeix, R.; Le Gal La Salle, C.; Jean-Baptiste, P.; Lavastre, V.; Fourré, E.; Bensenouci, F.; Matray, J.M.; Landrein, P.; Shouakar-Stash, O.; Frape, S.K.; et al. Chlorine transport processes through a 2000m aquifer/aquitard system. Mar. Pet. Geol. 2014, 53, 102–116. [Google Scholar] [CrossRef]
- Hasegawa, T.; Nakata, K.; Mahara, Y.; Habermehl, M.A.; Oyama, T.; Higashihara, T. Characterization of a diffusion-dominant system using chloride and chlorine isotopes (36Cl, 37Cl) for the confining layer of the Great Artesian Basin, Australia. Geochim. Cosmochim. Acta 2016, 192, 279–294. [Google Scholar] [CrossRef]
- Habermehl, M.A. The great artesian basin. J. Geol. Soc. Aust. 1980, 5, 9–38. [Google Scholar] [CrossRef]
- Ishii, E.; Sanada, H.; Iwatsuki, T.; Sugita, Y.; Kurikami, H. Mechanical strength of the transition zone at the boundary between opal-A and opal-CT zones in siliceous rocks. Eng. Geol. 2011, 122, 215–221. [Google Scholar] [CrossRef]
- Hasegawa, T.; Nakata, K. A measurement method for isotope fractionation of35Cl and37Cl by a conventional through-diffusion experiment. Chem. Geol. 2018, 483, 247–253. [Google Scholar] [CrossRef]
- Eggenkamp, H.G.M.; Coleman, M.L. The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes. Geochim. Cosmochim. Acta 2009, 73, 3539–3548. [Google Scholar] [CrossRef]
- Drimmie, R.J.; Shouakar-stash, O.; Drimmie, R.J.; Frape, S.K. Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. RCM 2005, 19, 121–127. [Google Scholar] [CrossRef]
- Shouakar-Stash, O.; Frape, S.K.; Drimmie, R.J. Determination of Bromine Stable Isotopes Using Continuous-Flow Isotope Ratio Mass Spectrometry. Anal. Chem. 2005, 77, 4027–4033. [Google Scholar] [CrossRef] [PubMed]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1975. [Google Scholar] [CrossRef]
- Van Loon, L.R.; Glaus, M.A.; Mu, W. Anion exclusion effects in compacted bentonites: Towards a better understanding of anion diffusion. Appl. Geochem. 2007, 22, 2536–2552. [Google Scholar] [CrossRef]
- Bourg, I.C.; Sposito, G. Isotopic fractionation of noble gases by diffusion in liquid water: Molecular dynamics simulations and hydrologic applications. Geochim. Cosmochim. Acta 2008, 72, 2237–2247. [Google Scholar] [CrossRef]
- Eggenkamp, H. The Geochemistry of Stable Chlorine and Bromine Isotopes; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783642285066. [Google Scholar]
Tracer | Unit | High | Low |
---|---|---|---|
HDO | δ2H (‰VSMOW) | 23,000 | −65 |
H218O | δ18O (‰VSMOW) | −13.2 | 1000 |
Na | mg/L | 0 | 28,000 |
NO3 | 0 | 74,000 | |
Sr | 29,000 | 0 | |
Cl | 24,000 | 0 | |
Cs | 8300 | 0 | |
Br | 5000 | 0 | |
NAP | 10 | 0 |
Sample Name and Depth | Diffusion Coefficient (m2/s) | Fractionation Factor | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Low Concentration Tank | High Concentration Tank | Low Concentration Tank | ||||||||||||||
HDO | Cl− | Br− | NAP | δ18O | NO3− | Cl isotope | n | Br isotope | n | |||||||
Artificial sample | Ceramic disk | 1 Bar | 9.3 × 10−11 | 8.3 × 10−11 | 7.9 × 10−11 | 2.1 × 10−11 | N.M. | 1.0016 | ±0.0002 | 4 | 1.0007 | ±0.0000 | 4 | |||
3 Bar | 6.5 × 10−11 | 5.3 × 10−11 | 5.0 × 10−11 | 9.7 × 10−12 | 1.0016 | ±0.0001 | 4 | 1.0008 | ±0.0000 | 4 | ||||||
5 Bar | 8.3 × 10−11 | 7.1 × 10−11 | 7.7 × 10−11 | 1.6 × 10−11 | 1.0016 | ±0.0002 | 4 | 1.0008 | ±0.0000 | 4 | ||||||
15 Bar | 8.5 × 10−11 | 7.4 × 10−11 | 8.1 × 10−11 | 2.1 × 10−11 | 1.0017 | ±0.0001 | 4 | 1.0007 | ±0.0001 | 4 | ||||||
Glass filter | No. 1 | 3.7 × 10−10 | 3.5 × 10−10 | 3.6 × 10−10 | 4.1 × 10−11 | 4.6 × 10−10 | 2.9 × 10−10 | 1.0016 | ±0.0001 | 4 | 1.0007 | ±0.0001 | 3 | |||
No. 2 | 3.1 × 10−10 | 2.8 × 10−10 | 2.9 × 10−10 | 3.2 × 10−11 | 3.4 × 10−10 | 2.6 × 10−10 | 1.0014 | ±0.0002 | 4 | 1.0009 | ±0.0002 | 4 | ||||
Porous stone | No. 1 | 4.7 × 10−10 | 3.6 × 10−10 | 3.7 × 10−10 | 7.4 × 10−11 | 5.1 × 10−10 | 3.7 × 10−10 | 1.0015 | ±0.0001 | 4 | 1.0006 | ±0.0001 | 3 | |||
No. 2 | 4.8 × 10−10 | 3.6 × 10−10 | 3.7 × 10−10 | 5.9 × 10−11 | 4.9 × 10−10 | 3.7 × 10−10 | 1.0016 | ±0.0001 | 4 | 1.0006 | ±0.0001 | 3 | ||||
Natural sample | Great Artesian Basin, Australia | Richmond | 74 m | 3.6 × 10−11 | 1.1 × 10−11 | 1.1 × 10−11 | N.D. | 3.3 × 10−11 | 5.7 × 10−12 | 1.0019 | ±0.0000 | 5 | 1.0014 | 1 | ||
134 m | 2.3 × 10−11 | 5.6 × 10−12 | 5.5 × 10−12 | 2.3 × 10−11 | 3.3 × 10−12 | 1.0019 | ±0.0001 | 5 | 1.0007 | 1 | ||||||
Marree | 141 m | 9.9 × 10−11 | 3.0 × 10−11 | 2.7 × 10−11 | 9.2 × 10−11 | 1.9 × 10−11 | 1.0021 | ±0.0001 | 6 | 1.0009 | ±0.0001 | 2 | ||||
167 m | 1.1 × 10−10 | 3.3 × 10−11 | 3.0 × 10−11 | N.M. | 3.3 × 10−11 | 1.0022 | ±0.0001 | 5 | 1.0008 | ±0.0000 | 5 | |||||
Horonobe Underground Research Laboratory, Japan | Koetoi Formation | 100 m | 1.9 × 10−10 | 6.2 × 10−11 | 5.1 × 10−11 | 2.8 × 10−10 | 5.4 × 10−11 | 1.0018 | ±0.0002 | 5 | 1.0007 | ±0.0001 | 5 | |||
150 m | 2.1 × 10−10 | 9.2 × 10−11 | 8.7 × 10−11 | 1.6 × 10−10 | 7.3 × 10−11 | 1.0018 | ±0.0001 | 5 | 1.0009 | ±0.0001 | 5 | |||||
200 m | 1.9 × 10−10 | 3.5 × 10−11 | 3.3 × 10−11 | 1.7 × 10−10 | 3.1 × 10−11 | 1.0018 | ±0.0001 | 5 | 1.0009 | ±0.0002 | 2 | |||||
250 m | 1.7 × 10−10 | 3.7 × 10−11 | 3.1 × 10−11 | 2.7 × 10−10 | 4.2 × 10−11 | 1.0022 | ±0.0001 | 4 | 1.0010 | ±0.0001 | 4 | |||||
Wakkanai Formation | 300 m | 1.6 × 10−10 | 3.3 × 10−11 | 3.1 × 10−11 | 1.5 × 10−10 | 4.1 × 10−11 | 1.0020 | ±0.0000 | 5 | 1.0007 | ±0.0001 | 2 | ||||
350 m | 1.6 × 10−10 | 3.7 × 10−11 | 3.7 × 10−11 | 1.6 × 10−10 | 2.6 × 10−11 | 1.0020 | ±0.0001 | 6 | 1.0010 | ±0.0000 | 3 |
Sample Name and Depth | Cl− * | Br− * | NAP * | δ18O * | NO3− * | β ** | ||||
---|---|---|---|---|---|---|---|---|---|---|
Artificial sample | Ceramic disk | 1 Bar | 0.89 | 0.85 | 0.23 | N.M. | 0.46 | |||
3 Bar | 0.81 | 0.77 | 0.15 | 0.47 | ||||||
5 Bar | 0.86 | 0.93 | 0.20 | 0.52 | ||||||
15 Bar | 0.88 | 0.96 | 0.25 | 0.42 | ||||||
Glass filter | No.1 | 0.94 | 0.96 | 0.11 | 1.24 | 0.77 | 0.47 | |||
No.2 | 0.90 | 0.93 | 0.10 | 1.07 | 0.82 | 0.68 | ||||
Porous stone | No.1 | 0.76 | 0.78 | 0.16 | 1.09 | 0.78 | 0.39 | |||
No.2 | 0.75 | 0.77 | 0.13 | 1.02 | 0.78 | 0.39 | ||||
Natural sample | Great Artesian Basin, Australia | Richmond | 74 m | 0.29 | 0.31 | N.D. | 0.91 | 0.16 | 0.75 | |
134 m | 0.24 | 0.24 | 1.01 | 0.15 | 0.37 | |||||
Marree | 141 m | 0.30 | 0.28 | 0.93 | 0.19 | 0.41 | ||||
167 m | 0.30 | 0.28 | 0.00 | 0.31 | 0.37 | |||||
Horonobe Underground Research Laboratory, Japan | Koetoi Formation | 100 m | 0.33 | 0.27 | 1.51 | 0.29 | 0.41 | |||
150 m | 0.44 | 0.42 | 0.76 | 0.35 | 0.50 | |||||
200 m | 0.18 | 0.17 | 0.88 | 0.16 | 0.51 | |||||
250 m | 0.22 | 0.18 | 1.56 | 0.25 | 0.46 | |||||
Wakkanai Formation | 300 m | 0.20 | 0.20 | 0.94 | 0.26 | 0.35 | ||||
350 m | 0.23 | 0.23 | 0.98 | 0.16 | 0.48 |
(1) Artificial Sample | |||||||||||||||||||||
Sample Name | Ceramic Disk | Glass Filter | Porous Stone | ||||||||||||||||||
1 bar | 3 bar | 5 bar | 15 bar | No.1 | No.2 | No.1 | No.2 | ||||||||||||||
Porosity | Cl | 31.9% | 33.8% | 34.0% | 33.7% | N.M. | |||||||||||||||
Br | N.M. | ||||||||||||||||||||
HDO | 35.5% | 38.4% | 37.3% | 37.9% | |||||||||||||||||
Drying | 31.5% | 35.1% | 34.6% | 34.4% | 30.3% | 30.4% | 41.4% | 42.7% | |||||||||||||
Porosity ratio * | Cl | 101% | 96% | 98% | 98% | N.M. | |||||||||||||||
HDO | 113% | 109% | 108% | 110% | |||||||||||||||||
(2) Natural Sample | |||||||||||||||||||||
Location | Great Artesian Basin, Australia | Horonobe Underground Laboratory, Japan | |||||||||||||||||||
Richmond | Marree | Koetoi Formation | Wakkanai Formation | ||||||||||||||||||
Depth (m) | 74 | 134 | 141.5 | 163 | 100.2 | 150.2 | 200.2 | 250.5 | 301 | 350 | |||||||||||
Porosity | Cl | 18.2% | 13.8% | 32.4% | 38.1% | 62.5% | 62.8% | 61.9% | 47.2% | 43.9% | 41.8% | ||||||||||
Br | 16.1% | 12.2% | 29.2% | 34.6% | 66.1% | 60.0% | 58.8% | 49.6% | 41.2% | 37.6% | |||||||||||
HDO | 32.3% | 24.0% | 48.0% | 53.7% | 65.8% | 69.0% | 67.0% | 54.5% | 52.6% | 50.4% | |||||||||||
Drying | 28.9% | 21.5% | 43.1% | 49.0% | 60.7% | 58.2% | 57.6% | 48.2% | 43.9% | 43.2% | |||||||||||
Porosity ratio * | Cl | 63% | 64% | 75% | 78% | 103% | 108% | 107% | 98% | 100% | 97% | ||||||||||
Br | 55% | 57% | 68% | 71% | 109% | 103% | 102% | 103% | 94% | 87% | |||||||||||
HDO | 111% | 112% | 112% | 110% | 108% | 118% | 116% | 113% | 120% | 117% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasegawa, T.; Nakata, K.; Gwynne, R. Measurement on Diffusion Coefficients and Isotope Fractionation Factors by a Through-Diffusion Experiment. Minerals 2021, 11, 208. https://doi.org/10.3390/min11020208
Hasegawa T, Nakata K, Gwynne R. Measurement on Diffusion Coefficients and Isotope Fractionation Factors by a Through-Diffusion Experiment. Minerals. 2021; 11(2):208. https://doi.org/10.3390/min11020208
Chicago/Turabian StyleHasegawa, Takuma, Kotaro Nakata, and Rhys Gwynne. 2021. "Measurement on Diffusion Coefficients and Isotope Fractionation Factors by a Through-Diffusion Experiment" Minerals 11, no. 2: 208. https://doi.org/10.3390/min11020208
APA StyleHasegawa, T., Nakata, K., & Gwynne, R. (2021). Measurement on Diffusion Coefficients and Isotope Fractionation Factors by a Through-Diffusion Experiment. Minerals, 11(2), 208. https://doi.org/10.3390/min11020208