Genetic Link between Podiform Chromitites in the Mantle and Stratiform Chromitites in the Crust: A Hypothesis
Abstract
:1. Introduction
2. Stratiform Chromitites vs. Podiform Chromitites: Their Differences and Similarities
3. Chromite-Hosted Polymineralic Inclusions: A Remarkable Similarity between the Two Types of Chromitite
4. Discussion: A Possible Link between the Stratiform and Podiform Chromitites
5. Conclusions and Implications
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, E.D.; Thayer, T.P. Some criteria for distinguishing between stratiform, and alpine peridotite-gabbro complexes 24th. Int. Geol. Congr. Sect. 1972, 2, 289–296. [Google Scholar]
- Schulte, R.F.; Taylor, R.D.; Piatak, N.M.; Seal, R.R., II. Stratiform Chromite Deposit Model, Chapter E of Mineral Deposit Model for Resource Assessment; U.S. Geol. Survey Scientific Investigation Report 2010-5070-E; U.S. Geological Survey: Reston, VA, USA, 2012; p. 131.
- Thayer, T.P. Principal features and origin of podiform chromitite deposits, and some observations on the Guleman-Soridag district, Turkey. Econ. Geol. 1964, 59, 1497–1524. [Google Scholar] [CrossRef]
- Cassard, D.; Nicolas, A.; Rabinovitch, M.; Moutte, J.; Leblanc, M.; Prinzhofer, A. Structural classification of chromite pods in southern New Caledonia. Econ. Geol. 1981, 76, 805–831. [Google Scholar] [CrossRef]
- Arai, S.; Yurimoto, H. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products. Econ. Geol. 1994, 89, 1279–1288. [Google Scholar] [CrossRef]
- Zhou, M.-F.; Robinson, P.T.; Bai, W.-J. Formation of podiform chromitite by melt/rock interaction in the upper mantle. Miner. Depos. 1994, 29, 98–101. [Google Scholar] [CrossRef]
- Arai, S. Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction. Resour. Geol. 1997, 47, 177–187. [Google Scholar]
- Campbell, I.H.; Murck, B.W. Petrology of the G and H chromitite zones in the Mountain View Area of the Stillwater Complex, Montana. J. Petrol. 1993, 34, 291–316. [Google Scholar] [CrossRef]
- Mondal, S.K.; Mathez, E.A. Origin of the UG2 chromitite layer, Bushveld Complex. J. Petrol. 2007, 48, 495–510. [Google Scholar] [CrossRef]
- Prendergast, M.D. Archean komatiitic sill-hosted chromite deposits in the Zimbabwe Craton. Econ. Geol. 2008, 103, 981–1004. [Google Scholar] [CrossRef]
- Irvine, T.N. Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation. Geology 1977, 5, 273–277. [Google Scholar] [CrossRef]
- Irvine, T.N. Crystallization sequences in the Muskox intrusion and other layered intrusions-II. Origin of chromitite layers and similar deposits of other magmatic ores. Geochim. Cosmochim. Acta 1975, 39, 991–1020. [Google Scholar] [CrossRef]
- Spandler, C.; Mavrogenes, J.; Arculus, R. Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater Complex. Geology 2005, 33, 893–896. [Google Scholar] [CrossRef] [Green Version]
- Latypov, R.; Costin, G.; Chistyakova, S.; Hunt, E.J.; Mukherjee, R.; Naldrett, T. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent. Nat. Comm. 2018, 9, 462. [Google Scholar] [CrossRef]
- Arai, S.; Abe, N. Reaction of orthopyroxene in peridotite xenoliths with alkali basalt melt and its implication for genesis of alpine-type chromitite. Am. Mineral. 1995, 80, 1041–1047. [Google Scholar] [CrossRef]
- Miura, M.; Arai, S.; Ahmed, A.H.; Mizukami, T.; Okuno, M.; Yamamoto, S. Podiform chromitite classification revisited: A comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman ophiolite. J. Asian Earth Sci. 2012, 59, 52–61. [Google Scholar] [CrossRef]
- Lago, B.L.; Rabinowicz, M.; Nicolas, A. Podiform chromitite ore bodies: A genetic model. J. Petrol. 1982, 23, 103–125. [Google Scholar] [CrossRef]
- Arai, S.; Miura, M. Formation and modification of chromitites in the mantle. Lithos 2016, 264, 277–295. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Arai, S.; Ahmed, A.H. Secular change of chromite concentration processes from the Archaen to the Phanerozoic. In Processes and Ore Deposits of Mafic-Ultramafic Magmas through Space and Time; Mondal, S.K., Griffin, W.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 139–157. [Google Scholar]
- Barnes, S.-J.; Naldrett, A.J.; Gorton, M.P. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem. Geol. 1985, 53, 303–323. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Arai, S. Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications. Contrib. Mineral. Petrol. 2002, 143, 263–278. [Google Scholar] [CrossRef]
- Hutchinson, D.; Foster, J.; Prichard, H.; Gilbert, S. Concentration of particulate platinum-group minerals during magma emplacement; a case study from the Merensky Reef, Bushveld Complex. J. Petrol. 2015, 56, 113–159. [Google Scholar] [CrossRef] [Green Version]
- Prichard, H.M.; Barnes, S.-J.; Fisher, P.C.; Pagé, P.; Zienteck, M.L. Laurite and associated PGM in the Stillwater chromitites: Implications for processes of formation, and comparisons with laurite in the Bushveld and ophiolitic chromitites. Can. Mineral. 2015, 55, 121–144. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Arai, S. Platinum-group minerals in podiform chromitites of the Oman ophiolite. Can. Mineral. 2003, 41, 597–616. [Google Scholar] [CrossRef] [Green Version]
- Maier, W.D.; Prichard, H.M.; Barnes, S.-J.; Fisher, P.C. Compositional variation of laurite at Union Section in the Western Bushveld Complex. S. Afr. J. Geol. 1999, 102, 286–292. [Google Scholar]
- Stowe, C.W. Compositions and tectonic settings of chromite deposits through time. Econ. Geol. 1994, 89, 528–546. [Google Scholar] [CrossRef]
- Vuollo, J.; Liipo, J.; Nykanen, V.; Piirainen, T.; Pekkarinen, L.; Tuokko, L.; Ekdhal, E. An Early Proterozoic podiform chromitite in the Outokumpu ophiolite complex, Finland. Econ. Geol. 1995, 90, 445–452. [Google Scholar] [CrossRef]
- Huang, X.; Li, J.; Kusky, T.M.; Chen, Z. Microstructures of the Zunhua 2.50 GA podiform chromite, North China Craton and implications for the deformation and rheology of the Archean oceanic lithospheric mantle. In Precambrian Ophiolites and Related Rocks; Kusky, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 321–337. [Google Scholar]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- MacLeod, C.J.; Lissenberg, C.J.; Bibby, L.E. “Moist MORB” axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin. Geology 2013, 41, 459–462. [Google Scholar] [CrossRef]
- Arai, S.; Yurimoto, H. Possible sub-arc origin of podiform chromitites. Island Arc 1995, 4, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Pagé, P.; Barnes, S.-J. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines Ophiolite, Qubéc, Canada. Econ. Geol. 2009, 104, 997–1018. [Google Scholar] [CrossRef]
- Miura, M.; Arai, S.; Tamura, A. Formation of discordant chromitite as the initiation of sub-arc mantle process: Observations from northern Oman ophiolite. J. Mineral. Petrol. Sci. 2014, 109, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Arai, S.; Matsukage, K. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: A comparison between the abyssal and alpine-type podiform chromitites. Lithos 1998, 43, 1–14. [Google Scholar] [CrossRef]
- Arai, S.; Miura, M. Podiform chromitites do form beneath mid-ocean ridges. Lithos 2015, 232, 143–149. [Google Scholar] [CrossRef]
- Arai, S.; Miura, M. Reply to the comment of rollinson and adetunji “podiform chromitites do form beneath mid-ocean ridges” by Arai, S. and Miura, M. Lithos 2016, 254–255, 134–136. [Google Scholar] [CrossRef]
- Ernst, R.E. Large Igneous Provinces; Cambridge University Press: Cambridge, UK, 2014; p. 653. [Google Scholar]
- Cawthorn, R.G. Layered Intrusions; Elsevier: Amsterdam, The Netherlands, 1996; p. 531. [Google Scholar]
- Melcher, F.; Grum, W.; Simon, G.; Thalhammer, T.V.; Stumpfl, F. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. J. Petrol. 1987, 38, 1419–1458. [Google Scholar] [CrossRef]
- Uysal, İ.; Tarkian, M.; Sadiklar, M.B.; Zaccarini, F.; Meisel, T.; Garuti, G.; Heidrich, S. Petrology of Al- and Cr-rich ophiolitic chromitites from the Muğla, SW Turkey: Implications from composition of chromite, solid inclusions of platinum-group mineral, silicate, and base-metal mineral, and Os-isotope geochemistry. Contrib. Mineral. Petrol. 2009, 158, 659–674. [Google Scholar] [CrossRef]
- Liu, J.; Hattori, K.; Wang, J. Mineral inclusions in chromite from the chromite deposit in the Kudi ophiolite, Tibet, Proto-Tethys. Acta Geol. Sin. 2017, 91, 469–485. [Google Scholar] [CrossRef]
- Talkington, R.W.; Watkinson, D.H.; Whittaker, P.J.; Jones, P.C. Platinum group element-bearing minerals and other solid inclusions in chromite of mafic and ultramafic complexes: Chemical compositions and comparisons. In Metallogeny of Basic and Ultrabasic Rocks (Regional Presentations); Carter, B., Chowdhury, M.K.R., Jankovic, S., Marakushev, A.A., Morten, L., Onikhimovsky, V.V., Raade, G., Rocci, G., Augustithis, S.S., Eds.; Theophrastus: Athens, Greece, 1986; pp. 223–249. [Google Scholar]
- Talkington, R.W.; Watkinson, D.H.; Whittaker, P.J.; Jones, P.C. Platinum-group minerals and other solid inclusions in chromite of ophiolitic complexes: Occurrence and petrological significance. Tschermak. Min. Petrogr. Mitt. 1984, 32, 285–300. [Google Scholar] [CrossRef]
- McElduff, B.; Stumpfl, E.F. The chromite deposits of the Troodos complex, cyprus—Evidence for the role of a fluid phase accompanying chromite formation. Mineral. Depos. 1991, 26, 307–318. [Google Scholar] [CrossRef]
- Peng, G.; Lewis, J.; Lipin, B.; McGee, J.; Bao, G.; Wang, X. Inclusions of phlogopite and phlogopite hydrates in chromite from the Hongguleleng ophiolite in Xingjiang, northwest China. Am. Mineral. 1995, 80, 1307–1316. [Google Scholar] [CrossRef]
- Borisova, A.; Ceuleneer, G.; Kamenetsky, V.; Arai, S.; Béjina, F.; Bindeman, I.; Polvé, M.; De Parseval, P.; Aigouy, T.; Pokrovski, G. A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. J. Petrol. 2012, 53, 2411–2440. [Google Scholar] [CrossRef]
- Khedr, M.Z.; Arai, S. Chemical variations of mineral inclusions in Neoproterozoic high-Cr chromitites from Egypt: Evidence of fluids during chromitite genesis. Lithos 2016, 240–243, 309–326. [Google Scholar] [CrossRef]
- Matsukage, K.; Arai, S. Jadeite, albite and nepheline as inclusions in spinel of chromitite from Hess Deep, equatorial Pacific: Their genesis and implications for serpentinite diapir formation. Contrib. Mineral. Petrol. 1998, 131, 111–122. [Google Scholar] [CrossRef]
- McDonald, J.A. Liquid immiscibility as one factor in chromitite seam formation in the Bushveld Igneous Complex. Econ. Geol. 1965, 60, 1674–1685. [Google Scholar] [CrossRef]
- Talkington, R.W.; Lipin, B. Platinum-group minerals in chromite seams of the Stillwater Complex, Montana. Econ. Geol. 1986, 81, 1179–1186. [Google Scholar] [CrossRef]
- Li, C.; Repley, E.M.; Sarkar, A.; Shin, D.; Maier, W.D. Origin of phlogopite-orthopyroxene inclusions in chromites from the Mrensky Reef of the Bushveld Complex, South Africa. Contrib. Mineral. Petrol. 2005, 150, 119–130. [Google Scholar] [CrossRef]
- Zaeimnia, F.; Arai, S.; Mirmohammadi, M. Na-rich character of metasomatic/metamorphic fluids inferred from preiswerkite in chromitite pods of the Khoy ophiolite in Iran: Role of chromitites as capsules of trapped fluids. Lithos 2017, 268-271, 351–363. [Google Scholar] [CrossRef]
- Rollinson, H.; Mameri, L.; Barry, T. Polymineralic inclusions in mantle chromitites from the Oman ophiolite indicate a highly magnesian parent melt. Lithos 2018, 310-311, 381–391. [Google Scholar] [CrossRef]
- Schiano, P.; Clocchiatti, R.; Lorand, J.-P.; Massare, D.; Deloule, E.; Chaussidon, M. Primitive basaltic melts included in podiform chromites from the Oman Ophiolite. Earth Planet. Sci. Lett. 1997, 146, 489–497. [Google Scholar] [CrossRef]
- Clague, D.A.; Frey, F.A.; Garcia, M.O.; Huang, S.; McWilliams, M.; Beeson, M.H. Compositional heterogeneity of the Sugarloaf melilite nephelinite flow, Honolulu Volcanics, Hawai’i. Geochim. Cosmochim. Acta 2016, 185, 251–277. [Google Scholar] [CrossRef] [Green Version]
- Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.-G. The mean composition of ocean ridge basalts. Geochem. Gophys. Geosys. 2013, 14, 489–513. [Google Scholar] [CrossRef] [Green Version]
- Basaltic Volcanism Study Project. Basaltic Volcanism on the Terrestrial Planets; Pergamon Press: New York, NY, USA, 1981; p. 1289. [Google Scholar]
- Crawford, A.J.; Falloon, T.J.; Green, D.H. Classification, petrogenesis and tectonic setting of boninites. In Boninites; Crawford, A.J., Ed.; Unwin Hyman: London, UK, 1989; pp. 1–49. [Google Scholar]
- Nockolds, S.R. Average chemical compositions of some igneous rocks. Geol. Soc. Am. Bull. 1954, 65, 1007–1032. [Google Scholar] [CrossRef]
- McCallum, I.S. The Stillwater Complex. In Layered Intrusions; Cawthorn, R.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 441–483. [Google Scholar]
- Arai, S.; Matsukage, K. Petrology of the gabbro-troctolite-peridotite complex from Hess Deep, equatorial Pacific: Implications for mantle-melt interaction within the oceanic lithosphere. Proc. ODP Sci. Results 1996, 147, 135–155. [Google Scholar]
- Tamura, A.; Morishita, T.; Ishimaru, S.; Arai, S. Geochemistry of spinel-hosted inclusions in abyssal peridotite: Insight into secondary melt formation in melt-peridotite reaction. Contrib. Mineral. Petrol. 2014, 167, 1–16. [Google Scholar] [CrossRef]
- Tamura, A.; Morishita, T.; Ishimaru, S.; Hara, K.; Sanfilippo, A.; Arai, S. Compositional variations in spinel-hosted pargasite inclusions in the olivine-rich rock from the oceanic crust-mantle boundary zone. Contrib. Mineral. Petrol. 2016, 171. [Google Scholar] [CrossRef]
- Abe, N. Petrology of podiform chromitite from the ocean floor at the 15º20’N FZ in the MAR, Site 1271, ODP Leg 209. J. Mineral. Petrol. Sci. 2011, 106, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Arai, S. The Circum-Izu Massif Peridotite, central Japan, as back-arc mantle fragments of the Izu-Bonin arc system. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere Peters; Tj Nicolas, A., Coleman, R.G., Eds.; Kluwer Academic Pub.: Dordrecht, The Netherlands, 1991; pp. 801–816. [Google Scholar]
- Ishimaru, S.; Arai, S. Highly silicic glasses in peridotite xenoliths from Avacha volcano, Kamchatka arc; implications for melting and metasomatism within the sub-arc mantle. Lithos 2009, 107, 93–106. [Google Scholar] [CrossRef]
- Shaw, C.S.J. Dissolution of orthopyroxene in basanitic magma between 0.4 and 2 GPa: Further implications for the origin of Si-rich alkaline glass inclusions in mantle xenoliths. Contrib. Mineral. Petrol. 1999, 35, 114–132. [Google Scholar] [CrossRef]
- Arai, S.; Matsukage, K.; Isobe, E.; Vysotskiy, S. Concentration of incompatible elements in oceanic mantle: Effect of melt/wall interaction in stagnant or failed melt conduits within peridotite. Geochim. Cosmochim Acta 1997, 61, 671–675. [Google Scholar] [CrossRef]
- Akizawa, N.; Arai, S.; Tamura, A. Behavior of MORB magmas at uppermost mantle beneath a fast-spreading axis: An example from Wadi Fizh of the northern Oman ophiolite. Contrib. Mineral. Petrol. 2012, 164, 601–625. [Google Scholar] [CrossRef]
- Akizawa, N.; Ozawa, K.; Tamura, A.; Michibayashi, K.; Arai, S. Three-dimensional evolution of melting, heat and melt transfer in ascending mantle beneath a fast-spreading ridge segment constrained by trace elements in clinopyroxene from concordant dunites and host harzburgites of the Oman ophiolite. J. Petrol. 2016, 57, 777–814. [Google Scholar] [CrossRef] [Green Version]
- Tamura, A.; Arai, S.; Ishimaru, S.; Andal, E.S. Petrology and geochemistry of peridotites from IODP Site U1309 at Atlantis Massif, MAR 30ºN: Micro- and macro-scale melt penetrations into peridotites. Contrib. Mineral. Petrol. 2008, 155, 491–509. [Google Scholar] [CrossRef]
- Spandler, C.; O’Neil, H.S.C.; Kamenetsky, V.S. Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 2007, 447, 303–306. [Google Scholar] [CrossRef]
- Suzuki, A.M.; Yasuda, A.; Ozawa, K. Cr and Al diffusion in chromite spinel: Experimental determination and its implication for diffusion creep. Phys. Chem. Min. 2008, 35, 433–445. [Google Scholar] [CrossRef]
- Eales, H.V. Implications of the chromium budget of the Western Limb of the Bushveld Complex. S. Afr. J. Geol. 2000, 103, 141–150. [Google Scholar] [CrossRef]
- Kelemen, P.B. Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J. Petrol. 1990, 31, 51–98. [Google Scholar] [CrossRef]
- Wagner, T.P.; Grove, T.L. Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii. Contrib. Mineral. Petrol. 1998, 131, 1–12. [Google Scholar] [CrossRef]
- Augé, T.; Maurizot, P. Stratform and alluvial platinum mineralization in the New Caledonia ophiolite complex. Can. Mineral. 1995, 33, 1023–1045. [Google Scholar]
- Lipin, B. Pressure increases, the formation of chromite seams, and the development of the ultramafic series in the Stillwater Complex, Montana. J. Petrol. 1993, 34, 955–976. [Google Scholar] [CrossRef]
- Snethlage, R.; Von Gruenewaldt, G. Oxygen Fugacity and Its Bearing on the Origin of Chromitite Layers in the Bushveld Complex. In Time- and Space-Bound Ore Deposits; Klemm, D.D., Schneider, H.-J., Eds.; Springer: Berlin, Germany, 1977; pp. 352–370. [Google Scholar]
- Lesher, C.M. Roles of xenomelts, xenoliths, xenocrysts, xenovolatiles, residues, and skarns in the genesis, transport, and localization of magmatic Fe-Ni-Cu-PGE sulfides and chromite. Ore Geol. Rev. 2017, 90, 465–484. [Google Scholar] [CrossRef]
- Lesher, C.M.; Carson, H.J.E.; Houlé, M.G. Genesis of chromite deposits by dynamic upgrading of Fe±Ti oxide xenocrysts. Geology 2019, 47, 207–210. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arai, S. Genetic Link between Podiform Chromitites in the Mantle and Stratiform Chromitites in the Crust: A Hypothesis. Minerals 2021, 11, 209. https://doi.org/10.3390/min11020209
Arai S. Genetic Link between Podiform Chromitites in the Mantle and Stratiform Chromitites in the Crust: A Hypothesis. Minerals. 2021; 11(2):209. https://doi.org/10.3390/min11020209
Chicago/Turabian StyleArai, Shoji. 2021. "Genetic Link between Podiform Chromitites in the Mantle and Stratiform Chromitites in the Crust: A Hypothesis" Minerals 11, no. 2: 209. https://doi.org/10.3390/min11020209
APA StyleArai, S. (2021). Genetic Link between Podiform Chromitites in the Mantle and Stratiform Chromitites in the Crust: A Hypothesis. Minerals, 11(2), 209. https://doi.org/10.3390/min11020209