Termination of Organic-Rich Accumulation of the Oceanic Anoxic Event 2 in the Deep-Water Carpathian Basins Based on Carbon Stable Isotope Data
Abstract
:1. Introduction
2. Palaeoceanographic Setting
3. Anoxic and Oxic Strata in the Outer Carpathians Around the OAE2
4. Material and Methods
5. Results
5.1. δ13C Organic Carbon Curve at Zasań Section, Subsilesian Nappe
5.2. δ13C Organic Carbon Curve at Trzemeśnia and Barnasiówka Sections, Silesian Nappe
5.3. δ13C Organic Carbon Curve at Spława Section, Skole Nappe
6. Discussion
6.1. Correlation of δ13Corg Curves from the Outer Carpathians
6.2. Termination of Organic-Rich Sedimentation vs. Position of C–T Boundary
6.3. Diachronism and Synchronism of Sediments with Enhanced Content of Organic Matter in peri-Tethyan Seas
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coccioni, R.; Luciani, V. Planktonic foraminifera and environmental changes across the Bonarelli event (OAE-2, latest Cenomanian) in its type area: A high-resolution study from the Tethyan reference Bottaccione section (Gubbio, central Italy). J. Foram. Res. 2004, 34, 109–129. [Google Scholar] [CrossRef]
- Crumière, J.P.; Crumière-Airaud, C.; Espitalié, J.; Cotillon, P. Global and regional controls on potential source-rock deposition and preservation: The Cenomanian-Turonian oceanic anoxic event on the European Tethyan margin (SE France). In Deposition of Organic Facies; Huc, A.Y., Ed.; American Association of Petroleum Geologists, Studies in Geology: Tulsa, OK, USA, 1990; pp. 107–118. [Google Scholar]
- Bąk, K. Environmental changes during the Cenomanian–Turonian boundary event in the Outer Carpathian basins: A synthesis of data from various tectonic-facies units. Ann. Soc. Geol. Pol. 2007, 77, 171–191. [Google Scholar]
- Bąk, M.; Bąk, K.; Górny, Z.; Stożek, B. Evidence of bacteriogenic iron and manganese oxyhydroxides in Albian-Cenomanian marine sediments of the Carpathian realm (Poland). Ann. Soc. Geol. Polon. 2015, 85, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Bąk, K.; Bąk, M.; Górny, Z.; Wolska, A. Environmental conditions in a Carpathian deep sea basin during the period preceding Oceanic Anoxic Event 2—A case study from the Skole Nappe. Geol. Carp. 2014, 65, 433–450. [Google Scholar] [CrossRef] [Green Version]
- Uchman, A.; Bąk, K.; Rodríguez-Tovar, F.J. Ichnological record of deep-sea palaeoenvironmental changes around the Oceanic Anoxic Event 2 (Cenomanian–Turonian boundary): An example from the Barnasiówka section, Polish Outer Carpathians. Palaeogeogr. Palaeoclimat. Palaeoecol. 2008, 262, 61–71. [Google Scholar] [CrossRef]
- Bąk, M. Radiolaria from the Upper Cenomanian–Lower Turonian deposits of the Silesian Unit (Polish Flysch Carpathians). Geol. Carpat. 2000, 51, 309–324. [Google Scholar]
- Bąk, M. Radiolarian biostratigraphy of the Upper Cenomanian–Lower Turonian deposits in the Subsilesian Nappe (Outer Western Carpathians). Geol. Carpat. 2004, 55, 239–250. [Google Scholar]
- Lüning, S.; Kolonic, S.; Belhadj, E.M.; Belhadj, Z.; Cota, L.; Barić, G.; Wagner, T. Integrated depositional model for the Cenomanian–Turonian organic-rich strata in North Africa. Earth Sci. Rev. 2004, 64, 51–117. [Google Scholar] [CrossRef]
- Elderbak, K.; Leckie, R.M.; Tibert, N.E. Paleoenvironmental and paleoceanographic changes across the CenomanianeTuronian Boundary Event (Oceanic Anoxic Event 2) as indicated by foraminiferal assemblages from the eastern margin of the Cretaceous Western Interior Sea. Palaeogeogr. Palaeoecol. Palaeoclimat. 2014, 413, 29–48. [Google Scholar] [CrossRef]
- Bąk, K.; Bąk, M. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians. Acta Geol. Polon. 2013, 63, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Wójcik-Tabol, P.; Oszczypko, N. Trace element geochemistry of the Early to Late Cretaceous deposits of the Grajcarek thrust-sheets–A palaeoenvironmental approach (Małe Pieniny Mts. Pieniny Klippen Belt, Poland). Geol. Quart. 2012, 56, 169–186. [Google Scholar]
- Bąk, K.; Bąk, M.; Dulemba, P.; Okoński, S. Late Cenomanian environmental conditions at the submerged Tatric Ridge, Central Western Carpathians during the period preceding Oceanic Anoxic Event 2—A palaeontological and isotopic approach. Cret. Res. 2016, 63, 95–112. [Google Scholar] [CrossRef]
- Bąk, K. Sedimentological, geochemical and microfaunal responses to environmental changes around the Cenomanian–Turonian boundary in the Outer Carpathian Basin; a record from the Subsilesian Nappe, Poland. Palaeogeogr. Palaeoecol. Palaeoclimat. 2006, 237, 335–358. [Google Scholar] [CrossRef]
- Bąk, K. Deep-water facies succession around the Cenomanian–Turonian boundary in the Outer Carpathian Basin: Sedimentary, biotic and chemical records in the Silesian Nappe, Poland. Palaeogeogr. Palaeoecol. Palaeoclimat. 2007, 248, 255–290. [Google Scholar] [CrossRef]
- Bąk, K. Organic-rich and manganese sedimentation during the Cenomanian–Turonian boundary event in the Outer Carpathian Basin; a new record from the Skole Nappe, Poland, and a review from other tectonic-facies units. Palaeogeogr. Palaeoecol. Palaeoclimat. 2007, 256, 21–46. [Google Scholar] [CrossRef]
- Bąk, K. Environmental changes around the Cenomanian—Turonian boundary in a marginal part of the Outer Carpathian Basin expressed by microfacies, microfossils and chemical records in the Skole Nappe (Poland). Ann. Soc. Geol. Pol. 2007, 77, 39–67. [Google Scholar]
- Bąk, M. Tethyan radiolarians at the Cenomanian–Turonian anoxic event from the Apennines (Umbria-Marche) and the Outer Carpathians: Palaeoecological and palaeoenvironmental implications. Studia Geol. Polon. 2011, 134, 7–279. [Google Scholar]
- Geroch, S. Microfaunal assemblage from the Cretaceous and Palaeogene Silesian unit in the Beskid Śląski Mts. Western Carpathians. Inst. Geol. Biul. Warsaw 1960, 153, 1–138. [Google Scholar]
- Olszewska, B. Foraminiferal biostratigraphy of the Polish Outer Carpathians: A record of basin geohistory. Ann. Soc. Geol. Polon. 1997, 67, 325–337. [Google Scholar]
- Bąk, K. Biostratigraphy of deep-water agglutinated foraminifera in Scaglia Rossa-type deposits of the Pieniny Klippen Belt, Carpathians, Poland. In Proceedings of the Fifth International Workshop on Agglutinated Foraminifera; Grzybowski Foundation, Special Publication 7; Hart, M.B., Kaminski, M.A., Smart, C.W., Eds.; Grzybowski Foundation, Drukarnia Narodowa: Kraków, Poland, 2000; pp. 15–41. [Google Scholar]
- Oszczypko, N.; Malata, E.; Bąk, K.; Kędzierski, M.; Oszczypko-Clowes, M. Lithostratigraphy, biostratigraphy and palaeoenvironment of the Upper Albian–Lower/Middle Eocene flysch deposits in the Beskid Wyspowy and Gorce Ranges; Polish Outer Carpathians, Magura Nappe; Bystrica and Rača subunits. Ann. Soc. Geol. Polon. 2005, 75, 27–69. [Google Scholar]
- Bąk, M. Mid-Cretaceous Radiolarian zonation in the Polish part of the Pieniny Klippen Belt (Carpathians). Geol. Carpat. 1999, 50, 21–31. [Google Scholar]
- Górka, H. Cenomanian Radiolaria from Spława, Polish Carpathians. Geol. Quart. 1996, 40, 555–574. [Google Scholar]
- Książkiewicz, M. Bathymetry of the Carpathian Flysch Basin. Acta Geol. Polon. 1975, 25, 309–367. [Google Scholar]
- Bubik, M.; Bąk, M.; Švabenicka, L. Biostratigraphy of the Maastrichtian to Palaeocene distal flysch sediments of the Rača unit in the Užgruň section (Magura flysch, Czech Republic). Geol. Carpat. 1999, 50, 33–48. [Google Scholar]
- Oszczypko, N. Late Jurassic—Miocene evolution of the Outer Carpathian fold-and-thrust belt and its foredeep basin (Western Carpathians, Poland). Geol. Quart. 2006, 50, 169–194. [Google Scholar]
- Bąk, K.; Bąk, M.; Cieśla, M.; Paul, Z. Foraminiferal stratigraphy of Paleogene deep-water red facies in the Gorce Mountains (Magura Nappe, Polish Outer Carpathians. Ann. Soc. Geol. Polon. 2013, 83, 211–212. [Google Scholar]
- Słomka, T.; Malata, T.; Leśniak, T.; Oszczypko, N.; Poprawa, P. Evolution of the Silesian and Subsilesian basins. In Palaeotectonic Evolution of the Outer Carpathian and Pieniny Klippen Belt Basins; Oszczypko, N., Uchman, F., Malata, E., Eds.; Instytut Nauk Geologicznych Uniwersytetu Jagiellońskiego: Kraków, Poland, 2006; pp. 111–126. [Google Scholar]
- Unrug, R. The Silesian cordillera as the source of clastic material of the Flysch sandstones of the Beskid Śląski and Beskid Wysoki ranges, Polish West Carpathians. Ann. Soc. Géol. Pol. 1968, 38, 81–164. [Google Scholar]
- Cieszkowski, M.; Golonka, J.; Krobicki, M.; Slaczka, A.; Oszczypko, N.; Waskowska, A.; Wendorff, M. The Northern Carpathians plate tectonic evolutionary stages and origin of olistoliths and olistostromes. Geodynam. Acta 2009, 22, 101–126. [Google Scholar] [CrossRef]
- Bąk, M.; Górny, Z.; Bąk, K. Sponge growth on the Cenomanian carbonate shelves of the Carpathian Basin: A record from spicule-rich turbidites. Bull. Geosci. 2015, 90, 651–666. [Google Scholar] [CrossRef] [Green Version]
- Bąk, K.; Bąk, M.; Paul, Z. Barnasiówka Radiolarian Shale Formation—A new lithostratigraphic unit in the Upper Cenomanian–lowermost Turonian of the Polish Outer Carpathians. Ann. Soc. Geol. Polon. 2001, 71, 75–103. [Google Scholar]
- Hu, X.; Jansa, L.; Wang, C.; Sarti, M.; Bąk, K.; Wagreich, M.; Michalik, J.; Soták, J. Upper Cretaceous oceanic red beds (CORBs) in the Tethys: Occurrences, lithofacies, age, and environments. Cret. Res. 2005, 26, 3–20. [Google Scholar] [CrossRef]
- Van Couvering, J.A.; Aubry, M.-P.; Berggren, W.A.; Bujak, J.P.; Naeser, C.W.; Wieser, T. The terminal Eocene event and the Polish connection. Palaeogeogr. Palaeoclimat. Palaeoecol. 1981, 36, 321–362. [Google Scholar] [CrossRef]
- Koszarski, L.; Ślączka, A. Outer (flysch) Carpathians: Lower Cretaceous. In Geology of Poland; Pożaryski, W., Ed.; Wydawnictwa Geologiczne: Warsaw, Poland, 1973; pp. 492–495. [Google Scholar]
- Kotlarczyk, J. Stratigraphy of the Ropianka Formation or of Inoceramian Beds in the Skole Unit of the Flysch Carpathians. Prace Geol. PAN Oddział Krakowie 1978, 108, 1–82. [Google Scholar]
- Gucik, S. Explanations to the Detailed Geological Map of Poland, Scale 1:50,000; Krzywcza (1026) Sheet; Wydawnictwa Geologiczne: Warsaw, Poland, 1987; pp. 1–77. (In Polish) [Google Scholar]
- Gucik, S.; Jankowski, L.; Rączkowski, W.; Żytko, K. Explanations to the Detailed Geological Map of Poland, Scale 1:50,000; Rybotycze (1043) and Dobromil (1044) Sheets; Wydawnictwa Geologiczne: Warsaw, Poland, 1991; pp. 1–39. (In Polish) [Google Scholar]
- Gucwa, I.; Wieser, T. Ferromanganese nodules in the Western Carpathian flysch deposits of Poland. Ann. Soc. Geol. Polon. 1978, 48, 147–182. [Google Scholar]
- Okoński, S.; Górny, Z.; Bąk, M.; Bąk, K. Lithistid spicules in the sediments of the Turonian Variegated Shale in the Silesian Nappe, Polish Outer Carpathians. Geol. Geoph. Environ. 2014, 40, 33–48. [Google Scholar]
- Beil, S.; Kuhnt, W.; Holbourn, A.E.; Aquita, M.; Flögel, S.; Chellai, H.; Jabour, H. New insights into Cenomanian paleoceanography and climate evolution from the Tarfaya Basin, southern Morocco. Cret. Res. 2018, 84, 451–473. [Google Scholar] [CrossRef] [Green Version]
- Košták, M.; Čech, S.; Uličný, D.; Sklenář, J.; Ekrt, B.; Mazuch, M. Ammonites, inoceramids and stable carbon isotopes of the Cenomanian–Turonian OAE2 interval in central Europe: Pecínov quarry, Bohemian Cretaceous Basin (Czech Republic). Cret. Res. 2018, 87, 150–173. [Google Scholar] [CrossRef]
- Caron, M.; Dall’Agnollo, S.; Accarie, H.; Barrera, E.; Kauffman, E.G.; Amédro, F.; Robaszynski, F. High resolution stratigraphy of the Cenomanian–Turonian boundary interval at Pueblo (USA) and Wadi Bahlul (Tunisia): Stable isotope and bio-events correlation. Geobios 2006, 39, 271–300. [Google Scholar] [CrossRef]
- Tsikos, H.; Jenkyns, H.C.; Walsworth-Bell, B.; Petrizzo, M.R. Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian Oceanic Anoxic Event: Correlation and implications based on three key localities. J. Geol. Soc. Lond. 2004, 161, 711–719. [Google Scholar] [CrossRef]
- Fernando, A.G.S.; Takashima, R.; Nishi, H.; Giraud, F.; Okada, H. Calcareous nannofossil biostratigraphy of the Thomel Level (OAE2) in the Lambruisse section, Vocontian Basin, southeast France. Geobios 2010, 43, 45–57. [Google Scholar] [CrossRef]
- Boulila, S.; Charbonnier, G.; Spangenberg, J.; Gardin, S.; Galbrun, B.; Briard, J.; Le Callonne, L. Unraveling short-and long-term carbon cycle variations during the Oceanic Anoxic Event 2 from the Paris Basin Chalk. Global Planet. Chang. 2020, 186, 103126. [Google Scholar] [CrossRef]
- Erbacher, J.; Friedrich, O.; Wilson, P.A.; Birch, H.; Mutterlose, J. Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic. Geochem. Geoph. Geosys. 2005, 6, Q06010. [Google Scholar] [CrossRef]
- Valle, B.; Führ Dal’ Bó, P.; Mendes, M.; Favoreto, J.; Luparelli Rigueti, A.; Borghi, L.; de Oliveira Mendonça, J.; Silva, R., Jr. The expression of the Oceanic Anoxic Event 2 (OAE2) in the northeast of Brazil (Sergipe-Alagoas Basin). Palaeogeogr. Palaeoclimat. Palaeoecol. 2019, 529, 12–23. [Google Scholar] [CrossRef]
- Bowman, A.R.; Bralower, T.J. Paleoceanographic significance of high-resolution carbon isotope records across the Cenomanian–Turonian boundary in the Western Interior and New Jersey coastal plain, USA. Mar. Geol. 2005, 217, 305–321. [Google Scholar] [CrossRef]
- Sageman, B.B.; Meyers, S.R.; Arthur, M.A. Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype. Geology 2006, 34, 125–128. [Google Scholar] [CrossRef]
- Wagreich, M.; Bojar, A.-V.; Sachsenhofer, R.F.; Neuhuber, S.; Egger, H. Calcareous nannoplankton, planktonic foraminiferal, and carbonate carbon isotope stratigraphy of the Cenomanian–Turonian boundary section in the Ultrahelvetic Zone (Eastern Alps, Upper Austria). Cret. Res. 2008, 29, 965–975. [Google Scholar] [CrossRef]
- Scopelliti, G.; Bellanca, A.; Coccioni, R.; Luciani, V.; Neri, R.; Baudin, F.; Chiari, M.; Marcucci, M. High-resolution geochemical and biotic records of the Tethyan ‘Bonarelli Level’ (OAE2, latest Cenomanian) from the Calabianca–Guidaloca composite section, northwestern Sicily, Italy. Palaeogeogr. Palaeoclimat. Palaeoecol. 2004, 208, 293–317. [Google Scholar] [CrossRef]
- Scopelliti, G.; Bellanca, A.; Erba, E.; Jenkyns, H.C.; Neri, R.; Tamagnini, P.; Luciani, V.; Masetti, D. Cenomanian–Turonian carbonate and organic-carbon isotope records, biostratigraphy and provenance of a key section in NE Sicily, Italy: Palaeoceanographic and palaeogeographic implications. Palaeogeogr. Palaeoclimat. Palaeoecol. 2008, 265, 59–77. [Google Scholar] [CrossRef]
- Melinte-Dobrinescu, M.C.; Bojar, A.-V. Biostratigraphic and isotopic record of the Cenomanian–Turonian deposits in the Ohaba-Ponor section (SW Hatxeg, Romania). Cret. Res. 2008, 1024–1034. [Google Scholar] [CrossRef]
- Bengston, P. The Turonian stage and substage boundaries. Bull. Inst. Roy. Sci. Natur. Belg. 1996, 66, 69–79. [Google Scholar]
- Kennedy, W.J.; Walaszczyk, I.; Cobban, W.A. The Global Boundary Stratotype Section and Point for the base of the Turonian Stage of the Creataceous: Pueblo, Colorado, USA. Episodes 2005, 28, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogg, J.G.; Hinnov, L.A. Cretaceous. In The Geological Time Scale; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Chapter 27; pp. 793–853. [Google Scholar]
- Pratt, L.M. Isotopic studies of organic matter and carbonate rocks of the Greenhorn marine cycle. In Fine-Grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes; Field Trip Guidebook; Pratt, L.M., Kauffman, E.G., Zelt, F.B., Eds.; Society of Economic Paleontologists and Mineralogists, Midyear Meeting: Golden, CO, USA, 1985; Volume 4, pp. 38–48. [Google Scholar]
- Keller, G.; Berener, Z.; Adatte, T.; Stueben, D. Cenomanian–Turonian and δ13C, and δ18O, sea level and salinity variations at Pueblo, Colorado. Palaeogeogr. Palaeoclimat. Palaeoecol. 2004, 211, 19–43. [Google Scholar] [CrossRef]
- Jarvis, I.; Gale, A.S.; Jenkyns, H.C.; Pearce, M.A. Secular variation in Late Cretaceous carbon isotopes: A new 13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol. Mag. 2006, 143, 561–608. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, M.; Holbourn, A.; Kuhnt, W. Changes in Northeast Atlantic temperature and carbon flux during the Cenomanian/Turonian paleoceanographic event: The Goban Spur stable isotope record. Palaeogeogr. Palaeoclimat. Palaeoecol. 2003, 201, 51–66. [Google Scholar] [CrossRef]
- Thurow, J. Cretaceous radiolarians of the North Atlantic Ocean: ODP Leg 103 (Sites 638 640 and 641) and DSDP Legs 93 (Site 603) and 47B (Site 398). In Proceedings of Ocean Drilling Project, Scientific Results; Boillot, G., Winterer, G., Meyer, A., Applegate, J., Baltuck, M., Bergen, J.A., Comas, M.C., Davies, T.A., Dunham, K., Evans, C.A., et al., Eds.; U.S. Government Printing Office: Washington DC, USA, 1988; Volume 103, pp. 379–418. [Google Scholar]
- Thurow, J.; Moullade, M.; Brumsack, H.-J.; Masure, E.; Taugourdeau-Lantz, J.; Dunham, K. The Cenomanian/Turonian boundary event (CTBE) at Hole 641A, ODP Leg 103 (compared with the CTBE interval at Site 398). In Proceedings of Ocean Drilling Project, Scientific Results; Boillot, G., Winterer, E.L., Meyer, A.W., Applegate, J., Baltuck, M., Bergen, J.A., Comas, M.C., Davies, T.A., Dunham, K., Evans, C.A., et al., Eds.; U.S. Government Printing Office: Washington DC, USA, 1987; Volume 103, pp. 587–634. [Google Scholar]
- Golonka, J.; Oszczypko, N.; Ślączka, A. Late Carboniferous–Neogene geodynamic evolution and palaeogeography of the circum-Carpathian region and adjacent areas. Ann. Soc. Geol. Polon. 2000, 70, 107–136. [Google Scholar]
- Gale, A.S.; Jenkyns, H.C.; Kennedy, W.J.; Corfield, R.M. Chemostratigraphy versus biostratigraphy: Data around the Cenomanian–Turonian boundary. J. Geol. Soc. Lond. 1993, 26, 29–32. [Google Scholar] [CrossRef]
- Gale, A.S.; Kennedy, W.J.; Voigt, S.; Walaszczyk, I. Stratigraphy of the Upper Cenomanian–Lower Turonian Chalk succession at Eastbourne, Sussex, UK: Ammonites, inoceramid bivalves and stable carbon isotopes. Cret. Res. 2005, 26, 460–487. [Google Scholar] [CrossRef]
- Jenkyns, H.C.; Gale, A.S.; Corfield, R.M. Carbon and oxygen isotope stratigraphy of the English Chalk and Italian Scaglia and its paleoclimatic significance. Geol. Mag. 1994, 131, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.R.C.; Lamolda, M.A.; Mitchel, S.F.; Vaziri, M.R.; Gorostidi, A.; Marshall, J.D. The Cenomanian–Turonian boundary at Eastbourne (Sussex, UK): A proposed European reference section. Palaeogeogr. Palaeoclimat. Palaeoecol. 1999, 150, 83–121. [Google Scholar] [CrossRef]
- Keller, G.; Han, Q.; Adatte, T.; Burns, S.J. Palaeoenvironment of the Cenomanian–Turonian transition at Eastbourne, UK. Cret. Res. 2001, 22, 391–422. [Google Scholar] [CrossRef] [Green Version]
- Uličny, D.; Hladíkova, J.; Attrep, M.J.; Čech, S.; Hradecká, L.; Svobodová, M. Sea-level changes and geochemical anomalies cross the Cenomanian–Turonian boundary: Pečinov quarry, Bohemia. Palaeogeogr. Palaeoclimat. Paleoecol. 1997, 132, 265–285. [Google Scholar] [CrossRef]
- Peryt, D.; Wyrwicka, K. The Cenomanian–Turonian oceanic anoxic event in SE Poland. Cret. Res. 1991, 12, 65–80. [Google Scholar] [CrossRef]
- Peryt, D.; Wyrwicka, K. The Cenomanian/Turonian boundary event in Central Poland. Palaeogeogr. Palaeoclimat. Palaeoecol. 1993, 104, 185–197. [Google Scholar] [CrossRef]
- Fischer, J.K.; Price, G.D.; Hart, M.B.; Leng, M.J. Stable isotope analysis of the Cenomanian–Turonian (Late Cretaceous) oceanic anoxic event in the Crimea. Cret. Res. 2005, 26, 853–863. [Google Scholar] [CrossRef]
- Marcinowski, R.; Szulczewski, M. Condensed Cretaceous sequence with stromatolites in the Polish Jura Chain. Acta Geol. Polon. 1972, 22, 515–538. [Google Scholar]
- Krajewski, K.; Leśniak, P.M.; Łącka, B.; Zawidzki, P. Origin of phosphatic stromatolites in the Upper Cretaceous condensed sequence of the Polish Jura Chain. Sedim. Geol. 2000, 136, 89–112. [Google Scholar] [CrossRef]
- Reolid, M.; Sánchez-Quiñónez, C.A.; Alegret, L.; Molina, E. Palaeoenvironmental turnover across the Cenomanian-Turonian transition in Oued Bahloul, Tunisia: Foraminifera and geochemical proxies. Palaeogeogr. Palaeoclimat. Palaeoecol. 2015, 417, 491–510. [Google Scholar] [CrossRef] [Green Version]
- Brass, G.W.; Southam, J.R.; Peterson, W.H. Warm saline bottom water in the ancient ocean. Nature 1982, 296, 620–623. [Google Scholar] [CrossRef]
- Sliter, W.V.; Brown, G.R. Shatsky Rise: Seismic stratigraphy and sedimentary record of 950 Pacific paleoceanography since the Early Cretaceous. In Proceedings of the Ocean Drilling Program; Scientific Results; Natland, J.H., Storms, M.A., Brass, G.W., Brown, G.R., Premoli Silva, I., Rack, F.R., Sliter, W.V., van Waasbergen, R.J., Eds.; Ocean Drilling Program: College Station, TX, USA; U.S. Government Printing Office: Washington, DC, USA, 1993; Volume 132, pp. 3–13. [Google Scholar]
- Barron, E.J.; Peterson, W.H. The Cenozoic ocean circulation based on ocean General Circulation Model results. Palaeogeogr. Palaeoecol. Palaeoclimat. 1990, 83, 1–28. [Google Scholar] [CrossRef]
- Woo, K.-S.; Anderson, T.F.; Railback, L.B.; Sandberg, P.A. Oxygen isotope evidence for high salinity surface seawater in the mid-Cretaceous Gulf of Mexico: Implications for warm, saline deepwater formation. Paleoceanography 1992, 7, 673–685. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bąk, M.; Bąk, K. Termination of Organic-Rich Accumulation of the Oceanic Anoxic Event 2 in the Deep-Water Carpathian Basins Based on Carbon Stable Isotope Data. Minerals 2021, 11, 420. https://doi.org/10.3390/min11040420
Bąk M, Bąk K. Termination of Organic-Rich Accumulation of the Oceanic Anoxic Event 2 in the Deep-Water Carpathian Basins Based on Carbon Stable Isotope Data. Minerals. 2021; 11(4):420. https://doi.org/10.3390/min11040420
Chicago/Turabian StyleBąk, Marta, and Krzysztof Bąk. 2021. "Termination of Organic-Rich Accumulation of the Oceanic Anoxic Event 2 in the Deep-Water Carpathian Basins Based on Carbon Stable Isotope Data" Minerals 11, no. 4: 420. https://doi.org/10.3390/min11040420
APA StyleBąk, M., & Bąk, K. (2021). Termination of Organic-Rich Accumulation of the Oceanic Anoxic Event 2 in the Deep-Water Carpathian Basins Based on Carbon Stable Isotope Data. Minerals, 11(4), 420. https://doi.org/10.3390/min11040420