Partitioning of Metal Contaminants between Bulk and Fine-Grained Fraction in Freshwater Sediments: A Critical Appraisal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Preparation of Samples
2.2. Analyses
3. Results and Discussion
3.1. The Particle Size Distribution (PSD)
3.2. Organic Matter (OM)
3.3. Geochemical Composition
3.3.1. Major Elements
3.3.2. Metal Contaminants
3.4. Fine Fraction vs. Bulk Sediment for Metal Contaminants
3.5. Processes Governing Metal Distributions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Owens, P.N.; Batalla, R.J.; Collins, A.J.; Gomerz, B.; Hicks, D.M.; Horowitz, A.J.; Kondolf, G.M.; Marden, M.; Page, M.J.; Peacock, D.H.; et al. Fine-grained sediment in river systems: Environmental significance and management issues. River Res. Applic. 2005, 21, 693–717. [Google Scholar] [CrossRef]
- Rey, R.D.; Díaz-Fierros, F.; Barral, M.T. Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River, NW Spain). Environ. Monit. Assess. 2011, 179, 371–388. [Google Scholar] [CrossRef]
- Tansel, B.; Rafiuddin, S. Heavy metal content in relation to particle size and organic content of surficial sediments in Miami River and transport potential. Int. J. Sediment. Res. 2016, 31, 324–329. [Google Scholar] [CrossRef]
- Zhao, G.; Ye, S.; Yuan, H.; Ding, X.; Wang, J.; Laws, E.A. Surface sediment properties and heavy metal contamination assessment in river sediments of the Pearl River Delta, China. Mar. Pollut. Bull. 2018, 136, 300–308. [Google Scholar] [CrossRef]
- Buyang, S.; Yi, Q.; Cui, H.; Wan, K.; Zhang, S. Distribution and adsorption of metals on different particle size fractions of sediments in a hydrodynamically disturbed canal. Sci. Total Environ. 2019, 670, 654–661. [Google Scholar] [CrossRef]
- Ma, T.; Sheng, Y.; Meng, Y.; Sun, J. Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size. Chemosphere 2019, 225, 83–92. [Google Scholar] [CrossRef]
- Unda-Calvo, J.; Ruiz-Romera, E.; de Vallejuelo, S.F.-O.; Martínez-Santos, M.; Gredilla, A. Evaluating the role of particle size on urban environmental geochemistry of metals in surface sediments. Sci. Total Environ. 2019, 646, 121–133. [Google Scholar] [CrossRef]
- Mata, H.K.; Salah, D.M.M.A.; Ngweme, G.N.; Konde, J.N.; Mulaji, C.K.; Kiyombo, G.M.; Poté, J.W. Toxic metal concentration and ecotoxicity test of sediments from dense populated areas of Congo River, Kinshasa, Democratic Republic of the Congo. J. Environ. Chem. Ecotoxicol. 2020, 2, 83–90. [Google Scholar] [CrossRef]
- da Silva Júnior, J.B.; Abreu, I.M.; de Oliveira, D.A.F.; Hadlich, G.M.; de Albergaria Barbosa, A.C.R. Combining geochemical and chemometric tools to assess the environmental impact of potentially toxic elements in surface sediment samples from an urban river. Mar. Pollut. Bull. 2020, 155, 111146. [Google Scholar] [CrossRef] [PubMed]
- Frančišković-Bilinski, S.; Cukrov, N. A critical evaluation of using bulk sediment instead of fine fraction in environmental marine studies, investigated on example of Rijeka harbor, Croatia. Environ. Earth Sci. 2014, 71, 341–356. [Google Scholar] [CrossRef]
- Singh, A.K.; Hasnain, S.I.; Banerjee, D.K. Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—A tributary of the lower Ganga, India. Environ. Geol. 1999, 39, 90–98. [Google Scholar] [CrossRef]
- Gall, M.L.; Ayrault, S.; Evrard, O.; Laceby, J.P.; Gateuille, D.; Lefèvre, I.; Mouchel, J.-M.; Meybeck, M. Investigating the metal contamination of sediment transported by the 2016 Seine River flood (Paris, France). Environ. Pollut. 2018, 240, 125–139. [Google Scholar] [CrossRef]
- Gloaguen, T.V.; Motta, P.N.S.D.; Couto, C.F. A grain-size correction for metal pollution indexes in river sediments. Int, J. Sediment. Res. 2021, 36, 362–372. [Google Scholar] [CrossRef]
- Tůmovà, Š.; Hrubešovà, D.; Vorm, P.; Hošek, M.; Grygar, T.M. Common flaws in the analysis of river sediments polluted by risk elements and how to avoid them: Case study in the Ploučnice River system, Czech Republic. J. Soils Sediments 2019, 19, 2020–2033. [Google Scholar] [CrossRef]
- Bábek, T.; Grygar, T.M.; Faměra, M.; Hron, K.; Nováková, T.; Sedláček, J. Geochemical background in polluted river sediments: How to separate the effects of sediment provenance and grain size and statistical rigour? Catena 2015, 135, 240–253. [Google Scholar] [CrossRef]
- Reimann, C.; de Caritat, P. Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Sci. Total Environ. 2005, 335, 91–107. [Google Scholar] [CrossRef]
- Mokwe-Ozonzeadi, N.; Foster, I.; Valsami-Jones, E.; McEldowney, S. Trace metal distribution in the be, bank and suspended sediment of the Ravensbourne River and its implication for sediment monitoring in an urban river. J. Soils Sediments 2019, 19, 946–963. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Union 2000, 327, 1–72. [Google Scholar]
- Schulte, E.E.; Hoskins, B. Recommended soil organic tests. Coop. Bull. 1995, 493, 63–74. [Google Scholar]
- Fiket, Ž.; Mikac, N.; Kniewald, G. Mass fractions of forty-six major and trace elements, including rare earth elements, in sediment and soil reference materials used in environmental studies. Geostand. Geoanal. Res. 2017, 41, 123–135. [Google Scholar] [CrossRef]
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: New York, NY, USA, 1986. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2017. Available online: http://www.r-project.org (accessed on 17 February 2021).
- Woodward, J.C.; Walling, D.E. Composite suspended sediment particles in river systems: Their incidence, dynamics and physical characteristics. Hydrol. Process. 2007, 21, 3601–3614. [Google Scholar] [CrossRef]
- Benac, Č.; Rubinić, J.; Ružić, I.; Radišić, M. Geomorphological evolution of river valleys and river mouths on the Istrian peninsula (In Croatian). Hrvat. Vode 2017, 25, 71–80. [Google Scholar]
- Dautović, J.; Fiket, Ž.; Barešić, J.; Ahel, M.; Mikac, N. Sources, Distribution and Behavior of Major and Trace Elements in a Complex Karst Lake System. Aquat. Geochem. 2014, 20, 19–38. [Google Scholar] [CrossRef]
- Vukosav, P.; Mlakar, M.; Cukrov, N.; Kwokal, Ž.; Pižeta, I.; Pavlus, N.; Špoljarić, I.; Vurnek, M.; Brozinčević, A.; Omanović, D. Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia). Environ. Sci. Pollut. Res. 2014, 21, 3826–3839. [Google Scholar] [CrossRef] [PubMed]
- Cukrov, N.; Cmuk, P.; Mlakar, M.; Omanović, D. Spatial distribution of trace metals in the Krka River, Croatia. An example of the self-purification. Chemosphere 2008, 72, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Horvatinčić, N.; Sironić, A.; Barešić, J.; Sondi, I.; Bronić, I.K.; Borković, D. Mineralogical, organic and isotopic composition as palaeoenvironmental records in the lake sediments of two lakes, the Plitvice Lakes, Croatia. Quat. Int. 2018, 494, 300–313. [Google Scholar] [CrossRef] [Green Version]
- Ciglenečki, I.; Ahel, A.; Omanović, D.; Mikac, N.; Nakić, E.B.; Marguš, M.; Dautović, J.; Šagi, F.C.; Čanković, M.; Bačić, N. Eutrophication in the River Krka system—The area of the lake Visovac. In 6th Croatian Conference on Waters with the International Contributions; Biondić, D., Holjević, D., Vizner, M., Eds.; Neograf d.o.o.: Kraljevica, Croatia, 2015; pp. 353–362. (In Croatian) [Google Scholar]
- Šterc, S. Channel Sava-Odra-Sava as a defense against floods in Zagreb (in Croatian). Geogr. Glas. 1979, 41, 97–116. [Google Scholar]
- Ilijanić, N. Clay Minerals in Lake Sediments Along the Eastern Adriatic Coast as Proxies of Environmental Change during Late Pleistocene and Holocene (in Croatian). Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2014; p. 382. [Google Scholar]
- Ivanić, M.; Lojen, S.; Grozić, D.; Jurina, I.; Škapin, S.D.; Troskot-Čorbić, T.; Mikac, N.; Juračić, M.; Sondi, I. Geochemistry of sedimentary organic matter and trace elements in modern lake sediments from transitional karstic land-sea environment of the Neretva River delta (Kuti Lake, Croatia). Quat. Int. 2018, 494, 286–299. [Google Scholar] [CrossRef]
- Šorša, A.; Peh, Z.; Halamić, J. Geochemical mapping the urban and industrial legacy of Sisak, Croatia, using discriminant function analysis of topsoil chemical data. J. Geochem. Explor. 2018, 187, 155–167. [Google Scholar] [CrossRef]
- Wu, K.; Liu, S.; Kandasamy, S.; Jin, A.; Lou, Z.; Li, J.; Wu, B.; Wang, X.; Mohamed, C.A.; Shi, X. Grain-size effect on rare earth elements in Pahang River and Kelantan River, Peninsular Malaysia: Implications for sediment provenance in the southern South China Sea. Cont. Shelf. Res. 2019, 189, 103977. [Google Scholar] [CrossRef]
- Lužar-Oberiter, B.; Hochuli, P.A.; Babić, L.J.; Glumac, B.; Tibljaš, D. Climatic cycles recorded in the Middle Eocene hemipelagites from a Dinaric foreland basin of Istria (Croatia). Geol. Carpath. 2010, 61, 193. [Google Scholar] [CrossRef] [Green Version]
- Velić, J.; Malvić, V.; Cvetković, M.; Vrbanac, B. Reservoir geology, hydrocarbon reserves and production in the Croatian part of the Pannonian Basin System. Geol. Croat. 2012, 65, 91–101. [Google Scholar] [CrossRef]
- Bakke, T.; Källqvist, T.; Ruus, A.; Breedveld, G.D.; Hylland, K. Development of sediment quality criteria in Norway. J. Soils Sediments 2010, 10, 172–178. [Google Scholar] [CrossRef]
- Mikac, I.; Fiket, Ž.; Terzić, S.; Barešić, J.; Mikac, N.; Ahel, M. Chemical indicators of anthropogenic impacts in sediments of the pristine karst lakes. Chemosphere 2011, 84, 1140–1149. [Google Scholar] [CrossRef]
- Šajn, R.; Halamić, J.; Peh, Z.; Galović, L.; Alijagić, J. Assessment of the natural and anthropogenic sources of chemical elements in alluvial soils from the Drava River using multivariate statistical methods. J. Geochem. Explor. 2011, 110, 278–289. [Google Scholar] [CrossRef]
- Pamić, J. The Sava-Vardar zone of the Dinarides and Hellenides versus the Vardar Ocean. Eclogae. Geol. Helv. 2002, 95, 99–114. [Google Scholar]
- Milačič, R.; Zuliani, T.; Vidmar, J.; Oprčkal, P.; Ščančar, J. Potentially toxic elements in water and sediments of the Sava River under extreme flow events. Sci. Total Environ. 2017, 605, 894–905. [Google Scholar] [CrossRef] [PubMed]
- Kwok, W.H.K.; Batley, G.E.; Wenning, R.J.; Zhu, L.; Vangheluwe, M.; Lee, S. Sediment quality guidelines: Challenges and opportunities for improving sediment management. Environ. Sci. Pollut. Res. 2014, 21, 17–27. [Google Scholar] [CrossRef]
- Crane, M. Proposed development of Sediment Quality Guidelines under the European Water Framework Directive: A critique. Toxicol. Lett. 2003, 142, 195–206. [Google Scholar] [CrossRef]
- Lučić, M.; Mikac, N.; Bačić, N.; Vdović, N. Appraisal of geochemical composition and hydrodynamic sorting of the river suspended material: Application of time-integrated suspended sediment sampler in a medium-sized river (the Sava River catchment). J. Hydrol. 2020, 597, 125768. [Google Scholar] [CrossRef]
- Mijošek, T.; Filipović-Marijić, V.; Dragun, Z.; Ivanković, D.; Krasnići, N.; Redžović, Z.; Perić, M.S.; Vdović, N.; Bačić, N.; Erk, M. The assessment of metal contamination in water and sediments of the lowland Ilova River (Croatia) impacted by anthropogenic activities. Environ. Sci. Pollut. Res. 2020, 27, 25374–25389. [Google Scholar] [CrossRef]
- Chen, J.B.; Gaillardet, J.; Bouchez, J.; Louvat, P.; Wang, Y.N. Anthropophile elements in river sediments: Overview from the Seine River, France. Geochem. Geophys. Geosyst. 2014, 15, 4526–4546. [Google Scholar] [CrossRef] [Green Version]
- Sondi, I.; Juračić, M.; Prohić, E.; Pravdić, V. Particulates and the environmental capacity for trace metals. A small river as a model for a land-sea transfer system: The Raša River estuary. Sci. Total Environ. 1994, 155, 173–185. [Google Scholar] [CrossRef]
- Šegvić, B.; Slovenec, D.; Altherr, R.; Babajić, E.; Mählmann, R.F.; Lugović, B. High-grade metamorphic soles from the Central Dinaric Ophiolite Belt and their significance for the Neotethyan evolution in the Dinarides. Ofioliti 2019, 44, 1–30. [Google Scholar]
- Zhang, C.; Yu, Z.; Zeng, G.; Jiang, M.; Yang, Z.; Cui, F.; Zhu, M.Y.; Shen, L.Q.; Hu, L. Effects of sediment geochemical properties on heavy metal bioavailability. Environ. Int. 2014, 73, 270–281. [Google Scholar] [CrossRef]
- Rambeau, C.M.C.; Baize, D.; Saby, N.P.A.; Matera, V.; Adatte, T.; Foellmi, K.B. High Cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: A case study in Lower Burgundy, France. Environ. Earth Sci. 2010, 61, 1573–1585. [Google Scholar] [CrossRef] [Green Version]
- Vermeesch, P. Exploratory Analysis of Provenance Data Using R and the Provenance Package. Minerals 2019, 9, 193. [Google Scholar] [CrossRef] [Green Version]
Sample No. | Abbreviation | Location | OM % Bulk Sed. | OM % Fine Fraction | Sample No. | Abbreviation | Location | OM % Bulk Sed. | OM % Fine Fraction |
---|---|---|---|---|---|---|---|---|---|
1 | S1 | Sava-Županja | 5.43 | 5.08 | 25 | Dr3 | Drava-D Miholjac | 2.47 | 5.73 |
2 | S2 | Sava-Šamac | 4.16 | 5.18 | 26 | Dr4 | Drava-T Polje | 1.04 | 4.52 |
3 | S3 | Sava-Sl Brod | 4.16 | 4.13 | 27 | Dr5 | Drava-Botovo | 4.10 | 5.70 |
4 | S4 | Sava-Lukavec | 1.15 | 4.41 | 28 | Dr6 | Drava-Legrad | 0.54 | 4.47 |
5 | S5 | Sava-Drenje | 1.61 | 6.28 | 29 | Dr7 | Drava-Josipovac | 1.32 | 3.67 |
6 | S6 | Sava-Rugvica | 4.82 | 4.18 | 30 | Du1 | Dunav-Batina | 3.75 | 4.04 |
7 | Bo | Bosut | 2.45 | 2.59 | 31 | Du2 | Dunav-Ilok | 3.72 | 4.44 |
8 | Or | Orljava | 2.32 | 3.88 | 32 | Mu | Mura | 1.28 | 5.81 |
9 | U1 | Una-Jasenovac | 4.26 | 5.15 | 33 | Mi | Mirna | 3.62 | 3.27 |
10 | U2 | Una-Kostajnica | 1.98 | 6.40 | 34 | Ra | Raša | 3.98 | 2.91 |
11 | Il | Ilova | 3.28 | 3.74 | 35 | Ct | Cetina | 3.86 | 9.20 |
12 | Cs | Česma | 0.62 | 4.22 | 36 | Ne | Neretva | 1.90 | 6.13 |
13 | K1 | Kupa-Šišinec | 4.94 | 5.04 | 37 | Zr | Zrmanja | 2.50 | 3.28 |
14 | K2 | Kupa-Bubnjarci | 3.19 | 4.95 | 38 | KM | Krka-Manastir | 6.47 | 3.66 |
15 | K3 | Kupa-M Gorica | 1.31 | 5.33 | 39 | Od | Odra | 10.56 | 6.68 |
16 | Gl | Glina | 4.76 | 4.07 | 40 | BJ | Baćinska Lakes | 2.73 | 2.85 |
17 | Ko | Korana | 5.40 | 5.22 | 41 | AP | Reservoir-Pakra | 5.73 | 4.91 |
18 | Mr | Mrežnica | 6.14 | 6.24 | 42 | JP | Lake Prošće | 8.01 | 5.76 |
19 | Do | Dobra | 4.56 | 5.62 | 43 | JK | Lake Kozjak | 6.93 | 4.42 |
20 | Kr | Krapina | 1.60 | 6.37 | 44 | VC | Lake Vransko-Cres | 7.44 | 8.73 |
21 | Su | Sutla | 2.90 | 5.71 | 45 | VP | Lake Vransko-Biog | 10.26 | 8.21 |
22 | Be | Bednja | 0.83 | 5.47 | 46 | KV | Krka-Lake Visovac | 4.13 | 3.83 |
23 | Dr1 | Drava-Belišće | 1.53 | 5.82 | 47 | AB | Reservoir-Borovik | 3.85 | 3.17 |
24 | Dr2 | Drava-Dunav | 0.51 | 4.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vdović, N.; Lučić, M.; Mikac, N.; Bačić, N. Partitioning of Metal Contaminants between Bulk and Fine-Grained Fraction in Freshwater Sediments: A Critical Appraisal. Minerals 2021, 11, 603. https://doi.org/10.3390/min11060603
Vdović N, Lučić M, Mikac N, Bačić N. Partitioning of Metal Contaminants between Bulk and Fine-Grained Fraction in Freshwater Sediments: A Critical Appraisal. Minerals. 2021; 11(6):603. https://doi.org/10.3390/min11060603
Chicago/Turabian StyleVdović, Neda, Mavro Lučić, Nevenka Mikac, and Niko Bačić. 2021. "Partitioning of Metal Contaminants between Bulk and Fine-Grained Fraction in Freshwater Sediments: A Critical Appraisal" Minerals 11, no. 6: 603. https://doi.org/10.3390/min11060603
APA StyleVdović, N., Lučić, M., Mikac, N., & Bačić, N. (2021). Partitioning of Metal Contaminants between Bulk and Fine-Grained Fraction in Freshwater Sediments: A Critical Appraisal. Minerals, 11(6), 603. https://doi.org/10.3390/min11060603