Dissolution of Carbonate Rocks in a Laboratory Setting: Rates and Textures
Abstract
:1. Introduction
2. Background Information
2.1. Theory-Based Methods for Dissolution
2.2. Field-Based Methods for Dissolution
2.3. Laboratory-Based Methods for Dissolution
2.4. Dissolutional Mico-Textures
2.5. Climate Change
2.6. CO2 Storage and Injection
3. Methods
3.1. Samples Used
3.2. Sample Description
3.3. Sample Preparation
3.4. Experimental Setup
3.5. Atomic Emission Spectroscopy
3.6. Calculation of Dissolution Rates
3.7. Scanning Electron Microscopy
4. Results
4.1. Sample Descriptions
4.1.1. Oolitic Limestone
4.1.2. Pentamerous Limestone (Dolostone)
4.2. Dissolution Rates
4.2.1. Oolitic Limestone
4.2.2. Pentamerous Limestone (Dolostone)
4.3. Micro-Textures
4.3.1. Oolitic Limestone
4.3.2. Pentamerous Limestone (Dolostone)
5. Discussion
5.1. Dissolution Rates
5.2. Micro-Textures
5.3. Implications
5.4. Future Considerations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Macpherson, G.; Groves, C.; Martin, J.B.; Yuan, D.; Zeng, S. Large and active CO2 uptake by coupled carbonate weathering. Earth-Sci. Rev. 2018, 182, 42–49. [Google Scholar] [CrossRef]
- Martin, J.B. Carbonate minerals in the global carbon cycle. Chem. Geol. 2017, 449, 58–72. [Google Scholar] [CrossRef]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; Wiley: Chichester, UK, 2007. [Google Scholar]
- Gabrovšek, F. On concepts and methods for the estimation of dissolutional denudation rates in karst areas. Geomorphology 2009, 106, 9–14. [Google Scholar] [CrossRef]
- White, W.B. Geomorphology and Hydrology of Karst Terrains; Oxford: New York, NY, USA, 1988. [Google Scholar]
- Corbel, J. Érosion en terrain calcaire (Vitesse d’érosion et morhologie). Ann. Geogr. 1959, 68, 97–120. [Google Scholar] [CrossRef]
- Jakucs, L. Morphogenetics of Karst Regions: Variants of Karst Evolution; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Trudgill, S. Classics in physical geography revisited: Corbel, J. 1959: Érosion en terrain calcaire (Vitesse d’érosion et morhologie). Annales de Géographie 68, 97–120. Progr. Phys. Geogr. 2008, 32, 684–690. [Google Scholar]
- Dreybrodt, W. Processes in Karst Systems: Physics, Chemistry, and Geology; Springer: Berlin, Germany, 1988. [Google Scholar]
- Morse, J.W.; Arvidson, R. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Sci. Rev. 2002, 58, 51–84. [Google Scholar] [CrossRef]
- Morse, J.W.; Arvidson, R.; Lüttge, A. Calcium Carbonate Formation and Dissolution. Chem. Rev. 2007, 107, 342–381. [Google Scholar] [CrossRef]
- White, W.B. Rate Processes: Chemical kinetics and karst landform development. In Groundwater as a Geomorphic Agent; LaFleur, R.G., Ed.; Allen and Unwin: Boston, MA, USA, 1984; pp. 227–248. [Google Scholar]
- Trudgill, S.T. Measurement of erosional weight-loss of rock tablets. In British Geomorphological Research Group Technical Bulleting No. 17; Shorter Technical Methods (I); Brunsden, D., Thornes, J.B., Eds.; British Geomorphological Research Group: Sheffield, UK, 1975; pp. 13–19. [Google Scholar]
- Krklec, K.; Domínguez-Villar, D.; Perica, D. Use of rock tablet method to measure rock weathering and landscape denudation. Earth-Sci. Rev. 2021, 212, 103449. [Google Scholar] [CrossRef]
- Moses, C.; Robinson, D.; Barlow, J. Methods for measuring rock surface weathering and erosion: A critical review. Earth-Sci. Rev. 2014, 135, 141–161. [Google Scholar] [CrossRef]
- Stephenson, W.; Finlayson, B. Measuring erosion with the micro-erosion meter—Contributions to understanding landform evolution. Earth-Sci. Rev. 2009, 95, 53–62. [Google Scholar] [CrossRef]
- Inkpen, R. Errors in measuring the percentage dry weight change of stone tablets. Earth Surf. Process. Landf. 1995, 20, 783–793. [Google Scholar] [CrossRef]
- Herman, J.S.; White, W.B. Dissolution kinetics of dolomite: Effects of lithology and fluid flow velocity. Geochim. Cosmochim. Acta 1985, 49, 2017–2026. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, D.; Dreybrodt, W. Comparative study of dissolution rate-determining mechanisms of limestone and dolomite. Environ. Earth Sci. 2005, 49, 274–279. [Google Scholar] [CrossRef]
- Kirstein, J.; Hellevang, H.; Haile, B.G.; Gleixner, G.; Gaupp, R. Experimental determination of natural carbonate rock disso-lution rates with a focus on temperature dependency. Geomorphology 2016, 261, 30–40. [Google Scholar] [CrossRef]
- Shih, S.-M.; Lin, J.-P.; Shiau, G.-Y. Dissolution rates of limestones of different sources. J. Hazard. Mater. 2000, 79, 159–171. [Google Scholar] [CrossRef]
- Pracný, P.; Faimon, J.; Všianský, D.; Přichystal, A. Evolution of Mg/Ca and Sr/Ca ratios during the experimental dissolution of limestone. Chem. Geol. 2019, 523, 107–120. [Google Scholar] [CrossRef]
- Cubillas, P.; Köhler, S.; Prieto, M.; Chaïrat, C.; Oelkers, E.H. Experimental determination of the dissolution rates of calcite, aragonite, and bivalves. Chem. Geol. 2005, 216, 59–77. [Google Scholar] [CrossRef]
- Järvinen, L.; Leiro, J.A.; Bjondahl, F.; Carletti, C.; Eklund, O. XPS and SEM study of calcite bearing rock powders in the case of reactivity measurement with HCl solution. Surf. Interface Anal. 2011, 44, 519–528. [Google Scholar] [CrossRef]
- Levenson, Y.; Schiller, M.; Kreisserman, Y.; Emmanuel, S. Calcite dissolution rates in texturally diverse calcareous rocks. Geol. Soc. Lond. Spéc. Publ. 2015, 406, 81–94. [Google Scholar] [CrossRef]
- Luquot, L.; Rodriguez, O.; Gouze, P. Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes. Transp. Porous Media 2014, 101, 507–532. [Google Scholar] [CrossRef]
- Sterpenich, J.; Sausse, J.; Pironon, J.; Géhin, A.; Hubert, G.; Perfetti, E.; Grgic, D. Experimental ageing of oolitic limestones under CO2 storage conditions petrographical and chemical evidence. Chem. Geol. 2009, 265, 99–112. [Google Scholar] [CrossRef]
- Martinez, M.I.; White, W.B. A laboratory investigation of the relative dissolution rates of the Lirio Limestone and the Isla de Mona Dolomite and the implications for cave and karst development on Isla de Mona. J. Cave Karst Stud. 1999, 61, 7–12. [Google Scholar]
- Noiriel, C.; Bernard, D.; Gouze, P.; Thibault, X. Hydraulic Properties and Microgeometry Evolution Accompanying Limestone Dissolution by Acidic Water. Oil Gas. Sci. Technol. 2005, 60, 177–192. [Google Scholar] [CrossRef]
- Lea, A.; Amonette, J.; Baer, D.; Liang, Y.; Colton, N. Microscopic effects of carbonate, manganese, and strontium ions on calcite dissolution. Geochim. Cosmochim. Acta 2001, 65, 369–379. [Google Scholar] [CrossRef]
- Liang, Y.; Baer, D.R. Anisotropic dissolution at the CaCO3 (1014)-water interface. Surf. Sci. 1997, 373, 275–287. [Google Scholar] [CrossRef]
- Kier, R.S. The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim. Cosmochim. Acta 1980, 44, 241–252. [Google Scholar] [CrossRef]
- Norzagaray-López, O.C.; Calderon-Aguilera, L.E.; Castro-Ceseña, A.B.; Hirata, G.; Hernandez-Ayon, J.M. Skeletal dissolution kinetics and mechanical tests in response to morphology among coral genera. Facies 2017, 63, 7. [Google Scholar] [CrossRef]
- Pickett, M.; Anderson, A.J. Dissolution rates of biogenic carbonates in natural seawater at different pCO2 conditions: A la-boratory study. Aquat. Geochem. 2015, 21, 459–485. [Google Scholar] [CrossRef] [Green Version]
- Walter, L.M.; Morse, J.W. Magnesian calcite stabilities: A reevaluation. Geochim. Cosmochim. Acta 1984, 48, 1059–1069. [Google Scholar] [CrossRef]
- Walter, L.M.; Morse, J.W. Reactive surface area of skeletal carbonates during dissolution: Effect of grain size. J. Sediment. Petrol. 1984, 54, 1081–1090. [Google Scholar]
- Walter, L.M.; Morse, J.W. The dissolution kinetics of shallow marine carbonates in seawater: A laboratory study. Geochim. Cosmochim. Acta 1985, 49, 1503–1513. [Google Scholar] [CrossRef]
- Fischer, C.; Arvidson, R.; Lüttge, A. How predictable are dissolution rates of crystalline material? Geochim. Cosmochim. Acta 2012, 98, 177–185. [Google Scholar] [CrossRef]
- Jeschke, A.A.; Dreybrodt, W. Dissolution rates of minerals and their relation to surface morphology. Geochim. Cosmochim. Acta 2002, 66, 3055–3062. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Sing, K.S. Adsorption methods for the characterization of porous materials. Adv. Colloid Interface Sci. 1998, 76–77, 3–11. [Google Scholar] [CrossRef]
- Pedrosa, E.T.; Kurganskaya, I.; Fischer, C.; Luttge, A. A Statistical Approach for Analysis of Dissolution Rates Including Surface Morphology. Minerals 2019, 9, 458. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.; Kurganskaya, I.; Schäfer, T.; Lüttge, A. Variability of crystal surface reactivity: What do we know? Appl. Geochem. 2014, 43, 132–157. [Google Scholar] [CrossRef]
- Viles, H.A.; Moses, C.A. Experimental production of weathering nanomorphologies on carbonate stone. Q. J. Eng. Geol. Hydrogeol. 1998, 31, 347–357. [Google Scholar] [CrossRef]
- Moses, C.; Spate, A.P.; Smith, D.I.; Greenaway, M.A. Limestone weathering in Eastern Australia Part 2: Surface micromor-phology study. Earth Surf. Process. Landf. 1995, 20, 501–514. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, W.; Qu, X.; Gao, S.; Chen, S.; How, L.F. Water-Rock Simulation During Limestone Dissolution. J. Eng. Sci. Technol. Rev. 2019, 12, 51–59. [Google Scholar] [CrossRef]
- Levenson, Y.; Ryb, U.; Emmanuel, S. Comparison of field and laboratory weathering rates in carbonate rocks from an Eastern Mediterranean drainage basin. Earth Planet. Sci. Lett. 2017, 465, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Levenson, Y.; Emmanuel, S. Pore-scale heterogeneous reaction rates on a dissolving limestone surface. Geochim. Cosmochim. Acta 2013, 119, 188–197. [Google Scholar] [CrossRef]
- Levenson, Y.; Emmanuel, S. Quantifying micron-scale grain detachment during weathering experiments on limestone. Geochim. Cosmochim. Acta 2016, 173, 86–96. [Google Scholar] [CrossRef]
- Noiriel, C.; Gouze, P.; Bernard, D. Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophys. Res. Lett. 2004, 31, 24603. [Google Scholar] [CrossRef]
- Noiriel, C.; Luquot, L.; Madé, B.; Raimbault, L.; Gouze, P.; van der Lee, J. Changes in reactive surface area during limestone dissolution: An experimental and modelling study. Chem. Geol. 2009, 265, 160–170. [Google Scholar] [CrossRef]
- Gombert, P. Role of karstic dissolution in global carbon cycle. Glob. Planet. Chang. 2002, 33, 177–184. [Google Scholar] [CrossRef]
- Yuan, D. The carbon cycle in karst. Z. Geomorphol. 1997, 180, 91–102. [Google Scholar]
- Liu, Z.; Dreybrodt, W.; Liu, H. Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Appl. Geochem. 2011, 26, S292–S294. [Google Scholar] [CrossRef]
- Cao, J.-H.; Wu, X.; Huang, F.; Hu, B.; Groves, C.; Yang, H.; Zhang, C.-L. Global significance of the carbon cycle in the karst dynamic system: Evidence from geological and ecological processes. China Geol. 2018, 1, 17–27. [Google Scholar] [CrossRef]
- Martin, J.B.; Brown, A.; Ezell, J. Do carbonate karst terrains affect the global carbon cycle? Acta Carsol. 2013, 42, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Gaillardet, J.; Calmels, D.; Romero-Mujalli, G.; Zakharova, E.; Hartmann, J. Global climate control on carbonate weathering intensity. Chem. Geol. 2019, 527, 118762. [Google Scholar] [CrossRef]
- Zhou, G.; Jia, B.; Tao, X.; Yan, H. Estimation of karst carbon sink and its contribution to CO2 emissions over a decade using remote sensing imagery. Appl. Geochem. 2020, 121, 104689. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Carbon cycle in the epikarst systems and its ecological effects in South China. Environ. Earth Sci. 2013, 68, 151–158. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, J. Contribution of carbonate rock weathering to the atmospheric CO 2 sink. Environ. Earth Sci. 2000, 39, 1053–1058. [Google Scholar] [CrossRef]
- Liu, Z.; Dreybrodt, W.; Wang, H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth-Sci. Rev. 2010, 99, 162–172. [Google Scholar] [CrossRef]
- Cao, J.; Hu, B.; Groves, C.; Huang, F.; Yang, H.; Zhang, C.; Jianhua, C.; Bill, H.; Chris, G.; Fen, H.; et al. Karst dynamic system and the carbon cycle. Z. Geomorphol. Suppl. Issues 2016, 60, 35–55. [Google Scholar] [CrossRef]
- Larson, E.B.; Mylroie, J.E. Quaternary glacial cycles: Karst processes and the global CO2 budget. Acta Carsol. 2013, 42, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, W.; Amiotte-Suchet, P.; Munhoven, G.; Probst, J.-L. Atmospheric CO2 consumption by continental erosion: Present day controls and implications for the last glacial maximum. Glob. Planet. Chang. 1998, 16–17, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Mylroie, J.E. Carbonate deposition/dissolution cycles and carbon dioxide flux in the Pleistocene. In Proceedings of the Sixth Symposium on the Geology of the Bahamas, San Salvador, Bahamas, January 1993; White, B., Ed.; Bahamian Field Station: San Salvador, The Bahamas, 1993; pp. 103–107. [Google Scholar]
- Mylroie, J.E. Late Quaternary sea-level position: Evidence from Bahamian carbonate deposition and dissolution cycles. Quat. Int. 2008, 183, 61–75. [Google Scholar] [CrossRef]
- Kelemen, P.; Benson, S.M.; Pilorgé, H.; Psarras, P.; Wilcox, J. An Overview of the Status and Challenges of CO2 Storage in Minerals and Geological Formations. Front. Clim. 2019, 1, 9. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Rezaee, R.; Bing, C.H.; Nagarajan, R.; Hamid, M.A. Preliminary assessment of CO2 injectivity in car-bonate storage sites. Petroleum 2017, 3, 144–154. [Google Scholar] [CrossRef]
- Raza, A.; Gholami, R.; Rezaee, R.; Bing, C.H.; Nagarajan, R.; Hamid, M.A. Preliminary assessments of CO2 storage in carbonate formations: A case study from Malaysia. J. Geophys. Eng. 2017, 14, 533–554. [Google Scholar] [CrossRef]
- Siqueria, T.A.; Iglesias, R.S.; Ketzer, J.M. Carbon dioxide injection in carbonate reservoirs—A review of CO2-water-rock in-teraction studies. Greenh. Gases Sci. Technol. 2017, 7, 1–14. [Google Scholar]
- Luquot, L.; Gouze, P. Experimental determination of porosity and permeability changes induced by injection of CO2 into carbonate rocks. Chem. Geol. 2009, 265, 148–159. [Google Scholar] [CrossRef]
- Gharbi, O.; Bijeljic, B.; Boek, E.; Blunt, M. Changes in Pore Structure and Connectivity Induced by CO2 Injection in Carbonates: A Combined Pore-Scale Approach. Energy Procedia 2013, 37, 5367–5378. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Anabaraonye, B.U.; Blunt, M.; Crawshaw, J. Partial dissolution of carbonate rock grains during reactive CO2-saturated brine injection under reservoir conditions. Adv. Water Resour. 2018, 122, 27–36. [Google Scholar] [CrossRef]
- Elkhoury, J.E.; Ameli, P.; Detwiler, R.L. Dissolution and deformation in fractured carbonates caused by flow of CO2-rich brine under reservoir conditions. Int. J. Greenh. Gas. Control. 2013, 16, S203–S215. [Google Scholar] [CrossRef]
- Seyyedi, M.; Ben Mahmud, H.K.; Verrall, M.; Giwelli, A.; Esteban, L.; Ghasemiziarani, M.; Clennell, B. Pore Structure Changes Occur During CO2 Injection into Carbonate Reservoirs. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Emmons, R.; Finnen, D.; Larson, E. A laboratory method for measuring carbonate dissolution rates. In Proceedings of the Geological Society of America Annual Meeting, Indianapolis, IN, USA, 4–7 November 2017. [Google Scholar]
- Leesburg, J.N.; Hall, V.P.; Larson, E.B. Calculating Denudation Rates of Carbonate Rocks: A New Laboratory Method. In Proceedings of the Geological Society of America Annual Meeting, Denver, CO, USA, 25–28 September 2016; Denver, CO, USA, 2016. [Google Scholar]
- Krawczyk, W.E.; Ford, D.C. Correlating specific conductivity with total hardness in limestone and dolomite karst waters. Earth Surf. Process. Landf. 2006, 31, 221–234. [Google Scholar] [CrossRef]
- Simone, L. Ooids: A review. Earth-Sci. Rev. 1980, 16, 319–355. [Google Scholar] [CrossRef]
- Emmanuel, S.; Levenson, Y. Limestone weathering rates accelerated by micron-scale grain detachment. Geology 2014, 42, 751–754. [Google Scholar] [CrossRef] [Green Version]
Sample | Density (g/cm3) | Surface Area (cm2) | Denudation Rate (cm/Kyr) | Absolute Error (cm/Kyr) | Ca2+ Slope (ppm/min) | Conductivity Slope ((µs/cm)/min) | Ca2+ RSD % | Conductivity RSD % |
---|---|---|---|---|---|---|---|---|
Oolitic | 2.71 | 5.495 | 1579 | 305 | 0.056 | 0.1495 | 19.3 | 9.2 |
Pentamerous | 2.81 | 4.855 | 799 | 137 | 0.026 | 0.0763 | 17.2 | 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larson, E.B.; Emmons, R.V. Dissolution of Carbonate Rocks in a Laboratory Setting: Rates and Textures. Minerals 2021, 11, 605. https://doi.org/10.3390/min11060605
Larson EB, Emmons RV. Dissolution of Carbonate Rocks in a Laboratory Setting: Rates and Textures. Minerals. 2021; 11(6):605. https://doi.org/10.3390/min11060605
Chicago/Turabian StyleLarson, Erik B., and Ronald V. Emmons. 2021. "Dissolution of Carbonate Rocks in a Laboratory Setting: Rates and Textures" Minerals 11, no. 6: 605. https://doi.org/10.3390/min11060605
APA StyleLarson, E. B., & Emmons, R. V. (2021). Dissolution of Carbonate Rocks in a Laboratory Setting: Rates and Textures. Minerals, 11(6), 605. https://doi.org/10.3390/min11060605