Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement
Abstract
:1. Introduction
2. Geological Setting
2.1. Paleozoic Basement of the West Siberian Basin
2.2. Mesozoic Tectonic Evolution of the Southeastern West Siberian Basin
2.3. Cenozoic Tectonic Evolution of the Southeastern West Siberian Basin
3. Apatite Fission Track Thermochronology: Samples and Analytical Methodology
4. Results and Interpretation
4.1. Apatite Fission-Track Data
4.2. Inverse Thermal History Modeling
5. Discussion
5.1. The Novosibirsk Massif
5.2. The Ob Massif
5.3. The Kalman Massif
5.4. Implication for the Mesozoic–Cenozoic Tectonic Evolution of the WSB Basement
6. Conclusions
- The granitic massifs of the exposed segments of the WSB basement exhibit differing cooling histories, implying differential basement denudation and exhumation patterns as shown by our AFT data;
- AFT ages and thermal history models of the Novosibirsk granitic massif displayed an Early Cretaceous (~140–130 Ma) period of rapid cooling associated with basement exhumation and denudation. This denudation episode can be interpreted as a result of fault reactivation due to the convergence between Siberia and Amuria and/or the Lhasa–Qiangtang collision;
- AFT data obtained for the Ob massif show a distinct Late Cretaceous (~105–90 Ma) fast cooling period associated with exhumation and denudation of the WSB basement. This event could be caused by fault reactivation due to a far-field effect from the gravitational collapse of the Mongol–Okhotsk orogeny after final collision between Siberia and Amuria;
- Similar AFT ages and thermal history models of the Kalman massif reveal a Late Cretaceous (~85–80 Ma) rapid cooling period indicating basement exhumation and denudation as a result of reactivation of the Charysh fault and could be related to Karakoram–Pamir convergence along the southern Eurasia margin;
- Thermal history models for all granitic massifs show, that the WSB basement experienced temporary thermal stagnation during much of the Cretaceous and the Cenozoic. This period of tectonic stability is evidenced by the development of the marine basin and the occurrence of peneplanation surfaces within uplifted areas of the WSB basement;
- A final Neogene rapid cooling episode of the WSB basement registered in the Novosibirsk massif started at ~15 Ma and brought the rocks to surface temperatures at their present outcrop position. This event might be linked to continuous indentation of the Indian plate into Eurasia.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ju, Y.; Wang, G.; Li, S.; Sun, Y.; Suo, Y.; Somerville, I.; Li, W.; He, B.; Zheng, M.; Yu, K. Geodynamic mechanism and classification of basins in the Earth system. Gondwana Res. 2020, in press. [Google Scholar] [CrossRef]
- Allen, P.A.; Armitage, J.J. Cratonic Basins. In Tectonics of Sedimentary Basins: Recent Advances; Busby, C., Pérez, A.A., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2011; pp. 602–620. [Google Scholar]
- Nikishin, A.M.; Ziegler, P.A.; Abbott, D.; Brunet, M.-F.; Cloetingh, S. Permo-Triassic intraplate magmatism and mangle dynamics. Tectonophysics 2002, 351, 3–39. [Google Scholar] [CrossRef]
- Vyssotski, A.; Vyssotski, V.; Nezhdanov, A. Evolution of the West Siberian Basin. Mar. Pet. Geol. 2006, 23, 93–126. [Google Scholar] [CrossRef]
- Kontorovich, A.E.; Nesterov, I.I.; Salmanov, F.K.; Surkov, V.S.; Trofimuk, A.A.; Ervye, Y. Geology of Oil and Gas of West Siberia; Nedra: Moscow, Russia, 1975; p. 679. (In Russian) [Google Scholar]
- Vibe, Yu.; Bunge, H.-P.; Clark, S.R. Anomalous subsidence history of the West Siberian Basin as an indicator for episodes of mantle induced dynamic topography. Gondwana Res. 2018, 53, 99–109. [Google Scholar] [CrossRef]
- Babin, G.A.; Chernyh, A.I.; Golovina, A.G.; Zhigalov, S.V.; Dolgushin, S.S.; Vetrov, E.V.; Korableva, T.V.; Bodina, N.A.; Svetlova, N.A.; Fedoseev, G.S.; et al. Explanation Note to the State Geological Map of Russian Federation, Scale 1:1 000 000 (Third Generation) Atai-Sayan Series, Sheet N-44 (Novosibirsk); Russian Geological Research Institute: Sankt Peterburg, Russia, 2015; p. 181. (In Russian) [Google Scholar]
- Vetrov, E.V.; De Grave, J.; Kotler, P.D.; Kruk, N.N.; Zhigalov, S.V.; Babin, G.A.; Fedoseev, G.S.; Vetrova, N.I. Evolution of the Kolyvan-Tomsk granitoid magmatism (Central Siberia): Insights into the tectonic transition from post-collision to intraplate settings in the northwestern part of the Central Asian Orogenic Belt. Gondwana Res. 2021, 93, 26–47. [Google Scholar] [CrossRef]
- Gusev, N.I.; Vovshin, Y.E.; Kruglova, A.A. Explanation Note to the State Geological Map of Russian Federation, Scale 1:1 000 000 (Third Generation) Atai-Sayan Series, Sheet M-44 (Rubtsovsk); Russian Geological Research Institute: Sankt Peterburg, Russia, 2015; p. 320. (In Russian) [Google Scholar]
- Wagner, G.A.; Van den haute, P. Fission Track-Dating; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; p. 285. [Google Scholar]
- Dobretsov, N.L.; Buslov, M.M.; Vernikovsky, V.A. Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-up of Rodinia. Gondwana Res. 2003, 6, 143–159. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Sengör, A.M.C.; Natal’in, B.A. Paleotectonics of Asia: Fragments of a synthesis. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambridge University Press: New York, NY, USA, 1996; pp. 486–641. [Google Scholar]
- Dobretsov, N.; Polyansky, O.; Reverdatto, V.; Babichev, A. Dynamics of the Arctic and adjacent petroleum basins: A record of plume and rifting activity. Russ. Geol. Geophys. 2013, 54, 888–902. [Google Scholar] [CrossRef]
- Holt, P.J.; van Hunen, J.; Allen, M.B. Subsidence of theWest Siberian Basin: Effects of a mantle plume impact. Geology 2012, 40, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Reichow, M.K.; Saunders, A.D.; White, R.V.; Al’Mukhamedov, A.I.; Medvedev, A.Y. Geochemistry and petrogenesis of basalts from the West Siberian Basin: An extension of the Permo–Triassic Siberian Traps, Russia. Lithos 2005, 79, 425–452. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Natal’in, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Kröner, A.; Windley, B.F.; Badarch, G.; Tomurtogoo, O.; Hegner, E.; Jahn, B.M.; Gruschka, S.; Khain, E.V.; Demoux, A.; Wingate, M.T.D. Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian shield. Geol. Soc. Am. Mem. Mem. 2007, 200, 181–209. [Google Scholar]
- Xiao, W.; Windley, B.F.; Sun, S.; Li, J.; Huang, B.; Han, C.; Yuan, C.; Sun, M.; Chen, H. A tale of amalgamation of three Permo-Triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion. Annu. Rev. Earth Planet. Sci. 2015, 43, 477–507. [Google Scholar] [CrossRef] [Green Version]
- Sotnikov, V.I.; Fedoseev, G.S.; Ponomarchuk, V.A.; Borisenko, A.S.; Berzina, A.N. Granitoid complexes of the Kolyvan′-Tomsk folded zone (West Siberia). Russ. Geol. Geophys. 2000, 41, 120–125. [Google Scholar]
- Dobretsov, N.L.; Buslov, M.M.; Delvaux, D.; Berzin, N.A.; Ermikov, V.D. Meso and Cenozoic Tectonics of the Central Asian Mountain Belt: Effects of Lithospheric Plate Interaction and Mantle Plumes. Int. Geol. Rev. 1996, 38, 430–466. [Google Scholar] [CrossRef]
- De Grave, J.; Buslov, M.M.; Haute, P.V.D. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. J. Asian Earth Sci. 2007, 29, 188–204. [Google Scholar] [CrossRef]
- Jolivet, M.; De Boisgrolier, T.; Petit, C.; Fournier, M.; Sankov, V.A.; Ringenbach, J.-C.; Byzov, L.; Miroshnichenko, A.I.; Kovalenko, S.N.; Anisimova, S.V. How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology. Tectonics 2009, 28, TC3008. [Google Scholar] [CrossRef]
- Adamenko, O.M.; Portnova, E.A. The main features of the structure and conditions for the formation of the second structural (Lower Middle Jurassic) tier of the Kulundinskaya Depression. Russ. Geol. Geophys. 1967, 3, 12–21. [Google Scholar]
- De Grave, J.; Buslov, M.M.; Van den haute, P.; Dehandschutter, B.; Delvaux, D. Meso-Cenozoic Evolution of Mountain Range-Intramontane Basin Systems in the Southern Siberian Altai Mountains by Apatite Fission-Track Thermochronology. In Thrust Belts and Foreland Basins; Lacombe, O., Lavé, J., Roure, F., Vergés, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kazmina, T.A. Stratigraphy and Ostracods of the Pliocene and Early Pleistocene of the South of the West Siberian Plain; Nauka: Novosibirsk, Russia, 1975; p. 98. (In Russian) [Google Scholar]
- Kulkova, I.A.; Volkova, V.S. Landscapes and climate of West Siberia in the Paleogene and Neogene. Russ. Geol. Geophys. 1997, 38, 581–595. [Google Scholar]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 2013, 36, 199–204. [Google Scholar] [CrossRef]
- Panova, L.A. Oligocene and Eocene of the West Siberian Lowland. Cenozoic Flora of Siberia According to Paleontological Data; Nauka: Moscow, Russia, 1971; pp. 40–50. (In Russian) [Google Scholar]
- Arkhipov, S.A.; Vdovin, V.V.; Mizerov, B.V.; Nikolaev, V.A. West Siberian Plain; Nauka: Moscow, Russia, 1970; Volume 280. (In Russian) [Google Scholar]
- Jolivet, M.; Ritz, J.-F.; Vassallo, R.; Larroque, C.; Braucher, R.; Todbileg, M.; Chauvet, A.; Sue, C.; Arnaud, N.; De Vicente, R.; et al. Mongolian summits: An uplifted, flat, old but still preserved erosion surface. Geology 2007, 35, 871–874. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, M.; Dominguez, S.; Charreau, J.; Chen, Y.; Li, Y.G.; Wang, Q.C. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation. Tectonics 2010, 29, TC6019. [Google Scholar] [CrossRef] [Green Version]
- Zykin, V.S. Stratigraphy and Evolution of the Natural Environment and Climate in the Late Cenozoic South of Western Siberia; GEO: Novosibirsk, Russia, 2012; Volume 476. (In Russian) [Google Scholar]
- Adamenko, O.M. Pre-Altai Depression and Problems of the Formation of Foothill Subsidence; Nauka: Novosibirsk, Russia, 1976; Volume 184. (In Russian) [Google Scholar]
- De Grave, J.; Van den haute, P. Denudation and cooling of the Lake Teletskoye region in the Altai Mountains (South Siberia) as revealed by apatite fission-track thermochronology. Tectonophysics 2002, 349, 145–159. [Google Scholar] [CrossRef]
- De Grave, J.; Buslov, M.M.; Haute, P.V.D.; Metcalf, J.; Dehandschutter, B.; McWilliams, M.O. Multi-method chronometry of the Teletskoye graben and its basement, Siberian Altai Mountains: New insights on its thermo-tectonic evolution. Geol. Soc. Lond. Spéc. Publ. 2009, 324, 237–259. [Google Scholar] [CrossRef]
- De Grave, J.; Glorie, S.; Buslov, M.M.; Izmer, A.; Fournier-Carrie, A.; Elburg, M.; Batalev, V.Y.; Vanhaeke, F.; Van den haute, P. The thermo-tectonic history of the Song-Kul Plateau, Kyrgyz Tien Shan: Constraints by apatite and titanite thermo-chronometry and zircon U/Pb dating. Gondwana Res. 2011, 20, 745–763. [Google Scholar] [CrossRef]
- Glorie, S.; De Grave, J.; Buslov, M.; Elburg, M.; Stockli, D.; Gerdes, A.; Van den Haute, P. Multi-method chronometric constraints on the evolution of the Northern Kyrgyz Tien Shan granitoids (Central Asian Orogenic Belt): From emplacement to exhumation. J. Asian Earth Sci. 2010, 38, 131–146. [Google Scholar] [CrossRef]
- Van Ranst, G.; Carlos Pedrosa-Soares, A.P.; Novo, T.; Vermeesch, P.; De Grave, J. New insights from low-temperature ther-mochronology into the tectonic and geomorphologic evolution of the southeast Brazilian highlands and passive margin. Geosci. Front. 2020, 11, 303–324. [Google Scholar] [CrossRef]
- Hurford, A.J.; Green, P.F. The zeta age calibration of fission-track dating. Chem. Geol. 1983, 41, 285–317. [Google Scholar] [CrossRef]
- McDowell, F.W.; McIntosh, W.C.; Farley, K.A. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem. Geol. 2005, 214, 249–263. [Google Scholar] [CrossRef]
- Hurford, A.J.; Hammerschmidt, K. 40Ar/39Ar and K/Ar dating of the Bishop and Fish Canyon Tus: Calibration ages for fission-track dating standards. Chem. Geol. 1985, 58, 23–32. [Google Scholar] [CrossRef]
- Donelick, R.A. Crystallographic orientation dependence of mean etchable fission track length in apatite: An empirical model and experimental observations. Am. Mineral. 1991, 76, 83–91. [Google Scholar]
- Gallagher, K. Transdimensional inverse thermal history modeling for quantitative thermochronology. J. Geophys. Res. Space Phys. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved modeling of fission-track annealing in apatite. Am. Mineral. 2007, 92, 799–810. [Google Scholar] [CrossRef]
- Carlson, W.D.; Donelick, R.A.; Ketcham, R.A. Variability of apatite fission-track annealing kinetics: I. Experimental results. Am. Mineral. 1999, 84, 1213–1223. [Google Scholar] [CrossRef]
- Donelick, R.A.; O’Sullivan, P.B.; Ketcham, R.A. Apatite Fission-Track Analysis. Rev. Miner. Geochem. 2005, 58, 49–94. [Google Scholar] [CrossRef]
- Green, P.F.; Duddyi, I.R.; Gleadow, A.J.W.; Tingate, P.R.; Laslett, G.M. Thermal annealing of fission tracks in apatite 1. A qualitative description. Chem. Geol. 1986, 59, 237–253. [Google Scholar] [CrossRef]
- Gallagher, K.; Brown, R.; Johnson, C. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet. Sci. 1998, 26, 519–572. [Google Scholar] [CrossRef]
- De Grave, J.; De Pelsmaeker, E.; Zhimulev, F.I.; Glorie, S.; Buslov, M.M.; Van den haute, P. Meso-Cenozoic building of the northern Central Asian Orogenic Belt: Thermotectonic history of the Tuva region. Tectonophysics 2014, 621, 44–59. [Google Scholar] [CrossRef]
- Vetrov, E.V.; De Grave, J.; Vetrova, N.I.; Zhimulev, F.I.; Nachtergaele, S.; Van Ranst, G.; Mikhailova, P.I. Tectonic history of the South Tannuol Fault Zone (Tuva Region of the Northern Central Asian Orogenic Belt, Russia): Constraints from multi-method geochronology. Minerals 2020, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- De Grave, J.; Glorie, S.; Zhimulev, F.I.; Buslov, M.M.; Elburg, M.; Van den Haute, P. Emplacement and exhumation of the Kuznetsk–Alatau basement (Siberia): Implications for the tectonic evolution of the Central Asian Orogenic Belt and sediment supply to the Kuznetsk, Minusa and West Siberian Basins. Terra Nova 2011, 23, 248–256. [Google Scholar] [CrossRef]
- De Grave, J.; Van den haute, P.; Buslov, M.M.; Dehandschutter, B.; Glorie, S. Apatite fission track thermochronology applied to the Chulyshman Plateau, Siberian Altai Region. Radiat. Meas. 2008, 43, 38–42. [Google Scholar] [CrossRef]
- Yuan, W.-M.; Carter, A.; Dong, J.-Q.; Bao, Z.; An, Y.; Guo, Z. Mesozoic-Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: New constraints from apatite fission track data. Tectonophysics 2006, 412, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Glorie, S.; De Grave, J.; Buslov, M.M.; Zhimulev, F.I.; Elburg, M.A.; Van den Haute, P. Structural control on Meso-Cenozoic tectonic reactivation and denudation in the Siberian Altai: Insights from multimethod thermochronometry. Tectonophysics 2012, 544–545, 75–92. [Google Scholar] [CrossRef]
- Vetrov, E.; Buslov, M.; De Grave, J. Evolution of tectonic events and topography in southeastern Gorny Altai in the Late Mesozoic–Cenozoic (data from apatite fission track thermochronology). Russ. Geol. Geophys. 2016, 57, 95–110. [Google Scholar] [CrossRef]
- Pullen, A.; Banaszynski, M.; Kapp, P.; Thomson, S.N.; Cai, F. A mid-cretaceous change from fast to slow exhumation of the western Chinese Altai mountains: A climate driven exhumation signal? J. Asian Earth Sci. 2020, 197, 104387. [Google Scholar] [CrossRef]
- Vassallo, R.; Jolivet, M.; Ritz, J.-F.; Braucher, R.; Larroque, C.; Sue, C.; Todbileg, M.; Javkhlanbold, D. Uplift age and rates of the Gurvan Bogd system (Gobi-Altay) by apatite fission track analysis. Earth Planet. Sci. Lett. 2007, 259, 333–346. [Google Scholar] [CrossRef]
- Jolivet, M.; Arzhannikov, S.; Arzhannikova, A.; Chauvet, A.; Vassallo, R.; Braucher, R. Geomorphic Mesozoic and Cenozoic evolution in the Oka-Jombolok region (East Sayan ranges, Siberia). J. Asian Earth Sci. 2013, 62, 117–133. [Google Scholar] [CrossRef]
- Arzhannikova, A.; Jolivet, M.; Arzhannikov, S.; Vassallo, R.; Chauvet, A. The time of the formation and destruction of the Meso-Cenozoic peneplanation surface in East Sayan. Russ. Geol. Geophys. 2013, 54, 685–694. [Google Scholar] [CrossRef]
- De Pelsmaeker, E.; Glorie, S.; Buslov, M.M.; Zhimulev, F.; Poujol, M.; Korobkin, V.V.; Vanhaecke, F.; Vetrov, E.V.; De Grave, J. Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement. Tectonophysics 2015, 662, 416–433. [Google Scholar] [CrossRef] [Green Version]
- Glorie, S.; Otasevic, A.; Gillespie, J.; Jepson, G.; Danišík, M.; Zhimulev, F.I.; Gurevich, D.; Zhang, Z.; Song, D.; Xiao, W. Thermo-tectonic history of the Junggar Alatau within the Central Asian Orogenic Belt (SE Kazakhstan, NW China): Insights from integrated apatite U/Pb, fission track and (U-Th)/He thermochronology. Geosci. Front. 2019, 10, 2153–2166. [Google Scholar] [CrossRef]
- Tian, Z.; Xiao, W.; Zhang, Z.; Lin, X. Fisson-track constrains on superposed folding in the Beishan orogenic belt, southernmost Altaids. Geosci. Front. 2016, 7, 181–196. [Google Scholar] [CrossRef] [Green Version]
- Sobel, E.R.; Oskin, M.; Burbank, D.; Mikolaichuk, A. Exhumation of basement-cored uplifts: Example of the Kyrgyz Range quantified with apatite fission track thermochronology. Tectonics 2006, 25, TC2008. [Google Scholar] [CrossRef] [Green Version]
- De Grave, J.; Glorie, S.; Buslov, M.M.; Stockli, D.F.; McWilliams, M.O.; Batalev, V.Y.; Van den haute, P. Thermo-tectonic history of the Issyk-Kul basement (Kyrgyz Northern Tien Shan, Central Asia). Gondwana Res. 2013, 23, 998–1020. [Google Scholar] [CrossRef]
- Nachtergaele, S.; De Pelsmaeker, E.; Glorie, S.; Zhimulev, F.; Jolivet, M.; Danisík, M.; Buslov, M.M.; De Grave, J. Meso-Cenozoic tectonic evolution of the Talas-Fergana region of the Kyrgyz Tien Shan revealed by low-temperature basement and detrital thermochronology. Geosci. Front. 2018, 9, 1495–1514. [Google Scholar] [CrossRef]
- Jepson, G.; Glorie, S.; Konopelko, D.; Mirkamalov, R.; Daniˇsík, M.; Collins, A.S. The low-temperature thermo-tectonic evolution of the western Tian Shan, Uzbekistan. Gondwana Res. 2018, 64, 122–136. [Google Scholar] [CrossRef]
- Ehlers, T.A.; Farley, K.A. Apatite (U-Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett. 2003, 206, 1–14. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of Fluctuating Sea Levels Since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef] [Green Version]
- Kominz, M.A. Oceanic Ridge Volume and Sea-Level Change an Error Analysis. Interregional Unconformities and Hydrocarbon Accumulation; American Association of Petroleum Geologists: Tulsa, OK, USA, 1984; pp. 109–127. [Google Scholar]
- Müller, R.D.; Sdrolias, M.; Gaina, C.; Roest, W.R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 2008, 9, Q04006. [Google Scholar] [CrossRef]
- Pitman, W.C. Relationship between eustacy and stratigraphic sequences of passive margins. GSA Bull. 1978, 89, 1389–1403. [Google Scholar] [CrossRef]
- Yang, Y.-T.; Song, C.-C.; He, S. Jurassic tectonostratigraphic evolution of the Junggar Basin, NW China: A record of Mesozoic intraplate deformation in Central Asia. Tectonics 2015, 34, 86–115. [Google Scholar] [CrossRef]
- Jolivet, M.; Arzhannikova, N.; Frolov, A.O.; Arzhannikov, S.; Kulagina, N.; Akulova, V.; Vassallo, R. Late Jurassic-Early Cretaceous paleoenvironment evolution of the Transbaikal basins (SE Siberia): Implications for the Mongol-Okhotsk orogeny. Bulletin Société Géologique 2017, 188, 1–22. [Google Scholar]
- Kapp, P.; DeCelles, P.G.; Gehrels, G.E.; Heizler, M.; Ding, L. Geological records of the Lhasa–Qiangtang and Indo–Asian collisions in the Nima area of central Tibet. Geol. Soc. Am. Bull. 2007, 119, 917–932. [Google Scholar] [CrossRef]
- Zhu, D.C.; Zhao, Z.D.; Niu, Y.; Dilek, Y.; Hou, Z.Q.; Mo, X.X. The origin and preCenozoic evolution of the Tibetan Plateau. Gondwana Res. 2013, 23, 1429–1454. [Google Scholar] [CrossRef]
- Zhu, D.-C.; Li, S.-M.; Cawood, P.A.; Wang, Q.; Zhao, Z.-D.; Liu, S.-A.; Wang, L.-Q. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos 2016, 245, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Glorie, S.; De Grave, J. Exhuming the Meso-Cenozoic Kyrgyz Tian Shan and Siberian Altai-Sayan: A review based on low-temperature thermochronology. Geosci. Front. 2016, 7, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Schwab, M.; Ratschbacher, L.; Siebel, W.; McWilliams, M.; Minaev, V.; Lutkov, V.; Chen, F.; Stanek, K.; Nelson, B.; Frisch, F.; et al. Assembly of the Pamirs: Age and origin of magmatic belts from the southern Tien Shan to the southern Pamirs and their relation to Tibet. Tectonics 2004, 23, 31. [Google Scholar] [CrossRef]
- Sun, J.; Tappe, S.; Kostrovitsky, S.I.; Liu, C.-Z.; Skuzovatov, S.Y.; Wu, F.-Y. Mantle sources of kimberlites through time: A U-Pb and Lu-Hf isotope study of zircon megacrysts from the Siberian diamond fields. Chem. Geol. 2018, 479, 228–240. [Google Scholar] [CrossRef]
- Sarsadskih, N.N.; Blagulkina, V.A.; Silin, Y.I. On the absolute age of the Yakutian kimberlites. Doklady Akademii Nauk SSSR 1966, 168, 420–423. (In Russian) [Google Scholar]
- Tomurtogoo, O.; Windley, B.F.; Kroner, A.; Badarch, G.; Liu, D.Y. Zircon age and occurrence of the adaatsag ophiolite and muron shear zone, central Mongolia: Constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. J. Geol. Soc. 2005, 162, 197–229. [Google Scholar] [CrossRef]
- Zorin, Y. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 1999, 306, 33–56. [Google Scholar] [CrossRef] [Green Version]
- Nokleberg, W.J.; Parfenov, L.M.; Monger, J.W.H.; Norton, I.O.; Khanchuk, A.I.; Stone, D.B.; Scotese, C.R.; Scholl, D.W.; Fujita, K. Phanerozoic Tectonic Evolution of the Circum-North Pacific; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2000; p. 1626.
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Green, O.R.; Searle, M.P.; Corfield, R.I.; Corfield, R.M. Cretaceous-Tertiary Carbonate Platform Evolution and the Age of the India-Asia Collision along the Ladakh Himalaya (Northwest India). J. Geol. 2008, 116, 331–353. [Google Scholar] [CrossRef]
- Li, T.; Daukeev, S.Z.; Kim, B.C.; Tomurtogoo, O.; Petrov, O.V. (Eds.) Atlas of Geological Maps of Central Asia and Adjacent Areas, Scale 1:2 500 000; Beijing Publishing House: Beijing, China, 2008. [Google Scholar]
- Jolivet, M.; Bourquin, S.; Heilbronn, G.; Robin, C.; Barrier, L.; Dabard, M.; Jia, Y.; De Pelsmaeker, E.; Fu, B. The Upper Jurassic–Lower Cretaceous alluvial-fan deposits of the Kalaza Formation (Central Asia): Tectonic pulse or increased aridity. In Geological Evolution of Central Asian Basins and the Western Tien Shan Range; Geological Society of London: London, UK, 2015; p. 427. [Google Scholar]
- Parsons, A.J.; Hosseini, K.; Palin, R.M.; Karin Sigloch, K. Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans. Earth-Sci. Rev. 2020, 208, 103084. [Google Scholar] [CrossRef]
No. | Sample | Lithology | Latitude | Longitude | Altitude | Location |
---|---|---|---|---|---|---|
Ob Massif | ||||||
1 | 1-1 | syenogranite | 55°41′49″ N | 83°36′53″ E | 84 | Near the village Baturino |
2 | 31-1 | monzogranite | 55°28′30′ N | 83°16′16″ E | 86 | Near the village Dubrovino |
Novosibirsk Massif | ||||||
3 | 664-4 | monzogranite | 55°07′42″ N | 82°54′28″ E | 132 | Mochischensky quarry |
4 | 712 | monzogranite | 55°02′12″ N | 82°56′57″ E | 127 | Kamensky quarry |
5 | 676 | syenogranite | 55°06′27″ N | 83°03′15″ E | 176 | Near the village Kamenka |
6 | 686 | syenogranite | 54°58′53″ N | 82°56′51″ E | 93 | Near the Novosibirsk River Station |
7 | 708 | syenogranite | 55°03′45″ N | 82°48′50″ E | 91 | Near the village Priob |
8 | 670 | monzogranite | 54°58′58″ N | 82°59′53″ E | 76 | Borok quarry |
9 | 671-4 | monzogranite | 54°58′40″ N | 82°59′46″ E | 51 | Borok quarry |
Kalman Massif | ||||||
10 | 1502-2 | granite | 52°09′58″ N | 82°59′46″ E | 51 | Near the village Kalmanka |
11 | 1524 | granite | 52°08′12″ N | 83°23′43″ E | 176 | Near the village Kalmanka |
12 | 1564 | granite | 52°05′05″ N | 83°26′07″ E | 159 | Near the village Kalmanka |
13 | 727 | granodiorite | 52°08′02″ N | 83°33′34″ E | 268 | Near the village Kalmanka |
Sample | n | ρs (±1σ) | Ns | ρi (±1σ) | Ni | ρd (±1σ) | Nd | ρs/ρi | P(χ2) | t(ζ) | lm | n1 | σ | Dpar |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ob massif | ||||||||||||||
1-1 | 12 | 7.982 (0.227) | 1233 | 6.946 (0.212) | 1073 | 5.478 (0.120) | 2096 | 1.13 ± 0.05 | 0.98 | 86.8 ± 4.4 | 13.5 | 40 | 1.5 | 2.1 ± 0.3 |
31-1 | 10 | 10.080 (0.298) | 1143 | 7.549 (0.258) | 856 | 5.395 (0.116) | 2153 | 1.35 ± 0.06 | 0.64 | 101.4 ± 5.4 | 14.5 | 100 | 1.0 | 2.5 ± 0.4 |
Novosibirsk massif | ||||||||||||||
664-4 | 7 | 9.635 (0.262) | 1355 | 7.943 (0.238) | 1187 | 5.402 (0.117) | 2148 | 1.19 ± 0.05 | 0.52 | 90.1 ± 4.4 | 13.1 | 84 | 1.6 | 2.6 ± 0.4 |
670 | 7 | 8.009 (0.238) | 1135 | 7.903 (0.236) | 1120 | 5.409 (0.117) | 2143 | 1.04 ± 0.04 | 0.61 | 78.4 ± 4.0 | 12.8 | 40 | 1.3 | 2.3 ± 0.3 |
671-4 | 7 | 22.979 (0.435) | 2787 | 14.990 (0.352) | 1818 | 5.417 (0.117) | 2138 | 1.53 ± 0.05 | 0.98 | 115.6 ± 4.8 | 12.9 | 75 | 1.2 | 2.5 ± 0.4 |
676 | 8 | 14.962 (0.312) | 2303 | 9.082 (0.243) | 1398 | 5.494 (0.120) | 2084 | 1.67 ± 0.06 | 0.57 | 127.8 ± 5.7 | 13.1 | 91 | 1.3 | 2.3 ± 0.3 |
686 | 6 | 12.604 (0.277) | 2073 | 6.731 (0.202) | 1107 | 5.438 (0.118) | 2123 | 1.87 ± 0.07 | 0.82 | 141.3 ± 6.6 | 13.3 | 94 | 1.3 | 2.3 ± 0.4 |
708 | 6 | 13.800 (0.363) | 1446 | 7.091 (0.260) | 743 | 5.471 (0.119) | 2100 | 1.94 ± 0.09 | 1.00 | 148.0 ± 7.9 | 13.3 | 73 | 1.2 | 2.4 ± 0.4 |
712 | 12 | 4.496 (0.138) | 1054 | 2.397 (0.101) | 562 | 5.431 (0.118) | 2128 | 1.87 ± 0.10 | 0.85 | 141.5 ± 8.3 | 13.8 | 26 | 1.3 | 2.6 ± 0.4 |
Kalman massif | ||||||||||||||
1502-2 | 9 | 6.085 (0.180) | 1140 | 6.491 (0.186) | 1216 | 5.501 (0.121) | 2080 | 0.94 ± 0.04 | 0.77 | 71.3 ± 3.6 | 14.0 | 42 | 1.6 | 2.4 ± 0.5 |
1524 | 10 | 9.319 (0.233) | 1595 | 9.518 (0.236) | 1629 | 5.509 (0.121) | 2074 | 0.98 ± 0.03 | 0.60 | 72.1 ± 3.3 | 13.5 | 57 | 1.4 | 2.4 ± 0.4 |
1564 | 5 | 12.745 (0.320) | 1582 | 13.245 (0.327) | 1644 | 5.517 (0.121) | 2068 | 0.96 ± 0.03 | 0.51 | 74.0 ± 3.4 | 13.8 | 70 | 1.3 | 2.5 ± 0.4 |
727 | 8 | 7.966 (0.234) | 1159 | 7.450 (0.226) | 1084 | 5.423 (0.117) | 2133 | 1.07 ± 0.05 | 0.78 | 80.5 ± 4.1 | 13.8 | 40 | 1.1 | 2.4 ± 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vetrov, E.V.; De Grave, J.; Vetrova, N.I.; Zhimulev, F.I.; Nachtergaele, S.; Van Ranst, G.; Mikhailova, P.I. Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement. Minerals 2021, 11, 604. https://doi.org/10.3390/min11060604
Vetrov EV, De Grave J, Vetrova NI, Zhimulev FI, Nachtergaele S, Van Ranst G, Mikhailova PI. Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement. Minerals. 2021; 11(6):604. https://doi.org/10.3390/min11060604
Chicago/Turabian StyleVetrov, Evgeny V., Johan De Grave, Natalia I. Vetrova, Fedor I. Zhimulev, Simon Nachtergaele, Gerben Van Ranst, and Polina I. Mikhailova. 2021. "Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement" Minerals 11, no. 6: 604. https://doi.org/10.3390/min11060604
APA StyleVetrov, E. V., De Grave, J., Vetrova, N. I., Zhimulev, F. I., Nachtergaele, S., Van Ranst, G., & Mikhailova, P. I. (2021). Tectonic Evolution of the SE West Siberian Basin (Russia): Evidence from Apatite Fission Track Thermochronology of Its Exposed Crystalline Basement. Minerals, 11(6), 604. https://doi.org/10.3390/min11060604