Weathering Processes and Mechanisms Caused by Capillary Waters and Pigeon Droppings on Porous Limestones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rocks and Distribution in the Monument
2.2. Petrophysical Properties
2.3. Salt Sampling and Mineralogical Characterisation
2.4. Geochemical Modelling
3. Results and Discussion
3.1. Petrophysical Properties of Limestones
3.2. Decay Patterns by Inorganic Salt from Ramping Damp Waters
3.3. Decay Patterns by Lixiviated Waters from Pigeon Droppings
3.4. Geochemical Model of the Salt Assemblage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goudie, A.S.; Viles, H.A. Salt Weathering; Wiley: Chichester, UK, 1997; 241p. [Google Scholar]
- Sabbioni, C.; Brimblecombe, P.; Cassar, M. The Atlas of Climate Change Impact on European Cultural Heritage: Scientific Analysis and Management Strategies; Anthem Press: London, UK, 2010. [Google Scholar]
- Charola, A.E. Salts in the deterioration of porous materials. An overview. JAIC J. Am. Inst. Conserv. 2000, 39, 327–343. [Google Scholar] [CrossRef]
- Cassar, J. The use of limestone in a historic context—The experience of Malta. In Limestone in the Built Environment: Present-Day Challenges for the Preservation of the Past; Smith, B.J., Gomez-Heras, M., Viles, H.A., Cassar, J., Eds.; Geological Society, Special Publications: London, UK, 2010; Volume 331, pp. 13–25. [Google Scholar]
- Siegesmund, S.; Snethlage, R. Stone in Architecture: Properties, Durability, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Charola, A.E.; Bläuer, C. Salts in Masonry: An Overview of the Problem. Restor. Build. Monum. 2015, 21, 119–135. [Google Scholar] [CrossRef]
- Grøntoft, T.; Cassar, J. An assessment of the contribution of air pollution to the weathering of limestone heritage in Malta. Environ. Earth Sci. 2020, 79. [Google Scholar] [CrossRef]
- Nicholson, D.T. Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surf. Process. Landf. 2001, 26, 819–838. [Google Scholar] [CrossRef]
- Nasri, F.; Boumezbeur, A.; Benavente, D. Influence of the petrophysical and durability properties of carbonate rocks on the deterioration of historic constructions in Tebessa (northeastern Algeria). Bull. Int. Assoc. Eng. Geol. 2018, 78, 3969–3981. [Google Scholar] [CrossRef]
- Sanchez-Moral, S.; Cañaveras, J.C.; Benavente, D.; Fernandez-Cortes, A.; Cuezva, S.; Elez, J.; Jurado, V.; Rogerio-Candelera, M.A.; Saiz-Jimenez, C. A study on the state of conservation of the Roman Necropolis of Carmona (Sevilla, Spain). J. Cult. Herit. 2018, 34, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.J.; Viles, H.A. Rapid, catastrophic decay of building limestones: Thoughts on causes, effects and consequences. In Heritage Weathering and Conservation; Fort González, R., Alvarez de Buergo, M., Gómez-Heras, M., Vazquez-Calvo, C., Eds.; Taylor and Francis: London, UK, 2006; pp. 191–197. [Google Scholar]
- ICOMOS-ISCS. Illustrated Glossary on Stone Deterioration Patterns. Available online: http://international.icomos.org/publications/monuments_and_sites/15/pdf/Monuments_and_Sites_15_ISCS_Glossary_Stone.pdf (accessed on 12 December 2020).
- Martinez-Martinez, J.; Benavente, D.; Jimenez Gutierrez, S.; Garcia del Cura, M.A.; Ordóñez, S. Stone weathering under Mediterranean semiarid climate in the fortress of Nueva Tabarca island (Spain). Build. Environ. 2017, 121, 262–276. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.J.; Gomez-Heras, M.; Mccabe, S. Understanding the decay of stone-built cultural heritage. Prog. Phys. Geogr. 2008, 32, 439–461. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Benavente, D.; Gomez-Heras, M.; Marco-Castaño, L.; Del Cura, M.; Ángeles, G. Non-linear decay of building stones during freeze–thaw weathering processes. Constr. Build. Mater. 2013, 38, 443–454. [Google Scholar] [CrossRef]
- Benavente, D.; Garcia-Del-Cura, M.A.; Fort, R.; Ordóñez, S. Thermodynamic modelling of changes induced by salt pressure crystallisation in porous media of stone. J. Cryst. Growth 1999, 204, 168–178. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Dohene, E. Salt weathering: Influence of evaporation rate, supersaturation and crystallisation pattern. Earth Surf. Process. Landf. 1999, 24, 191–209. [Google Scholar] [CrossRef]
- Scherer, G.W. Crystallization in pores. Cem. Concr. Res. 1999, 29, 1347–1358. [Google Scholar] [CrossRef]
- Flatt, R.J. Salt damage in porous materials: How high supersaturations are generated. J. Cryst. Growth 2002, 242, 435–454. [Google Scholar] [CrossRef]
- Steiger, M. Crystal growth in porous materials—II: Influence of crystal size on the crystallization pressure. J. Cryst. Growth 2005, 282, 470–481. [Google Scholar] [CrossRef]
- Espinosa-Marzal, R.M.; Scherer, G.W. Mechanisms of damage by salt crystallization. In Limestone in the Built Environment: Present-Day Challenges for the Preservation of the Past; Smith, B.J., Gomez-Heras, M., Viles, H.A., Cassar, J., Eds.; Special Publications, Geological Society of London: London, UK, 2010; Volume 331, pp. 61–77. [Google Scholar]
- Benavente, D.; Cueto, N.; Martinez-Martinez, J.; Garcia-del-Cura, M.A.; Cañaveras, J.C. The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 2007, 52, 197–206. [Google Scholar] [CrossRef]
- Steiger, M.; Charola, A.E.; Sterflinger, K. Weathering and Deterioration. In Stone in Architecture; Springer: Berlin/Heidelberg, Germany, 2011; pp. 227–316. [Google Scholar]
- Arnold, A. Rising damp and saline minerals. In Proceedings of the 4th International Congress on the Deterioration and Preservation of Stone Objects; Gauri, K.L., Gwinn, J.A., Eds.; University of Louisville: Louisville, KY, USA, 1982. [Google Scholar]
- Arnold, A.; Zehnder, K. Salt Weathering on monuments. In Conservation of Monuments in the Mediterranean Basin; Zezza, F., Ed.; Grafo, Brescia: Bari, Italy, 1990; pp. 31–58. [Google Scholar]
- Lopez-Arce, P.; Doehne, E.; Greenshields, J.; Benavente, D.; Young, D. Treatment of rising damp and salt decay: The historic masonry buildings of Adelaide, South Australia. Mater. Struct. 2009, 41, 827–848. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Agudo, E.; Mees, F.; Jacobs, P.; Rodriguez-Navarro, C. The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environ. Geol. 2007, 52, 269–281. [Google Scholar] [CrossRef]
- Schaffer, R.J. The Weathering of Natural Building Stones; Building Research: London, UK, 1932; 149p. [Google Scholar]
- Bassi, M.; Chiatante, D. The role of pigeon excrement in stone biodeterioration. Int. Biodeterior. Bull. 1976, 12, 73–79. [Google Scholar]
- Price, C.A. Stone Conservation—An Overview of Current Research; Research in Conservation Series; Getty Conservation Institute: Los Angeles, CA, USA, 1996. [Google Scholar]
- Gómez-Heras, M.; Benavente, D.; Álvarez De Buergo, M.; Fort, R. Soluble salt minerals from pigeon droppings as potential contributors to the decay of stone based Cultural Heritage. Eur. J. Miner. 2004, 16, 505–509. [Google Scholar] [CrossRef]
- Dyer, T.D. Deterioration of stone and concrete exposed to bird excreta—Examination of the role of glyoxylic acid. Int. Biodeterior. Biodegrad. 2017, 125, 125–141. [Google Scholar] [CrossRef] [Green Version]
- Spennemann, D.H.R.; Pike, M.; Watson, M.J. The acidity of pigeon excreta and its implications for heritage conservation. Int. J. Build. Pathol. Adapt. 2017, 35, 2–25. [Google Scholar] [CrossRef]
- Spennemann, D.H.; Watson, M.J. Dietary habits of urban pigeons (Columba livia) and implications of excreta pH—A review. Eur. J. Ecol. 2017, 3, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Tent, J.E. La Estructura y Estratigrafía de las Sierras de Crevillente, Abanilla y Algayat: Su Relación Con la Falla de Crevillente. Ph.D. Thesis, Universidad de Alicante, España, Spain, 2003; 970p. [Google Scholar]
- Dunham, R.J. Classification of carbonate rocks according to depositional texture. In Classification of Carbonate. Rocks-A Symposium; Ham, W.E., Ed.; American Association of Petroleum Geologists Mem: Tulsa, OK, USA, 1962; pp. 108–121. [Google Scholar]
- Folk, R.L. Spectral subdivision of limestone types. In Classification of Carbonate Rocks-A Symposium; Ham, W.E., Ed.; American Association of Petroleum Geologists Mem: Tulsa, OK, USA, 1962; pp. 62–84. [Google Scholar]
- Embry, A.F.; Klovan, J.E. A Late Devonian reef tract on Northeastern Banks Island. NWT Can. Pet. Geol. Bull. 1971, 19, 730–781. [Google Scholar]
- Wright, V.P. A revised Classification of Limestones. Sediment. Geol. 1992, 76, 177–185. [Google Scholar] [CrossRef]
- Benavente, D. Modelización y Estimación de la Durabilidad de Materiales Pétreos Porosos Frente a la Cristalización de Sales. Ph.D. Thesis, University of Alicante, 2003. Available online: http://www.cervantesvirtual.com/FichaObra.html?Ref=12011 (accessed on 29 March 2017). (In Spanish).
- Benavente, D.; Pla, C.; Cueto, N.; Galvañ, S.; Martínez-Martínez, J.; García-Del-Cura, M.A.; Ordóñez, S. Predicting water permeability in sedimentary rocks from capillary imbibition and pore structure. Eng. Geol. 2015, 195, 301–311. [Google Scholar] [CrossRef] [Green Version]
- UNE-EN 1926. Natural Stone Tests Methods. Determination of Uniaxial Compressive Strength; European Committee for Standardization: Bruxelles, Belgium, 2007. [Google Scholar]
- UNE-EN 1925. Natural Stone Test Methods. Determination of Water Absorption Coefficient by Capillarity; European Committee for Standardization: Bruxelles, Belgium, 1999. [Google Scholar]
- Martin Ramos, J.D. XPowder: A Software Package for Powder X-Ray Diffraction Analysis; Granada, Spain, 2004; Available online: http://www.xpowder.com/ (accessed on 12 December 2020).
- Parkhurst, D.L.; Appelo, C.A.J. Description of input and examples for PHREEQC version 3—A computer program for speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. In U.S. Geological Survey Techniques and Methods, Book 6, Chapter A43; US Geological Survey: Denver, CO, USA, 2013; p. 497. [Google Scholar]
- Benavente, D.; Brimblecome, P.; Grossi, C.M. Thermodynamic calculations for the salt crystallisation damage in porous built heritage using PHREEQC. Environ. Earth Sci. 2015, 74, 2297–2313. [Google Scholar] [CrossRef]
- Steiger, M.; Kiekbusch, J.; Nicolai, A. An improved model incorporating Pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Constr. Build. Mater. 2008, 22, 1841–1850. [Google Scholar] [CrossRef]
- Steiger, M.; Linnow, K.; Ehrhardt, D.; Rohde, M. Decomposition reactions of magnesium sulfate hydrates and phase equilibria in the MgSO4–H2O and Na+–Mg2+–Cl–SO4 2–H2O systems with implications for Mars. Geochim. Cosmochim. Acta 2011, 75, 3600–3626. [Google Scholar] [CrossRef]
- Benavente, D. Why pore size is important in the deterioration of porous stones used in the built heritage? Macla 2011, 15, 41–42. [Google Scholar]
- Benavente, D.; Martinez-Martinez, J.; Cueto, N.; Ordonez, S.; Garcia-del-Cura, M.A. Impact of salt and frost weathering on the physical and durability properties of travertines and carbonate tufas used as building material. Environ. Earth Sci. 2018, 77, 147. [Google Scholar] [CrossRef] [Green Version]
- Deere, D.U.; Miller, R.P. Engineering Classification and Index Properties for Intact Rock; Report AFWL-TR-65-116; Air Force Weapons Laboratory Technical: Millor; University of Illinois: Urbana, IL, USA, 1966. [Google Scholar]
- Turkington, A.V.; Smith, B.J. Interpreting spatial complexity of decay features on a sandstone wall: St. Matthew’s church, belfast. In Controls and Causes of Stone Decay; Smith, B.J., Turkington, A.V., Eds.; Donhead: London, UK, 2004; pp. 149–166. [Google Scholar]
- Cañaveras, J.C.; Cuezva, S.; Sánchez-Moral, S.; Lario, J.; Laiz, L.; Gonzalez, J.M.; Saiz-Jimenez, C. On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 2006, 93, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Benavente, D.; Sanchez-Moral, S.; Fernandez-Cortes, A.; Cañaveras, J.C.; Elez, J.; Saiz-Jimenez, C. Salt damage and microclimate in the Postumius Tomb, Roman Necropolis of Carmona, Spain. Environ. Earth Sci. 2011, 63, 1529–1543. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.E.; Khattab, S.I.; Al Mukhtar, A. The effect of biodeterioration by bird droppings on the degradation of stone built. Eng. Geol. Soc. Territ. 2015, 8, 515–520. [Google Scholar]
- Alessandrini, G.; Colombo, C.; Toniolo, L.; Casadio, F. Analytical investigation of films and patinas on the Istria stone. In Protection and Conservation of the Cultural Heritage of the Mediterranean Cities; Galán, E., Zezza, F., Eds.; Balkema: Lisse, The Netherlands, 2002; pp. 79–83. [Google Scholar]
- Sunagawa, I. Crystals Growth, Morphology and Perfection; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
Property | f-CA | m-CA | c-CA | b-CA | d-CR | l-CR |
---|---|---|---|---|---|---|
PC (%) | 27.60 | 28.06 | 26.68 | 18.65 | 8.18 | 21.60 |
PT (%) | 27.78 | 28.85 | 30.07 | 20.05 | 11.67 | 24.93 |
ρb (g/cm3) | 2.09 | 1.97 | 1.91 | 2.16 | 2.44 | 1.97 |
C (g/m2·s0.5) | 104.19 | 180.26 | 436.42 | 15–50 * | 142.90 | 811.80 |
σC (MPa) | 17.11 | 15.18 | 12.17 | 35–45 * | 40.67 | 10.32 |
Group | Mineral Name | Chemical Formula |
---|---|---|
Sulphates | arcanite * | K2SO4 |
aphthitalite | K3Na(SO4)2 | |
gypsum | CaSO4·2H2O | |
hexahydrite | MgSO4·6H2O | |
Sulfate nitrate | humberstonite | K3Na7Mg2(SO4)6(NO3)2·6H2O |
Nitrates | niter | KNO3 |
Chlorides | halite | NaCl |
Phosphates | brushite | CaHPO4·2H2O |
estruvite | (NH4)MgPO4·6(H2O) | |
hydroxyapatite | Ca5(PO4)3(OH) | |
Oxalates | oxammite | (NH4)2C2O4·H2O |
weddellite | CaC2O4·2H2O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavente, D.; de Jongh, M.; Cañaveras, J.C. Weathering Processes and Mechanisms Caused by Capillary Waters and Pigeon Droppings on Porous Limestones. Minerals 2021, 11, 18. https://doi.org/10.3390/min11010018
Benavente D, de Jongh M, Cañaveras JC. Weathering Processes and Mechanisms Caused by Capillary Waters and Pigeon Droppings on Porous Limestones. Minerals. 2021; 11(1):18. https://doi.org/10.3390/min11010018
Chicago/Turabian StyleBenavente, David, Marli de Jongh, and Juan Carlos Cañaveras. 2021. "Weathering Processes and Mechanisms Caused by Capillary Waters and Pigeon Droppings on Porous Limestones" Minerals 11, no. 1: 18. https://doi.org/10.3390/min11010018
APA StyleBenavente, D., de Jongh, M., & Cañaveras, J. C. (2021). Weathering Processes and Mechanisms Caused by Capillary Waters and Pigeon Droppings on Porous Limestones. Minerals, 11(1), 18. https://doi.org/10.3390/min11010018