Accessory Cr-Spinels in the Section of the Nude-Poaz Massif in the Monchegorsk (2.5 Ga) Mafic-Ultramafic Layered Complex (Kola Peninsula, Russia): Comparison with Ore-Forming Chromites
Abstract
:1. Introduction
2. Geological Structure of the Monchegorsk Complex and Former Research
3. Geological Structure of the Nude-Poaz Massif
4. Materials and Methods
5. Results
5.1. Petrography
5.2. Mineralogy
5.3. Features of the Chemical Composition of Cr-Spinels
6. Discussion
7. Conclusions
- As a result of the deep drilling of the Nude-Poaz massif, features of its internal structure were studied. The study of about 200 samples from the core of drill holes 1880 and 1882 revealed quite rare samples with the accessory Cr-spinel mineralization. This mineralization proved to be directly related to the rocks of the so-called Critical Horizon (olivine norites).
- The study of Cr-spinels revealed that they form 2 (Chr-1 and Chr-2) morphological types (some more homogeneous, others with inclusions of ilmenite), also differing in chemical composition (some are higher in aluminous, others in titanium). At the same time, such varieties were first found in MC not only in one thin section but even in one orthopyroxene grain.
- In the Monchepluton, ferruginous Cr-spinel varieties of the Nude-Poaz massif are chemically close to ferruginous Cr-spinel varieties of the Ore Layer 330 in the Sopcha massif. At the same time, Cr-spinels of the Nude-Poaz massif are compositionally different both from accessory Cr-spinels of the NKT massif and from ore chromites of the Sopcheozero deposit. Compared to the latter, Cr-spinels from the Nude-Poaz massif are more ferruginous and less chromium-rich.
- In comparison with layered intrusions known in the world, accessory Cr-spinels from the Nude-Poaz massif fit into the characteristic Fe-Ti trend for their chemical composition, which is observed from early to later intrusive phases. During the magmatic phase that produced rocks of the Critical Horizon and Cr-spinels of the Nude-Poaz massif, its normal crystallization occurred in the framework of the general evolutionary trend.
- The formation of Cr-spinels in the Nude-Poaz massif was specifically marked by their unstable composition, which manifested in simultaneous crystallization of varieties higher in alumina and titanium.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, S.J.; Roeder, P.L. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator: Part 1. Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- Nikolaev, G.S.; Ariskin, A.A.; Barmina, G.S. SPINMELT-2.0: Simulation of spinel-melt equilibrium in basaltic systems under pressures up to 15 kbar: I. Model formulation, calibration, and tests. Geochem. Int. 2018, 56, 24–45. [Google Scholar] [CrossRef]
- Evans, B.W.; Frost, B.R. Chrome-spinel in progressive metamorphism-a preliminary analysis. Geochim. Cosmochim. Acta 1975, 39, 959–972. [Google Scholar] [CrossRef]
- Maurel, C.; Maurel, P. Etude experimentale de la distribution de l’aluminium entre bain silicate basique et spinelle chromifere. Implications petrogenetiques: Teneur en chrome des spinelles. Bull. Mineral. 1982, 105, 197–202. [Google Scholar] [CrossRef]
- Sack, R.O. Spinels as petrogenetic indicators: Activity–composition relations at low pressures. Contrib. Mineral. Petrol. 1982, 79, 169–186. [Google Scholar] [CrossRef]
- Sack, R.O.; Ghiorso, M. Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications. Am. Mineral. 1991, 76, 827–847. [Google Scholar]
- Ariskin, A.A.; Nikolaev, G.S. An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 1, Chromian spinels. Contrib. Mineral. Petrol. 1996, 123, 282–292. [Google Scholar] [CrossRef]
- Mokrushin, A.V. Types, Composition and Conditions of Formation of Chromite Mineralization of Layered Early Proterozoic Intrusions of the Baltic Shield. Ph.D. Thesis, Murmansk State Technical University, Murmansk, Russia, December 2005. [Google Scholar]
- Pripachkin, P.V.; Rundkvist, T.V.; Miroshnikova, Y.A.; Chernyavsky, A.V.; Borisenko, E.S. Geological structure and ore mineralization of the South Sopchinsky and Gabbro-10 massifs and the Moroshkovoe Lake target, Monchegorsk area, Kola Peninsula, Russia. Miner. Depos. 2016, 51, 973–992. [Google Scholar] [CrossRef]
- Rundkvist, T.V.; Pripachkin, P.V.; Grebnev, R.A. On the problem of geological setting and distribution of PGE-mineralization in the Eastern part of the Monchegorsk complex (Kola Peninsula)—On the basis of cumulus stratigraphy data. In Strategic Mineral Resources of Lapland—Base for the Sustainable Development of the North. An Interreg-Tacis Project N KA-0197; Mitrofanov, F.P., Iljna, M., Zhirov, D., Eds.; KSC RAS: Apatity, Russia, 2009; Volume 2, pp. 51–64. ISBN 978-5-91137-094-7. [Google Scholar]
- Grokhovskaya, T.L.; Lapina, M.I.; Muravitskaya, G.N.; Bakaev, G.F.; Sholokhnev, V.V.; Voitekhovich, V.S. The PGE Ore Mineralization in the Monchegorsk Magmatic Layered Complex (Kola Peninsula, Russia). Geol. Ore Depos. 2003, 45, 329–352. [Google Scholar]
- Sharkov, E.V.; Chistyakov, A.V. Geological and petrological aspects of Ni-Cu-PGE mineralization in the early Paleoproterozoic Monchegorsk layered mafic-ultramafic complex, Kola Peninsula. Geol. Ore Depos. 2014, 56, 147–168. [Google Scholar] [CrossRef]
- Pripachkin, P.; Rundkvist, T.; Groshev, N.; Bazai, A.; Serov, P. Archean rocks of the diorite window block in the southern framing of the monchegorsk (2.5 Ga) layered mafic-ultramafic complex (Kola Peninsula, Russia). Minerals 2020, 10, 848. [Google Scholar] [CrossRef]
- Smolkin, V.F.; Fedotov, Z.A.; Orsoev, D.A.; Ohnenstetter, D. Ore-bearing layered Monchepluton. In Layered Intrusions of the Monchegorsk Ore Region: Petrology, Mineralization, Isotopy, Deep Structure. Part 1; Mitrofanov, F.P., Smolkin, V.F., Eds.; Geological Institute KSC RAS: Apatity, Russia, 2004; pp. 36–75. [Google Scholar]
- Bayanova, T. Age of Reference Geological Complexes of the Kola Region and the Duration of Magmatic Processes; Nauka: St. Petersburg, Russia, 2004. [Google Scholar]
- Smolkin, V.F.; Fedotov, Z.A.; Ohnenstettter, D. Gabbronorite-anorthosite complex of the Main Ridge Complex. In Layered Intrusions of the Monchegorsk Ore Region: Petrology, Mineralization, Isotopy, Deep Structure. Part 1; Mitrofanov, F.P., Smolkin, V.F., Eds.; Geological Institute KSC RAS: Apatity, Russia, 2004; pp. 75–97. [Google Scholar]
- Nerovich, L.I.; Bayanova, T.B.; Savchenko, E.E.; Serov, P.A. Monchetundra massif: Geology, petrography, geochronology, geochemistry, PGE mineralization (new data). In Strategic Mineral Resources of Lapland—Base for the Sustainable Development of the North. An Interreg-Tacis Project N KA-0197; Mitrofanov, F.P., Iljna, M., Zhirov, D., Eds.; KSC RAS: Apatity, Russia, 2009; Volume 2, pp. 97–112. [Google Scholar]
- Kozlov, E.K. Natural Series of Rocks of the Nickel-Bearing Intrusions and Their Metallogeny; Nauka: Leningrad, Russia, 1973. [Google Scholar]
- Dokuchaeva, V.S. Dunites from intrusions of the peridotite-gabbronorite formation type in the Monchegorsk region. In Mafic–Ultramafic Magmatism of the Kola Peninsula; Kola Branch of the USSR Academy of Science: Apatity, Russia, 1978; pp. 109–130. [Google Scholar]
- Neradovsky, Y.N.; Borisova, V.V.; Sholokhnev, V.V. The Monchegorsk layered complex and related mineralization. Ore deposits of the Kola Peninsula, North-Western Russia. In Research and Exploration—Where Do They Meet? 4th Biennial SGA Meeting, Turku, Finland, 11–13 August 1997. Excursion Guidebook B4 Geological Survey of Finland. Guide 45; SGA: Turku, Finland, 1997; pp. 27–31. [Google Scholar]
- Smolkin, V.F.; Neradovsky, Y.N.; Fedotov, Z.A.; Dedyukhin, A.N.; Mokrushin, A.V. The Sopcheozero chromite deposit confined to the Monchepluton. In Layered Intrusions of the Monchegorsk Ore Region: Petrology, Mineralization, Isotopy, Deep Structure. Part 2; Mitrofanov, F.P., Smolkin, V.F., Eds.; Geological Institute KSC RAS: Apatity, Russia, 2004; pp. 102–152. [Google Scholar]
- Chashchin, V.V.; Mitrofanov, F.P. The Paleoproterozoic Imandra-Varzuga rifting structure (Kola Peninsula): Intrusive magmatism and minerageny. Geodyn. Tectonophys. 2014, 5, 231–256. [Google Scholar] [CrossRef] [Green Version]
- Alapieti, T.T.; Kujanpaa, J.; Lahtinen, J.J.; Papuen, H. The Kemi stratiform chromitite deposit, nothern Finland. Econ. Geol. 1989, 84, 1057–1077. [Google Scholar] [CrossRef]
- Chistyakova, S.; Latypov, R.; Zaccarini, F. Chromitite Dykes in the Monchegorsk Layered Intrusion, Russia: In Situ Crystallization from Chromite-Saturated Magma Flowing in Conduits. J. Petrol. 2015, 56, 2395–2424. [Google Scholar] [CrossRef] [Green Version]
- Sushchenko, A.M.; Sidelnikov, M.V.; Groshev, N.Y. Petrography of xenoliths of chromite-bearing rocks from mount Kumuzhiya, Monchegorsk Complex, Russia. Transact. Kola Sci. Cent. Russ. Acad. Sci. Geol. Geochem. Ser. 1 2019, 6, 248–254. [Google Scholar]
- Barkov, A.Y.; Nikiforov, A.A.; Martin, R.F. A novel mechanism of spheroidal weathering: A case study from the Monchepluton layered complex, Kola Peninsula, Russia. Bull. Geol. Soc. Finl. 2015, 87, 79–85. [Google Scholar] [CrossRef]
- Lyulko, M.S. Geological structure of the Loipishnyun site of the Monchetundra massif. Proc. Fersman Sci. Sess. GI KSC RAS 2009, 6, 180–183. [Google Scholar]
- Rundkvist, T.V.; Mokrushin, A.V.; Huber, M.; Pripachkin, P.V.; Bazai, A.V.; Miroshnikova, Y.A. New data on the composition of Cr-spinels in the rocks of the southeastern part of the Early Proterozoic Monchegorsk complex (Kola region). Herald. Kola Sci. Cent. Russ. Acad. Sci. 2018, 1, 50–62. [Google Scholar]
- Mokrushin, A.V.; Miroshnikova, Y.A.; Savchenko, E.E. Association of Cr-Fe-Ti minerals in plagioclase-amphibole veins of the Moroshkovoe Lake area (Monchegorsk pluton). In Geology and Geoecology Abstracts XXII Conference K.O.Kratc Memory; Kola Science Centre RAS: Apatity, Russia, 2011; pp. 134–135. [Google Scholar]
- Orsoev, D.A. Chrome spinels from disseminated sulfide ores of layered massifs. Notes USSR Mineral. Soc. 1988, 2, 175–181. [Google Scholar]
- Rundkvist, T.V.; Mokrushin, A.V.; Bazai, A.V.; Miroshnikova, Y.A.; Pripachkin, P.V. Xenolith of chromite-bearing dunites from the Sopcha massif (Monchegorsk complex, Kola Peninsula). Notes Russ. Mineral. Soc. 2011, 3, 99–109. [Google Scholar]
- Pripachkin, P.V.; Rundkvist, T.V. Geological structure and PGE content of the eastern part of the Sopcha layer “330” (Monchegorsk Pluton, Kola peninsula). Ores. Met. 2007, 1, 44–50. [Google Scholar]
- Distler, V.V.; Grokhovskaya, T.L.; Evstigneeva, T.L.; Sluzhenikin, S.F.; Filimonova, A.A.; Dyuzhikov, O.A. Petrology of Sulfide Magmatic Ore Formation; Bondarenko, V.I., Ed.; Nauka: Moscow, Russia, 1988. [Google Scholar]
- Dokuchaeva, V.S.; Polezhaeva, L.I. Chromium spinels of layered intrusions of the Monchegorsk region (Kola Peninsula). In New in Mineralogy of the Karelo-Kola Region; Yakovlev, Y.N., Ed.; Karelian Science Centre of the USSR Academy of Sciences: Petrozavodsk, Russia, 1990; pp. 5–24. [Google Scholar]
- Ivanova, T.N. The structure of the Nude-Poaz massif (Monche-tundra) tle. In Ultramafic and Mafic Intrusions and Sulfide Copper-Nickel Deposits of Moncha; Academy of Sciences of the USSR: Leningrad, Russia, 1953; pp. 87–111. [Google Scholar]
- Dokuchaeva, V.S.; Sholokhnev, V.V. New data on the geological structure of the Nude-Poaz massif. In Regional Geology, Metallogeny and Geophysics; Kola Branch of the USSR Academy of Science: Apatity, Russia, 1974; pp. 88–95. [Google Scholar]
- Smolkin, V.F. Magmatism of the Early Proterozoic (2.5–1.7 Ga) paleoriftogenic system. Northwest of the Baltic Shield. Petrology 1997, 4, 394–411. [Google Scholar]
- Eliseev, N.A.; Eliseev, E.N.; Kozlov, E.K.; Lyalin, P.V.; Maslenikov, V.A. Geology and Ore Deposits of the Monchegorsk Pluton; Academy of Sciences of the USSR: Leningrad, Russia, 1956; Volume 3. [Google Scholar]
- Sharkov, E.V. “Critical horizon” of the Monchegorsk pluton—Additional intrusive phase. Notes USSR Mineral. Soc. 1982, CXI, 656–664. [Google Scholar]
- Sharkov, E.V. Formation of Layered Intrusions and Their Ore Mineralization; Bogatikov, O.A., Ed.; Scientific World: Moscow, Russia, 2006; ISBN 5-89176-354-0. [Google Scholar]
- Amelin, Y.V.; Heaman, L.M.; Semenov, V.S. U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: Implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Res. 1995, 75, 31–46. [Google Scholar] [CrossRef]
- Bayanova, T.B.; Smolkin, V.F.; Fedotov, Z.A.; Delenitsyn, A.A. U-Pb and Sm-Nd isotope investigation of intrusive and dike rocks. In Layered Intrusions of Monchegorsk Ore Region: Petrology, Mineralization, Isotopes, and Deep Structure. Part 2; Mitrofanov, F.P., Smolkin, V.F., Eds.; Geological Institute KSC RAS: Apatity, Russia, 2004; pp. 5–45. [Google Scholar]
- Balashov, Y.A.; Bayanova, T.B.; Mitrofanov, F.P. Isotope data on the age and genesis of layered basic-ultrabasic intrusions in the Kola Peninsula and northern Karelia, northeastern Baltic Shield. Precambrian Res. 1993, 64, 197–205. [Google Scholar] [CrossRef]
- Grebnev, R.A.; Rundkvist, T.V.; Pripachkin, P.V. Geochemistry of mafic rocks of the PGE-bearing Vurechuaivench Massif (Monchegorsk Complex, Kola region). Geochem. Int. 2014, 52, 726–739. [Google Scholar] [CrossRef]
- Rundkvist, T.V.; Balashov, Y.A.; Skublov, S.G.; Pripachkin, P.V.; Grebnev, R.A. Geochemistry and U–Pb age of zircons from the Vurechuaivench massif, Monchegorsk complex, Kola region. Geol. Ore Depos. 2016, 58, 525–535. [Google Scholar] [CrossRef]
- Karykowski, B.T.; Maier, W.D.; Groshev, N.Y.; Barnes, S.-J.; Pripachkin, P.V.; McDonald, I. Origin of reef-style PGE mineralization in the paleoproterozoic Monchegorsk complex, Kola Region, Russia. Econ. Geol. 2018, 113, 1333–1358. [Google Scholar] [CrossRef]
- Ivanchenko, V.N.; Davydov, P.S.; Dedeev, V.A.; Knauf, V.V. Major features of the Vuruchuaivench (Vurechuaivench) deposit geological structure. In The Neighborhood Cooperation and Experience Exchange for Geological Prospecting and Survey of PGE Deposits in the Northen Fennoscandia. An Interreg-Tacis Project N KA-0197; KSC RAS: Apatity, Russia, 2008; Volume 1, pp. 82–87. [Google Scholar]
- Orsoev, D.A.; Konnikov, E.G.; Zaguzin, G.N. Mineralization of the peridotite layer of Mount Sopcha in the Monchegorsk region. Notes Russ. Mineral. Soc. 1994, 3, 26–40. [Google Scholar]
- Konnikov, E.G.; Orsoev, D.A. On the nature of the rhythmically layered horizon of the Sopcha massif in the Monchegorsk pluton. Rep. USSR Acad. Sci. 1991, 3, 696–699. [Google Scholar]
- Huhma, H.; Clift, R.A.; Perttunen, V.; Sakko, M. Sm-Nd and Pb isotopic stuty of mafic rocks associated with early Proterozoic continental rifting: The Perapohia schist belt in Northern Finland. Contrib. Miner. Pet. 1990, 104, 369–379. [Google Scholar] [CrossRef]
- Alapieti, T.T.; Lahtinen, J.J. Platinum-group element mineralization in layered intrusions of northern Finland and the Kola Peninsula, Russia. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements; Cabri, L.J., Ed.; Canadian Institute of Mining and Metallurgy: Montreal, QC, Canada, 2002; pp. 507–546. [Google Scholar]
- Kislov, E.V. Yoko-Dovyrenskiy Layered Massif; Konnikov, E.G., Ed.; Buryat Scientific Center of the SB RAS: Ulan-Ude, Russia, 1998. [Google Scholar]
No. | Sample No. (Drill Hole/Depth) | Rock |
---|---|---|
1 | 1880/334.0 | Mesocratic norite fine-to medium-grained |
2 | 1880/336.3 | Mesocratic norite fine-to medium-grained |
3 | 1880/342.7 | Mesocratic norite fine-to medium-grained |
4 | 1880/395.8 | Orthopyroxenite fine-to medium-grained |
5 | 1882/326.3 | Melanocratic olivine norite medium-grained |
6 | 1882/486.5 | Melanocratic olivine norite medium-grained |
№ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Sample | 1880/334.0 (1) | 1880/334.0 (2) | 1880/334.0 (3) | 1880/334.0 (4) | 1880/336.3 (1) | 1880/336.3 (2) | 1880/336.3 (3) | 1880/342.7 (1) | 1880/342.7 (2) | 1880/342.7 (3) |
SiO2 | 0.086 | 0.083 | 0.093 | 0.126 | 0.087 | 0.096 | 0.185 | 0.000 | 0.130 | 0.000 |
Al2O3 | 16.227 | 15.789 | 7.927 | 7.816 | 8.491 | 7.712 | 7.160 | 15.401 | 15.608 | 13.437 |
TiO2 | 0.755 | 0.571 | 0.949 | 1.073 | 1.452 | 2.679 | 3.714 | 0.527 | 0.644 | 1.072 |
Cr2O3 | 36.603 | 39.736 | 42.464 | 42.679 | 42.647 | 33.848 | 37.812 | 41.722 | 41.448 | 42.185 |
V2O5 | 0.160 | 0.218 | 0.366 | 0.373 | 0.340 | 0.637 | 0.533 | 0.236 | 0.257 | 0.234 |
FeO total | 44.137 | 41.866 | 46.742 | 48.077 | 45.368 | 52.341 | 48.298 | 38.851 | 39.865 | 40.117 |
MgO | 1.450 | 1.111 | 0.639 | 0.623 | 0.792 | 0.471 | 0.817 | 0.946 | 1.091 | 0.886 |
MnO | 0.774 | 0.673 | 0.722 | 0.709 | 0.742 | 0.645 | 0.736 | 0.624 | 0.594 | 0.656 |
NiO | 0.181 | 0.108 | 0.000 | 0.000 | 0.070 | 0.119 | 0.159 | 0.000 | 0.000 | 0.103 |
ZnO | 0.154 | 0.246 | 0.492 | 0.514 | 0.201 | 0.283 | 0.207 | 0.304 | 0.485 | 0.388 |
CaO | 0.037 | 0.000 | 0.000 | 0.000 | 0.023 | 0.033 | 0.021 | 0.000 | 0.000 | 0.000 |
Total | 100.564 | 100.401 | 100.394 | 101.990 | 100.213 | 98.864 | 99.642 | 98.611 | 100.122 | 99.078 |
Formula Coefficients | ||||||||||
Mg2+ | 0.073 | 0.056 | 0.033 | 0.032 | 0.041 | 0.025 | 0.043 | 0.049 | 0.055 | 0.046 |
Fe2+ | 0.912 | 0.927 | 0.953 | 0.957 | 0.963 | 1.009 | 1.016 | 0.937 | 0.928 | 0.948 |
Mn2+ | 0.022 | 0.019 | 0.021 | 0.021 | 0.022 | 0.019 | 0.022 | 0.018 | 0.017 | 0.019 |
Zn2+ | 0.004 | 0.006 | 0.013 | 0.013 | 0.005 | 0.007 | 0.005 | 0.008 | 0.012 | 0.010 |
Ni2+ | 0.005 | 0.003 | - | - | 0.002 | 0.003 | 0.005 | - | - | 0.003 |
Total A | 1.016 | 1.011 | 1.020 | 1.023 | 1.033 | 1.063 | 1.091 | 1.012 | 1.012 | 1.026 |
Cr3+ | 0.975 | 1.066 | 1.180 | 1.168 | 1.184 | 0.951 | 1.058 | 1.143 | 1.116 | 1.161 |
Al3+ | 0.644 | 0.631 | 0.328 | 0.319 | 0.351 | 0.323 | 0.299 | 0.629 | 0.627 | 0.551 |
Fe3+ | 0.331 | 0.261 | 0.421 | 0.435 | 0.369 | 0.547 | 0.414 | 0.189 | 0.208 | 0.220 |
Ti4+ | 0.019 | 0.015 | 0.025 | 0.028 | 0.038 | 0.072 | 0.099 | 0.014 | 0.016 | 0.028 |
V5+ | 0.005 | 0.007 | 0.012 | 0.012 | 0.011 | 0.020 | 0.017 | 0.007 | 0.008 | 0.007 |
Si4+ | 0.003 | 0.003 | 0.003 | 0.004 | 0.003 | 0.003 | 0.007 | - | 0.004 | - |
Total B | 1.977 | 1.983 | 1.969 | 1.966 | 1.956 | 1.916 | 1.894 | 1.982 | 1.979 | 1.967 |
Mineral varieties | Chr-1 | Chr-1 | Chr-2 | Chr-2 | Chr-2 | Chr-2 | Chr-2 | Chr-1 | Chr-1 | Chr-1 |
№ | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Sample | 1880/342.7 (4) | 1880/342.7 (5) | 1880/342.7 (6) | 1880/342.7 (7) | 1880/342.7 (8) | 1880/342.7 (9) | 1880/342.7 (10) | 1880/342.7 (11) | 1880/342.7 (12) | 1880/342.7 (13) |
SiO2 | 0.124 | 0.137 | 0.154 | 0.000 | 0.000 | 0.070 | 0.000 | 0.171 | 0.180 | 0.000 |
Al2O3 | 14.961 | 12.719 | 11.414 | 6.290 | 6.534 | 9.173 | 6.566 | 7.124 | 5.207 | 9.500 |
TiO2 | 0.451 | 1.329 | 1.803 | 2.411 | 2.819 | 0.563 | 1.720 | 2.174 | 1.850 | 0.906 |
Cr2O3 | 41.630 | 41.829 | 42.095 | 42.315 | 41.060 | 48.231 | 43.791 | 45.914 | 43.103 | 47.597 |
V2O5 | 0.221 | 0.310 | 0.306 | 0.552 | 0.581 | 0.301 | 0.510 | 0.423 | 0.754 | 0.305 |
FeO total | 39.481 | 42.428 | 42.737 | 44.944 | 45.203 | 40.775 | 43.422 | 42.357 | 47.336 | 39.092 |
MgO | 1.044 | 0.778 | 0.731 | 0.464 | 0.435 | 0.724 | 0.484 | 0.590 | 0.523 | 0.625 |
MnO | 0.639 | 0.673 | 0.668 | 0.763 | 0.744 | 0.664 | 0.728 | 0.622 | 0.741 | 0.718 |
NiO | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ZnO | 0.512 | 0.462 | 0.464 | 0.283 | 0.284 | 0.277 | 0.256 | 0.326 | 0.253 | 0.264 |
CaO | 0.000 | 0.066 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.081 | 0.000 |
Total | 99.063 | 100.731 | 100.372 | 98.022 | 97.660 | 100.778 | 97.477 | 99.701 | 100.028 | 99.007 |
Formula Coefficients | ||||||||||
Mg2+ | 0.054 | 0.040 | 0.038 | 0.025 | 0.024 | 0.038 | 0.026 | 0.031 | 0.028 | 0.033 |
Fe2+ | 0.922 | 0.958 | 0.973 | 1.005 | 1.018 | 0.947 | 0.987 | 0.993 | 0.983 | 0.960 |
Mn2+ | 0.019 | 0.020 | 0.020 | 0.023 | 0.023 | 0.020 | 0.022 | 0.019 | 0.022 | 0.022 |
Zn2+ | 0.013 | 0.012 | 0.012 | 0.008 | 0.008 | 0.007 | 0.007 | 0.009 | 0.007 | 0.007 |
Total A | 1.008 | 1.030 | 1.043 | 1.061 | 1.073 | 1.012 | 1.042 | 1.052 | 1.040 | 1.022 |
Cr3+ | 1.136 | 1.136 | 1.154 | 1.214 | 1.180 | 1.332 | 1.262 | 1.291 | 1.212 | 1.337 |
Al3+ | 0.609 | 0.515 | 0.466 | 0.269 | 0.280 | 0.378 | 0.282 | 0.299 | 0.218 | 0.398 |
Fe3+ | 0.217 | 0.261 | 0.266 | 0.359 | 0.357 | 0.244 | 0.337 | 0.267 | 0.426 | 0.202 |
Ti4+ | 0.012 | 0.034 | 0.047 | 0.066 | 0.077 | 0.015 | 0.047 | 0.058 | 0.050 | 0.024 |
V5+ | 0.007 | 0.010 | 0.010 | 0.018 | 0.019 | 0.009 | 0.017 | 0.014 | 0.024 | 0.010 |
Si4+ | 0.004 | 0.005 | 0.005 | - | - | 0.002 | - | 0.006 | 0.006 | - |
Total B | 1.985 | 1.961 | 1.948 | 1.926 | 1.913 | 1.980 | 1.945 | 1.935 | 1.936 | 1.971 |
Mineral varieties | Chr-1 | Chr-1 | Chr-1 | Chr-2 | Chr-2 | Chr-2 | Chr-2 | Chr-2 | Chr-2 | Chr-2 |
№ | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | |
Sample | 1880/342.7 (14) | 1882/326.3 (1) | 1882/326.3 (2) | 1882/326.3 (3) | 1882/326.3 (4) | 1882/486.5 (1) | 1882/486.5 (2) | 1882/486.5 (3) | 1882/486.5 (4) | |
SiO2 | 0.253 | 0.147 | 0.154 | 0.135 | 0.150 | 0.208 | 0.295 | 0.105 | 0.238 | |
Al2O3 | 8.410 | 12.751 | 9.355 | 18.697 | 18.928 | 24.978 | 13.546 | 5.897 | 5.995 | |
TiO2 | 0.804 | 0.908 | 0.923 | 0.437 | 0.461 | 0.121 | 0.477 | 0.482 | 0.636 | |
Cr2O3 | 48.231 | 38.500 | 39.781 | 37.001 | 37.165 | 27.617 | 41.423 | 25.707 | 30.937 | |
V2O5 | 0.335 | 0.320 | 0.357 | 0.177 | 0.143 | 0.186 | 0.186 | 0.328 | 0.213 | |
FeO total | 40.282 | 45.456 | 45.718 | 39.814 | 38.334 | 38.506 | 34.846 | 62.590 | 57.593 | |
MgO | 0.671 | 1.310 | 1.127 | 2.393 | 2.399 | 4.228 | 6.177 | 0.613 | 1.019 | |
MnO | 0.699 | 0.638 | 0.689 | 0.562 | 0.588 | 0.274 | 0.249 | 0.265 | 0.289 | |
NiO | 0.000 | 0.120 | 0.000 | 0.172 | 0.158 | 0.255 | 0.188 | 0.202 | 0.163 | |
ZnO | 0.356 | 0.640 | 0.000 | 0.757 | 0.819 | 0.640 | 0.239 | 0.856 | 0.916 | |
CaO | 0.072 | 0.000 | 0.035 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Total | 100.113 | 100.790 | 98.139 | 100.145 | 99.145 | 97.013 | 97.626 | 97.045 | 97.999 | |
Formula Coefficients | ||||||||||
Mg2+ | 0.035 | 0.067 | 0.060 | 0.119 | 0.120 | 0.207 | 0.311 | 0.033 | 0.055 | |
Fe2+ | 0.948 | 0.914 | 0.938 | 0.850 | 0.847 | 0.761 | 0.676 | 0.938 | 0.919 | |
Mn2+ | 0.021 | 0.018 | 0.021 | 0.016 | 0.017 | 0.008 | 0.007 | 0.008 | 0.009 | |
Zn2+ | 0.009 | 0.016 | - | 0.019 | 0.02 | 0.016 | 0.006 | 0.023 | 0.024 | |
Ni2+ | - | 0.003 | - | 0.005 | 0.004 | 0.007 | 0.005 | 0.006 | 0.005 | |
Total A | 1.013 | 1.018 | 1.019 | 1.009 | 1.008 | 0.999 | 1.005 | 1.008 | 1.012 | |
Cr3+ | 1.343 | 1.038 | 1.117 | 0.974 | 0.986 | 0.717 | 1.108 | 0.738 | 0.879 | |
Al3+ | 0.349 | 0.513 | 0.392 | 0.733 | 0.749 | 0.966 | 0.540 | 0.252 | 0.254 | |
Fe+3 | 0.239 | 0.383 | 0.419 | 0.259 | 0.230 | 0.296 | 0.310 | 0.963 | 0.813 | |
Ti4+ | 0.021 | 0.023 | 0.025 | 0.011 | 0.012 | 0.003 | 0.012 | 0.013 | 0.017 | |
V5+ | 0.011 | 0.01 | 0.011 | 0.005 | 0.004 | 0.005 | 0.006 | 0.011 | 0.007 | |
Si4+ | 0.009 | 0.005 | 0.005 | 0.004 | 0.005 | 0.007 | 0.010 | 0.004 | 0.009 | |
Total B | 1.972 | 1.972 | 1.969 | 1.986 | 1.986 | 1.994 | 1.986 | 1.981 | 1.979 | |
Mineral varieties | Chr-2 | Chr-1 | Chr-1 | Chr-1 | Chr-1 | Chr-1 | Chr-1 | Chr-2 | Chr-2 | |
№ | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
Sample | 1880/395.8 (1) | 1880/395.8 (2) | 1880/395.8 (3) | 1880/395.8 (4) | 1880/395.8 (5) | 1882/486.5 (5) | 1882/486.5 (6) | 1882/486.5 (7) | 1882/486.5 (8) | 1882/486.5 (9) |
SiO2 | 0.057 | 0.094 | 0.260 | 0.116 | 1.032 | 0.419 | 0.118 | 0.111 | 0.157 | 0.131 |
Al2O3 | 0.216 | 0.186 | 0.584 | 2.618 | 1.457 | 0.536 | 7.617 | 4.010 | 5.639 | 2.876 |
TiO2 | 0.138 | 0.000 | 3.837 | 0.239 | 1.519 | 0.202 | 1.211 | 1.167 | 0.278 | 0.566 |
Cr2O3 | 0.301 | 0.000 | 3.668 | 14.745 | 11.685 | 5.301 | 37.030 | 26.073 | 22.936 | 21.869 |
V2O5 | 0.579 | 0.000 | 1.197 | 0.791 | 2.170 | 0.170 | 0.391 | 0.342 | 0.265 | 0.509 |
FeO total | 92.389 | 92.901 | 68.211 | 75.800 | 72.369 | 88.592 | 50.014 | 64.982 | 64.898 | 68.287 |
MgO | 0.000 | 0.147 | 0.200 | 0.205 | 0.207 | 1.302 | 1.258 | 0.822 | 0.655 | 0.549 |
MnO | 0.000 | 0.000 | 0.270 | 0.314 | 0.305 | 0.000 | 0.438 | 0.278 | 0.216 | 0.257 |
NiO | 0.280 | 0.065 | 0.000 | 0.273 | 0.330 | 0.270 | 0.140 | 0.233 | 0.234 | 0.233 |
ZnO | 0.000 | 0.000 | 0.099 | 0.408 | 0.644 | 0.000 | 0.825 | 0.651 | 0.898 | 0.614 |
CaO | 0.000 | 0.000 | 0.000 | 0.000 | 0.055 | 0.040 | 0.000 | 0.000 | 0.000 | 0.000 |
Total | 93.960 | 93.393 | 78.326 | 95.509 | 91.773 | 96.832 | 99.042 | 98.669 | 96.176 | 95.891 |
Formula Coefficients | ||||||||||
Mg2+ | - | 0.008 | 0.013 | 0.011 | 0.012 | 0.071 | 0.066 | 0.044 | 0.036 | 0.03 |
Fe2+ | 0.989 | 0.988 | 1.085 | 0.957 | 0.955 | 0.917 | 0.922 | 0.950 | 0.929 | 0.947 |
Mn2+ | - | - | 0.010 | 0.010 | 0.010 | - | 0.013 | 0.008 | 0.007 | 0.008 |
Zn2+ | - | - | 0.003 | 0.011 | 0.018 | - | 0.022 | 0.017 | 0.024 | 0.017 |
Ni2+ | 0.009 | 0.002 | - | 0.008 | 0.010 | 0.008 | 0.004 | 0.007 | 0.007 | 0.007 |
Total A | 0.998 | 0.998 | 1.111 | 0.997 | 1.005 | 0.996 | 1.027 | 1.026 | 1.003 | 1.009 |
Cr3+ | 0.009 | - | 0.131 | 0.433 | 0.351 | 0.153 | 1.036 | 0.741 | 0.664 | 0.641 |
Al3+ | 0.010 | 0.008 | 0.031 | 0.115 | 0.065 | 0.023 | 0.318 | 0.170 | 0.243 | 0.126 |
Fe3+ | 1.942 | 1.988 | 1.493 | 1.396 | 1.345 | 1.788 | 0.559 | 1.005 | 1.059 | 1.171 |
Ti4+ | 0.004 | - | 0.130 | 0.007 | 0.043 | 0.006 | 0.032 | 0.032 | 0.008 | 0.016 |
V5+ | 0.020 | - | 0.049 | 0.026 | 0.074 | 0.006 | 0.012 | 0.011 | 0.009 | 0.017 |
Si4+ | 0.002 | 0.004 | 0.012 | 0.004 | 0.039 | 0.015 | 0.004 | 0.004 | 0.006 | 0.005 |
Total B | 1.987 | 2.000 | 1.846 | 1.981 | 1.917 | 1.991 | 1.961 | 1.963 | 1.989 | 1.976 |
Mineral varieties | Mag | Mag | Mag | Cr-Mag | Cr-Mag | Cr-Mag | Cr-Mag | Cr-Mag | Cr-Mag | Cr-Mag |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rundkvist, T.; Pripachkin, P. Accessory Cr-Spinels in the Section of the Nude-Poaz Massif in the Monchegorsk (2.5 Ga) Mafic-Ultramafic Layered Complex (Kola Peninsula, Russia): Comparison with Ore-Forming Chromites. Minerals 2021, 11, 602. https://doi.org/10.3390/min11060602
Rundkvist T, Pripachkin P. Accessory Cr-Spinels in the Section of the Nude-Poaz Massif in the Monchegorsk (2.5 Ga) Mafic-Ultramafic Layered Complex (Kola Peninsula, Russia): Comparison with Ore-Forming Chromites. Minerals. 2021; 11(6):602. https://doi.org/10.3390/min11060602
Chicago/Turabian StyleRundkvist, Tatiana, and Pavel Pripachkin. 2021. "Accessory Cr-Spinels in the Section of the Nude-Poaz Massif in the Monchegorsk (2.5 Ga) Mafic-Ultramafic Layered Complex (Kola Peninsula, Russia): Comparison with Ore-Forming Chromites" Minerals 11, no. 6: 602. https://doi.org/10.3390/min11060602
APA StyleRundkvist, T., & Pripachkin, P. (2021). Accessory Cr-Spinels in the Section of the Nude-Poaz Massif in the Monchegorsk (2.5 Ga) Mafic-Ultramafic Layered Complex (Kola Peninsula, Russia): Comparison with Ore-Forming Chromites. Minerals, 11(6), 602. https://doi.org/10.3390/min11060602