Tectonic Generation of Pseudotachylytes and Volcanic Rocks: Deep-Seated Magma Sources of Crust-Mantle Transition in the Baikal Rift System, Southern Siberia
Abstract
:1. Introduction
2. Methods and Materials
3. Structural Control of the South Baikal Basin and Tunka Valley, Structural Setting of Volcanism
4. Pseudotachylytes and Their Structural Setting
5. Compositions of Pseudotachylytes and Host Mylonites
6. Compositions of Basic Pseudotachylytes and Volcanic Rocks
6.1. Major Oxides
6.2. La/Yb Ratio
6.3. Ce/Pb Ratio
6.4. Th/Yb and Ta/Yb Ratios
6.5. Sr and Nd Isotope Ratios
6.6. Pb Isotope, Nb/U, and Th/U Ratios
7. Discussion
7.1. Long-Term CMT Evolution
7.2. U in CMT Processes
7.3. CMT between South Baikal Basin and Tunka Valley
7.4. Structural Control of Strong Earthquakes
7.5. Geodynamic Control of CMT Magmatism
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hirano, N.; Takahashi, E.; Yamamoto, J.; Abe, N.; Ingle, S.P.; Kaneoka, I.; Hirata, T.; Kimura, J.-I.; Ishii, T.; Ogawa, Y.; et al. Volcanism in response to plate flexure. Science 2006, 313, 1426–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coltice, N.; Bertrand, H.; Rey, P.; Jourdan, F.; Phillips, B.R.; Ricard, Y. Global warming of the mantle beneath continents back to the Archaean. Gondwana Res. 2009, 15, 254–266. [Google Scholar] [CrossRef] [Green Version]
- Lipman, P.W. Alkalic and tholeiitic basaltic volcanism related to the Rio Grande basin. Geol. Soc. Am. Bull. 1969, 80, 1343–1354. [Google Scholar] [CrossRef]
- Lipman, P.W. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. Geosphere 2007, 3, 42–70. [Google Scholar] [CrossRef] [Green Version]
- Dungan, M.A.; Thompson, R.A.; Stormer, J.S.; Neill, J.M. Rio Grande Rift volcanism: Northeastern Jemez Zone, New Mexico. In Field Excursions to Volcanic Terranes in the Western United States. V. 1. Southern Rocky Mountain Region; New Mexico Bureau of Nines & Mineral Resources: Socorro, Brazil, 1989; pp. 435–486. [Google Scholar]
- Duncker, K.E.; Wolff, J.A.; Harmon, R.S.; Leat, P.T.; Dickin, A.P.; Thompson, R.N. Diverse mantle and crustal components in lavas of the NW Cerros Del Rio volcanic field, Rio Grande Rift, New Mexico. Contrib. Miner. Pet. 1991, 108, 331–345. [Google Scholar] [CrossRef]
- Asmerom, Y. Th-U fractionation and mantle structure. Earth Planet. Sci. Lett. 1999, 166, 163–175. [Google Scholar] [CrossRef]
- McMillan, N.J.; Dickin, A.P.; Haag, D. Evolution of Magma Source Regions in the Rio Grande Rift, Southern New Mexico. Geology 2000, 112, 1582–1593. [Google Scholar] [CrossRef]
- Rasskazov, S.V.; Saranina, E.V.; Martynov, Yu.A.; Chashchin, A.A.; Maksimov, S.O.; Brandt, I.S.; Brandt, S.B.; Maslovskaya, M.N.; Kovalenko, S.V. Evolution of Late Cenozoic magmatism in the active continental margin of Southern Primorye. Russ. J. Pac. Geol. 2003, 1, 92–109. (In Russian) [Google Scholar]
- Rasskazov, S.V.; Brandt, S.B.; Brandt, I.S. Radiogenic Isotopes in Geologic Processes; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Rasskazov, S.; Sun, Y.-M.; Chuvashova, I.; Yasnygina, T.; Yang, C.; Xie, Z.; Saranina, E.; Gerasimov, N.; Vladimirova, T. Trace-Element and Pb isotope evidence on extracting sulfides from potassic melts beneath Longmenshan and Molabushan volcanoes, Wudalianchi, Northeast China. Minerals 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Lustrino, M.; Carminati, E. Phantom plumes in Europe and the circum-Mediterranean region. In Plates, Plumes, and Planetary Processes: Geological Society of America Special Paper; Foulger, G.R., Jurdy, D.M., Eds.; 2007; Volume 430, pp. 723–745. [Google Scholar] [CrossRef] [Green Version]
- Lustrino, M.; Wilson, M. The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci. Rev. 2007, 81, 1–65. [Google Scholar] [CrossRef]
- Corti, G. Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa. Earth-Sci. Rev. 2009, 96, 1–53. [Google Scholar] [CrossRef]
- Seghedi, I.; Ersoy, Y.E.; Helvac, C. Miocene—Quaternary volcanismand geodynamic evolution in the Pannonian Basin and the Menderes Massif: A comparative study. Lithos 2013, 180–181, 25–42. [Google Scholar] [CrossRef]
- Rooney, T.O.; Nelson, W.R.; Dosso, L.; Furman, T.; Hanan, B. The role of continental lithosphere metasomes in the production of HIMU-like magmatism on the northeast African and Arabian plates. Geology 2014, 42, 419–422. [Google Scholar] [CrossRef]
- Accardo, N.J.; Gaherty, J.B.; Shillington, D.J.; Hopper, E.; Nyblade, A.A.; Ebinger, C.J.; Scholz, C.A.; Chindandali, P.R.N.; Wambura-Ferdinand, R.; Mbogoni, G.; et al. Thermochemical modification of the upper mantle beneath the northern Malawi Rift constrained from shear velocity imaging. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008843. [Google Scholar] [CrossRef]
- Rasskazov, S.V.; Chuvashova, I.S. The latest geodynamics in Asia: Synthesis of data on volcanic evolution, lithosphere motion, and mantle velocities in the Baikal-Mongolian region. Geosci. Front. 2017, 8, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Rasskazov, S.V.; Chuvashova, I.S.; Yasnygina, T.A.; Fefelov, N.N.; Saranina, E.V. Potassic and Potassic-Sodic Volcanic Series in the Cenozoic of Asia; Academic Publishing House “GEO”: Novosibirsk, Russia, 2012. (In Russian) [Google Scholar]
- Rasskazov, S.V.; Yasnygina, T.A.; Chuvashova, I.S.; Mikheeva, E.A.; Snopkov, S.V. The Kultuk Volcano: Spatial-Temporal change of magmatic sources at the western terminus of the South Baikal Basin between 18 and 12 Ma. Geodyn. Tectonophys. 2013, 4, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Chuvashova, I.; Rasskazov, S.; Yasnygina, T. Mid-Miocene thermal impact on the lithosphere by sub-lithospheric convective mantle material: Transition from high- to moderate-Mg magmatism beneath Vitim Plateau, Siberia. Geosci. Front. 2017, 8, 753–774. [Google Scholar] [CrossRef] [Green Version]
- Sibson, R.H. Generation of pseudotachylyte by ancient seismic faulting. Geophys. J. Int. 1975, 43, 775–794. [Google Scholar] [CrossRef] [Green Version]
- Sibson, R.H. Fault rocks and fault mechanisms. J. Geol. Soc. Lond. 1977, 133, 191–213. [Google Scholar] [CrossRef]
- Cowan, D.S. Do faults preserve a record of seismic slip? A field geologist’s opinion. J. Struct. Geol. 1999, 21, 995–1001. [Google Scholar] [CrossRef]
- Swanson, M.T. Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation. Tectonophysics 1992, 204, 223–242. [Google Scholar] [CrossRef]
- Swanson, M.T. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones. J. Struct. Geol. 2005, 27, 871–887. [Google Scholar] [CrossRef]
- Passchier, C.W. Pseudotachylyte and the development of ultramylonite bands in the Saint-Barthelemy Massif, French Pyrenees. J. Struct. Geol. 1982, 4, 69–79. [Google Scholar] [CrossRef]
- Hobbs, B.E.; Ord, A.; Teyssier, C. Earthquakes in the ductile regime. Pure Appl. Geophys. 1986, 124, 309–336. [Google Scholar] [CrossRef]
- White, J.C. Transient discontinuities revisited: Pseudotachylyte, plastic instability and the influence of low pore fluid pressure on deformation processes in the mid-crust. J. Struct. Geol. 1986, 18, 1471–1486. [Google Scholar] [CrossRef]
- Pennacchioni, G.; Cesare, B. Ductile-Brittle transition in pre-Alpine amphibolite facies mylonites during evolution from water-present to water-deficient conditions (Mont Mary nappe, Italian Western Alps). J. Metamorph. Geol. 1997, 15, 777–791. [Google Scholar] [CrossRef]
- Magloughlin, J.F. Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crustal levels: The cataclasite pseudotachylyte connection. Tectonophysics 1992, 204, 243–260. [Google Scholar] [CrossRef]
- Sarkar, A.; Chattopadhyay, A. Microstructure and geochemistry of pseudotachylyte veins from Sarwar-Junia Fault Zone, India: Implications for frictional melting process in a seismic fault zone. Geol. J. 2020, 1–29. [Google Scholar] [CrossRef]
- Clerc, A.; Renard, F.; Austrheim, H.; Jamtveit, B. Spatial and size distributions of garnets grown in a pseudotachylyte generated during a lower crust earthquake. Tectonophysics 2018, 733, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, H.; Si, J.; Zhang, L.; Sun, Z. Geochemical features of the pseudotachylytes in the Longmen Shan thrust belt, eastern Tibet. Quat. Int. 2019, 514, 173–185. [Google Scholar] [CrossRef]
- Orlandini, O.; Mahan, K.H. Rheological evolution of a pseudotachylyte-bearing deep crustal shear zone in the western Canadian shield. J. Struct. Geol. 2020, 141, 104188. [Google Scholar] [CrossRef]
- Shand, S.J. The pseudotachylyte of Parijs (Orange Free State), and its relation to Trap-Shotten Gneiss ‘and Flinty Crush-Rock’. Q. J. Geol. Soc. 1916, 72, 198–221. [Google Scholar] [CrossRef] [Green Version]
- Philpotts, A.R. Origin of pseudotachylytes. Am. J. Sci. 1964, 262, 1008–1035. [Google Scholar] [CrossRef]
- Allen, J.L. A multi-kilometer pseudotachylyte system as an exhumed record of earthquake rupture geometry at hypocentral depths (Colorado, USA). Tectonophysics 2005, 402, 37–54. [Google Scholar] [CrossRef]
- Bossiere, G. Petrology of pseudotachylytes from the Alpine Fault of New Zealand. Tectonophysics 1991, 196, 173–193. [Google Scholar] [CrossRef]
- Maddock, R.H. Effects of lithology, cataclasis and melting on the composition of fault-generated pseudotachylytes in Lewisian gneiss, Scotland. Tectonophysics 1992, 204, 261–278. [Google Scholar] [CrossRef]
- Lin, A. Fossil Earthquakes: The Formation and Preservation of Pseudotachylytes (Volume 111); Springer: Heidelberg/Berlin, Germany, 2007. [Google Scholar] [CrossRef]
- Maddock, R.H. Melt origin of fault-generated pseudotachylytes demonstrated by textures. Geology 1983, 11, 105–108. [Google Scholar] [CrossRef]
- Spray, J.G. Pseudotachylyte controversy: Fact or fiction? Geology 1995, 23, 1119–1122. [Google Scholar] [CrossRef]
- Lin, A. Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting. Eng. Geol. 1996, 43, 213–224. [Google Scholar] [CrossRef]
- Lin, A.; Shimamoto, T. Selective melting processes as inferred from experimentally generated pseudotachylytes. J. Asian Earth Sci. 1998, 16, 533–545. [Google Scholar] [CrossRef]
- Tsutsumi, A. Size distribution of clasts in experimentally produced pseudotachylytes. J. Struct. Geol. 1999, 21, 305–312. [Google Scholar] [CrossRef]
- Ozawa, K.; Takizawa, S. Amorphous material formed by the mechanochemical effect in natural pseudotachylyte of crushing origin: A case study of the Iida-Matsukawa Fault, Nagano Prefecture, Central Japan. J. Struct. Geol. 2007, 29, 1855–1869. [Google Scholar] [CrossRef]
- O′Hara, K. Major-and trace-element constraints on the petrogenesis of a fault-related pseudotachylyte, western Blue Ridge Province, North Carolina. Tectonophysics 1992, 204, 279–288. [Google Scholar] [CrossRef]
- Spray, J.G. Artificial generation of pseudotachylyte using friction welding apparatus: Simulation of melting on a fault plane. J. Struct. Geol. 1987, 9, 49–60. [Google Scholar] [CrossRef]
- Sibson, R.H. Interactions between temperature and pore fluid pressure during an earthquake faulting and a mechanism for partial or total stress relief. Nature 1973, 243, 66–68. [Google Scholar] [CrossRef]
- Rempel, A.W.; Rice, J.R. Thermal pressurization and onset of melting in fault zone. J. Geophys. Res. 2006, 111, B09314. [Google Scholar] [CrossRef] [Green Version]
- Ruzhich, V.V.; Kocharyan, G.G.; Savelieva, V.B.; Travin, A.V. On the structure and formation of earthquake sources in the faults located in the subsurface and deep levels of the crust. Part II. Deep level. Geodyn. Tectonophys. 2018, 9, 1039–1061. [Google Scholar] [CrossRef]
- Zamaraev, S.M.; Mazukabzov, A.M.; Ryazanov, G.V.; Sezko, A.I.; Vasiliev, E.P.; Grabkin, O.V. Old Structure of the Earth’s Crust in Eastern Siberia; Publishing House “Science”. Sib. Department: Novosibirsk, Russia, 1975. (In Russian) [Google Scholar]
- Zamarayev, S.M.; Vasilyev, E.P.; Mazukabzov, A.M.; Ruzhich, V.V. The Relationship between Ancient and Cenozoic Structures in the Baikal Rift Zone; Nauka, Siberian Branch: Novosibirsk, Russia, 1979. (In Russian) [Google Scholar]
- Rasskazov, S.; Ilyasova, A.; Bornyakov, S.; Chuvashova, I.; Chebykin, E. Responses of a 234U/238U activity ratio in groundwater to earthquakes in the South Baikal Basin, Siberia. Front. Earth Sci. 2020. [Google Scholar] [CrossRef]
- Seminsky, K.Zh.; Bornyakov, S.A.; Dobrynina, A.A.; Radziminovich, N.A.; Rasskazov, S.V.; Sankov, V.A.; Mialle, P.; Bobrov, A.A.; Ilyasova, A.M.; Salko, D.V.; et al. The Bystrinskoe earthquake in the southern Baikal region (21 September 2020, Mw = 5.4): Main parameters, precusors, and accompanying effects. Russ. Geol. Geophys. 2021, 62. (In press) [Google Scholar]
- Rasskazov, S.V. Magmatism of the Baikal Rift System; Siberian Publishing Company Science: Novosibirsk, Russia, 1993. (In Russian) [Google Scholar]
- Ionov, D.A.; O’Reilly, S.Y.; Ashchepkov, I.V. Feldspar-Bearing lherzolite xenoliths in alkali basalts from Hamar-Daban, southern Baikal region, Russia. Contrib. Miner. Pet. 1995, 122, 174–190. [Google Scholar] [CrossRef]
- Ashchepkov, I.V.; Travin, A.V.; Saprykin, A.I.; Andre, L.; Gerasimov, P.A.; Khmelnikova, O.S. Age of xenolith-bearing basalts and mantle evolution in the Baikal rift zone. Russ. Geol. Geophys. 2003, 44, 1121–1149. [Google Scholar]
- Ailow, Y.; Rasskazov, S.V.; Chuvashova, I.S.; Yasnygina, T.A. Relationship between rocks of primitive mantle, restites, and metasomatites in inclusions from basanites of the Karerny Volcano (Western Pribaikal). Bull. Irkutsk State Univ. Ser. Earth Sci. 2019, 29, 3–23. [Google Scholar] [CrossRef]
- Danilovich, V.N. Fundamentals of Deformation Theory of Geological Bodies; Irkut. Book Publishing House: Irkutsk, Russia, 1953. (In Russian) [Google Scholar]
- Sizykh, Y.I. A Comprehensive Scheme for the Chemical Analysis of Rocks and Minerals. Open-File Report; Institute of the Earth’s Crust SB AS USSR: Irkutsk, Russia, 1985. (In Russian) [Google Scholar]
- Faure, G. Origin of Igneous Rocks: The Isotopic Evidence; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Yasnygina, T.A.; Markova, M.E.; Rasskazov, S.V.; Pakhomova, N.N. Determination of rare earth elements, Y, Zr, Nb, Hf, Ta, and Th in geological reference materials of the DV series by ICP-MS. Zavod. Lab. Diagn. Mater. 2015, 81, 10–20. (In Russian) [Google Scholar]
- Belichenko, V.G.; Reznitsky, L.Z.; Makrygina, V.A.; Barash, I.G. Terranes of the Baikal-Khubsugul fragment of the Central Asian mobile belt of Paleozoides. The state of the problem. In Geodynamic Evolution of the Lithosphere in the Central Asian Mobile Belt (from the Ocean to the Continent); Institute of the Earth’s Crust SB RAS: Irkutsk, Russia, 2006; Volume 1, pp. 37–40. (In Russian) [Google Scholar]
- Zamaraev, S.M.; Sizykh, V.I.; Meshalkin, S.I.; Novokshonov, Y.A. Structural features of the Angara thrust. Geol. Geophys. 1983, 5, 126–129. (In Russian) [Google Scholar]
- Chuvashova, I.S.; Hassan, A.; Al Hamud, A.; Kovalenko, S.N.; Rudneva, N.A.; Rasskazov, S.V. Transition from the Selenga-Vitim foredeep to the Vitim plateau: Cenozoic sedimentation and volcanism. Bull. Irkutsk State Univ. Earth Sci. Ser. 2019, 27, 138–153. [Google Scholar] [CrossRef]
- Logatchev, N.A. Sayan-Baikal and Stanovoy highlands. In Highlands of Pribaikal and Transbaikal; Nauka, Moscow, 1974. (In Russian) [Google Scholar]
- Logatchev, N.A.; Zorin, Yu.A. Baikal Rift Zone: Structure and geodynamics. Tectonophysics 1992, 208, 273–286. [Google Scholar] [CrossRef]
- Hutchinson, D.R.; Golmshtok, A.J.; Zonenshain, L.P.; Moore, T.C.; Scholz, C.A.; Klitgord, K.D. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data. Geology 1992, 20, 589–592. [Google Scholar] [CrossRef]
- Sherman, S.I. Faults of the Baikal rift zone. Tectonophysics 1978, 45, 31–39. [Google Scholar] [CrossRef]
- Sherman, S.I. Faults and tectonic stresses of the Baikal rift zone. Tectonophysics 1992, 208, 297–307. [Google Scholar] [CrossRef]
- Shafeev, A.A. The Precambrian of the South-Western Baikal and Khamar-Daban; Nauka: Moscow, Russia, 1970. (In Russian) [Google Scholar]
- Vasil’ev, E.P.; Reznitsky, L.Z.; Vishnyakov, V.N.; Nekrasova, E.A. The Slyudyanka Crystaline Complex; Nauka: Novosibirsk, Russia, 1981. (In Russian) [Google Scholar]
- Le Bas, M.J.; Streckeisen, A.L. The IUGS systematics of igneous rocks. J. Geol. Soc. Lond. 1991, 148, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Stepanov, L.V.; Lipenkov, G.V.; Lokhov, K.I.; Saltykova, T.E. Isotope-Geochemical substantiation of the age of carbonate rocks of the Slyudyanka crystalline complex. Reg. Geol. Metallog. 2011, 48, 60–68. (In Russian) [Google Scholar]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Kutolin, V.A. On the order and temperatures of crystallization of minerals in rocks of basic composition. Russ. Geol. Geophys. 1966, 11, 42–51. (In Russian) [Google Scholar]
- Arndt, N.; Lesher, C.M.; Barnes, S.J. Komatiite; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Herzberg, C.; Asimov, N.; Arndt, N.; Niu, Y.; Lesher, C.M.; Fitton, J.G.; Cheadle, M.J.; Saunders, A.D. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochem. Geophys. Geosyst. 2007, 8, Q02006. [Google Scholar] [CrossRef]
- Hirose, K.; Kushiro, I. Partial melting of dry peridotites at high pressure: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett. 1993, 114, 477–489. [Google Scholar] [CrossRef]
- O′Reilly, S.Y.; Griffin, W.L. 4-D lithosphere mapping: Methodology and examples. Tectonophysics 1996, 262, 3–18. [Google Scholar] [CrossRef]
- Shaw, D.M. Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 1970, 34, 237–243. [Google Scholar] [CrossRef]
- Chuvashova, I.S.; Rasskazov, S.V.; Yasnygina, T.A.; Mikheeva, E.A. High-Mg lavas from the Dariganga volcanic field in the south-eastern Mongolia: Petrogenetic model of magmatism at the asthenosphere–lithosphere boundary. Geodyn. Tectonophys. 2012, 3, 385–407. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Miller, D.M.; Goldstein, S.L.; Langmuir, C.H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 1994, 368, 514–519. [Google Scholar] [CrossRef]
- Pearce, J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins. In Continental Basalts and Mantle Xenoliths; Hawkesworth, C.L., Norry, M.J., Eds.; Shiva: Nantwich, UK, 1983; pp. 230–249. [Google Scholar]
- Sun, S.-S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins. Geological Society Special Publication; Sounders, A.D., Norry, M.J., Eds.; Geological Society Publishing House: Bath, UK, 1989; Volume 42, pp. 313–345. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Fountain, D.M. Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 1995, 33, 267–309. [Google Scholar] [CrossRef] [Green Version]
- Steiger, R.H.; Jäger, E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmology. Earth Planet. Sci. Lett. 1977, 36, 359–362. [Google Scholar] [CrossRef]
- Hofmann, A.W. Nb in Hawaiian magmas: Constraints on source composition and evolution. Chem. Geol. 1986, 57, 17–30. [Google Scholar] [CrossRef]
- Beattie, P. Uranium–Thorium disequilibria and partitioning on melting of garnet peridotite. Nature 1993, 363, 63–65. [Google Scholar] [CrossRef]
- Foley, S.F.; Petibon, C.M. High U/Th partitioning by clinopyroxene from alkali silicate and carbonatite metasomatism: An origin for Th/U disequilibrium in mantle melts? Terra Nova 2001, 13, 104–109. [Google Scholar] [CrossRef]
- Rasskazov, S.; Chuvashova, I.; Yasnygina, T.; Saranina, E. Mantle evolution of Asia inferred from Pb isotopic signatures of sources for Late Phanerozoic volcanic rocks. Minerals 2020, 10, 739. [Google Scholar] [CrossRef]
- Hart, S.R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 1984, 309, 753–757. [Google Scholar] [CrossRef]
- Turkina, O.M.; Urmantseva, L.N.; Berezhnaya, N.G.; Presnyakov, S.L. Paleoproterozoic age of the protoliths of metaterrigenous rocks in the east of the Irkut granulite-gneiss block (Sharyzhalgai salient, Siberian Craton). Strat. Geol. Correl. 2010, 18, 16–30. [Google Scholar] [CrossRef]
- Salnikova, E.B.; Kotov, A.B.; Levitskii, V.I.; Reznitskii, L.Z.; Mel′nikov, A.I.; Kozakov, I.K.; Kovach, V.P.; Barash, I.G.; Yakovleva, S.Z. Age constraints of high-temperature metamorphic events in crystalline complexes of the Irkut block, the Sharyzhalgai ledge of the Siberian platform basement: Results of the U-Pb single zircon dating. Strat. Geol. Correl. 2007, 15, 343–358. [Google Scholar] [CrossRef]
- Levitsky, V.I. Petrology and Geochemistry of Metasomatism during the Formation of the Continental Crust; Academic Publishing House “Geo”: Novosibirsk, Russia, 2005. (In Russian) [Google Scholar]
- Grudinin, M.I.; Menshagin, Y.V. Ultramafic–Basic Associations of the Early Precambrian; Nauka: Novosibirsk, Russia, 1987. (In Russian) [Google Scholar]
- Aftalion, M.; Bibikova, E.V.; Bowes, D.R.; Hopgood, A.M.; Perchuk, L.L. Timing of Early Proterozoic collisional and extensional events in the granulite-gneiss-charnokite-granite complex, lake Baikal, USSR: A U–Pb, Rb–Sr and Sm–Nd isotopic study. J. Geol. 1991, 99, 851–861. [Google Scholar] [CrossRef]
- Didenko, A.N.; Kozakov, I.K.; Bibikova, E.V.; Vodovozov, V.Y.; Khil’tova, V.Ya.; Reznitskii, L.S.; Ivanov, A.V.; Levitskii, V.I.; Travin, A.V.; Shevchenko, D.O.; et al. Paleoproterozoic granites of the Sharyzhalgai block, Siberian craton: Paleomagnetism and geodynamic inferences. Dokl. Earth Sci. 2003, 390, 510–515. [Google Scholar]
- Rozen, O.M.; Manakov, A.V.; Zinchuk, N.N. Siberian Craton: Origin and the Diamond Control; Scientific World: Moscow, Russsia, 2006. (In Russian) [Google Scholar]
- Donskaya, T.V. Assembly of the Siberian Craton: Constraints from Paleoproterozoic granitoids. Precambrian Res. 2020, 348, 105869. [Google Scholar] [CrossRef]
- Vladimirov, B.M.; Logatchev, N.A.; Weiner-Krotova, G.A.; Lepin, V.S.; Ivanov, A.V.; Rasskazov, S.V. The Vendian-Cambrian boundary: Rb–Sr-Isochron age of the final event of alkaline-ultrabasic magmatism in the northeastern Sayan region. Dokl. Earth Sci. 2003, 389, 346–349. [Google Scholar]
- Ashchepkov, I.; Zhmodik, S.; Belyanin, D.; Kiseleva, O.N.; Medvedev, N.; Travin, A.; Yudin, D.; Karmanov, N.S.; Downes, H. Aillikites and Alkali Ultramafic Lamprophyres of the Beloziminsky Alkaline Ultrabasic-Carbonatite Massif: Possible Origin and Relations with Ore Deposits. Minerals 2020, 10, 404. [Google Scholar] [CrossRef]
- Salnikova, E.B.; Sergeev, S.A.; Kotov, A.B.; Yakovleva, S.Z.; Steiger, R.H.; Reznitskiy, L.Z.; Vasil′ev, E.P. U-Pb zircon dating of granulite metamorphism in the Sludyanskiy complex, Eastern Siberia. Gondwana Res. 1998, 1, 195–205. [Google Scholar] [CrossRef]
- Levitsky, V.I.; Plyusnin, G.S. New data on petrology, geochemistry and geochronology of the Bystraya massif. Russ. Geol. Geophys. 1991, 2, 22–28. (In Russian) [Google Scholar]
- Grudinin, M.I.; Rasskazov, S.V.; Kovalenko, S.N.; Ilyasova, A.M. Early Paleozoic Snezhnaya gabbro-syenite intrusion in Southwestern Baikal Region (trace-element signature of crust/mantle mixing). Russ. Geol. Geophys. 2004, 45, 1043–1052. [Google Scholar]
- Amirzhanov, A.A. Fundamental problem of the relationship between ore genesis and trap magmatism on the Siberian platform. In New and Non-Traditional Types of Mineral Deposits in the Baikal and Transbaikal, Proceedings of All-Russia Scientific-Practical Conference; Geological institute SB RAS: Ulan-Ude, Russia, 6 October 2010; pp. 18–21. (In Russian) [Google Scholar]
- Bulnaev, K.B. On the carbonatite nature of endogenous carbonate rocks of Transbaikalia. Dokl. Earth Sci. 1997, 354, 653–656. (In Russian) [Google Scholar]
- Yarmolyuk, V.V.; Kovalenko, V.I.; Ivanov, V.G.; Vladykin, N.V.; Nikiforov, A.V.; Ripp, G.S. Late Mesozoic volcanic carbonatites from the Transbaikal region. Dokl. Earth Sci. 1997, 355, 845–849. [Google Scholar]
- Rasskazov, S.V.; Chuvashova, I.S.; Mikolaichuk, A.V.; Sobel, E.P.; Yasnygina, T.A.; Fefelov, N.N.; Saranina, E.V. Lateral change of sources for Cretaceous-Paleogene magmatism in the Tian-Shan. Petrology 2015, 23, 281–308. [Google Scholar] [CrossRef]
- Zorin, Y.A.; Novoselova, M.R.; Turutanov, E.Kh.; Kozhevnikov, V.M. The structure of the lithosphere of the Mongolian-Siberian mountainous terrane. In Geodynamics of Inland Mountainous Regions; Science. Sib. Department: Novosibirsk, Russsia, 1990; pp. 143–154. (In Russian) [Google Scholar]
- Melnikova, V.I.; Gileva, N.A.; Arefiev, S.S.; Bykova, V.V.; Masalskiy, O.K. The 27 August 2008, M w = 6.3 Kultuk earthquake (South Baikal): The stress-strain state of the source area from the aftershock data. Izv. Phys. Solid Earth 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Mats, V.D.; Ufimtsev, G.F.; Mandelbaum, M.M.; Alakshin, A.M.; Pospeev, A.B.; Shimaraev, M.N.; Khlystov, O.M. The Cenozoic Baikal Rift Basin: Its Structure and Geological History; Geo Branch, Publishing House of SB RAS: Novosibirsk, Russia, 2001. (In Russian) [Google Scholar]
- Mordvinova, V.V.; Kobelev, M.M.; Khritova, M.A.; Turutanov, E.Kh.; Kobeleva, E.A.; Trynkova, D.S.; Tsydypova, L.R. The deep velocity structure of the southern margin of the Siberian Craton with respect to Baikal rifting. Dokl. Earth Sci. 2019, 484, 66–70. [Google Scholar] [CrossRef]
- Krylov, S.V.; Mandelbaum, M.M.; Mishen’kin, B.P.; Mishen’kina, Z.R.; Petrik, G.V.; Seleznev, V.S. The Earth’s Interior Beneath Baikal from Seismic Data; Nauka Publisher: Novosibirsk, Russia, 1981. (In Russian) [Google Scholar]
- Mordvinova, V.V.; Deschamps, A.; Dugarmaa, T.; Deverchére, J.; Ulziibat, M.; Sankov, V.A.; Artem’ev, A.A.; Perrot, J. Velocity Structure of the Lithosphere on the 2003 Mongolian Baikal Transect from SV Waves. Izv. Phys. Solid Earth 2007, 43, 119–129. [Google Scholar] [CrossRef]
- Mordvinova, V.V.; Artemyev, A.A. The three-dimensional shear velocity structure of lithosphere in the southern Baikal Rift System and its surroundings. Russ. Geol. Geophys. 2010, 51, 694–707. [Google Scholar] [CrossRef]
- Zamaraev, S.M.; Samsonov, V.V. Geological structure and oil and gas content of the Selenga depression. In Geology and Oil and Gas Potential of Eastern Siberia; Gospotekhizdat: Moscow, Russia, 1959; pp. 465–474. (In Russian) [Google Scholar]
- Al Hamoud, A.; Rasskazov, S.V.; Chuvashova, I.S.; Tregub, T.F.; Rubtsova, M.N.; Kolomiyets, V.L.; Budaev, R.Ts.; Hassan, A.; Volkov, M.A. Overturned Eocene–Lower Pliocene alluvial stratum on the southern coast of Lake Baikal and its neotectonic significance. Geodyn. Tectonophys. 2021, 12, 139–156. [Google Scholar] [CrossRef]
- Watanabe, T.; Koyaguchi, T.; Seno, T. Tectonic stress controls on ascent and emplacement of magmas. J. Volcanol. Geotherm. Res. 1999, 91, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Suvorov, V.D.; Mishen′kina, Z.P. Structure of sedimentary cover and basement beneath the South Basin of Lake Baikal inferred from seismic profiling. Rus. Geol. Geophys. 2005, 46, 1141–1149. [Google Scholar] [CrossRef]
- Kontorovich, A.E.; Kashirtsev, V.A.; Moskvin, V.I.; Burshtein, L.M.; Zemskaya, T.I.; Kostyreva, E.A.; Kalmychkov, G.V.; Khlystov, O.M. Petroleum potential of sediments of Lake Baikal. Russ. Geol. Geophys. 2007, 48, 1046–1053. [Google Scholar] [CrossRef]
- Berzin, N.A. Zone of the Main Fault in Eastern Sayans; Nauka: Moscow, Russia, 1967. (In Russian) [Google Scholar]
- Parfenov, L.M. The Main Features of the Precambrian Structure of the Eastern Sayan; Nauka: Moscow, Russia, 1967. (In Russian) [Google Scholar]
- HRVD. Department of Geological Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, U.S.A. Available online: http://www.seismology.harvard.edu/ (accessed on 1 April 2021).
- Radziminovich, N.A.; Melnikova, V.I.; San’kov, V.A.; Levi, K.G. Seismicity and seismotectonic deformations of the crust in the Southern Baikal basin. Izv. Phys. Solid Earth 2006, 42, 904–920. [Google Scholar] [CrossRef]
- Seredkina, A.I.; Melnikova, V.I. Seismic moment tensor of Pribaikalye earthquakes from the surface-wave amplitude spectra. Izv. Phys. Solid Earth 2014, 50, 403–414. [Google Scholar] [CrossRef]
- Sankov, V.A.; Parfeevets, A.V.; Lukhnev, A.V.; Miroshnichenko, A.I.; Ashurkov, S.V. Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia–Siberia mobile area. Geotectonics 2011, 45, 378–393. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, S.; Huang, Y.; Gao, A. Tectonic stress field of China inferred from a large number of small earthquakes. J. Geophys. Res. 1992, 11867–11877. [Google Scholar] [CrossRef]
- Chuvashova, I.; Rasskazov, S.; Sun, Y.; Yang, C. Origin of melting anomalies in the Japan-Baikal corridor of Asia at the latest geodynamic stage: Evolution from the mantle transition layer and generation by lithospheric transtension. Geodyn. Tectonophys. 2017, 8, 435–440. [Google Scholar] [CrossRef]
- Sankov, V.A.; Lukhnev, A.V.; Miroshnichenko, A.I.; Dobrynin, A.A.; Ashurkov, S.V.; Byzov, L.M.; Dembelov, M.G.; Calais, E.; Deversher, J. Contemporary Horizontal Movements and Seismicity of the South Baikal Basin (Baikal Rift System). Izv. Phys. Solid Earth. 2014, 50, 785–794. [Google Scholar] [CrossRef]
- Sato, M.; Shuto, K.; Yagi, M. Mixing of asthenospheric and lithospheric mantle-derived basalt magmas as shown by along-arc variation in Sr and Nd isotopic compositions of Early Miocene basalts from back-arc margin of the NE Japan arc. Lithos 2007, 96, 453–474. [Google Scholar] [CrossRef]
- Shuto, K.; Ohki, J.; Kagami, H.; Yamamoto, M.; Watanabe, N.; Yamamoto, K.; Anzai, N.; Itaya, T. The relationships between drastic changes in Sr isotope ratios of magma sources beneath the NE Japan arc and the spreading of the Japan Sea back-arc basin. Miner. Pet. 1993, 49, 71–90. [Google Scholar] [CrossRef]
- Otofuji, Y.-I. Large tectonic motion of the Japan Arc in late Cenozoic times inferred from paleomagnetism: Review and synthesis. Isl. Arc 1996, 5, 229–249. [Google Scholar] [CrossRef]
- Jolivet, L.; Tamaki, K.; Fournier, M. Japan Sea opening history and mechanism: A synthesis. J. Geophys. Res. 1994, 99, 22237–22259. [Google Scholar] [CrossRef]
- Kusunoki, K.; Kimura, G. Collision and extrusion at the Kuril–Japan junction. Tectonics 1998, 17, 843–858. [Google Scholar] [CrossRef]
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
KL-9 | KL-23 | KL-22 | KL-1 | KL-3 | KL-11 | KL-2 | KL-5 | KL-12 | |
SiO2, wt% | 47.87 | 49.60 | 45.47 | 51.86 | 61.69 | 71.06 | 72.30 | 28.76 | 55.71 |
TiO2 | 1.76 | 1.62 | 0.60 | 0.69 | 0.89 | 0.11 | 0.08 | 0.55 | 0.59 |
Al2O3 | 13.51 | 13.67 | 17.58 | 14.73 | 14.88 | 13.42 | 12.86 | 8.16 | 13.75 |
Fe2O3 | 5.91 | 5.67 | 2.72 | 2.42 | 1.98 | 0.30 | 1.12 | 1.13 | 3.06 |
FeO | 7.06 | 8.74 | 5.20 | 7.61 | 4.94 | 0.99 | 2.50 | 2.53 | 3.72 |
MnO | 0.21 | 0.18 | 0.14 | 0.19 | 0.09 | 0.05 | 0.05 | 0.06 | 0.13 |
MgO | 7.30 | 5.33 | 7.50 | 5.69 | 2.98 | 0.44 | 1.38 | 2.38 | 3.93 |
CaO | 9.33 | 5.40 | 9.37 | 6.37 | 3.98 | 3.13 | 1.91 | 29.18 | 5.49 |
Na2O | 2.56 | 2.72 | 1.85 | 2.37 | 3.06 | 3.84 | 3.48 | 2.14 | 1.94 |
K2O | 0.65 | 0.50 | 1.12 | 0.87 | 2.67 | 4.32 | 1.62 | 1.10 | 3.20 |
P2O5 | 0.36 | 0.15 | 0.12 | 0.08 | 0.21 | 0.04 | 0.02 | 0.20 | 0.18 |
H2O− | 0.08 | 0.07 | 0.07 | 0.20 | 0.14 | 0.06 | 0.14 | 0.20 | 0.38 |
H2O+ | 3.21 | 4.21 | 4.76 | 4.36 | 1.85 | 1.35 | 1.70 | 1.93 | 5.76 |
CO2 | 0.37 | 2.20 | 3.39 | 2.40 | 0.41 | 1.11 | 0.61 | 21.80 | 1.83 |
Total | 100.18 | 100.06 | 99.89 | 99.84 | 99.77 | 100.22 | 99.77 | 100.12 | 99.67 |
Sc, ppm | 45.9 | 41.2 | 31.2 | 43.8 | 19.6 | 4.2 | 15.7 | 7.4 | 27.8 |
V | 395 | 404 | 184 | 354 | 122 | 15 | 73 | 69 | 203 |
Cr | 239 | 46 | 250 | 196 | 108 | 12.2 | 44 | 21 | 107.9 |
Co | 47 | 42 | 29 | 28 | 20.1 | 2.9 | 6.7 | 9.3 | 21.6 |
Ni | 116 | 32 | 115 | 52 | 50 | 6.3 | 16 | 24 | 39 |
Cu | 52 | 30 | 60 | 59 | 76 | 10 | 33 | <10 | 28 |
Zn | 105 | 71 | 69 | 70 | 68 | 16 | 56 | 96 | 60 |
Ga | 17.7 | 18.1 | 13.7 | 14.9 | 20.3 | 16.0 | 10.8 | 9.2 | 19.3 |
Rb | 14 | 14.4 | 28.2 | 29 | 79 | 92 | 59 | 31 | 159 |
Sr | 529 | 273 | 362 | 279 | 701 | 408 | 154 | 1812 | 146 |
Y | 32.8 | 41.0 | 12.0 | 22.8 | 34.3 | 12.3 | 11.4 | 15.2 | 17.5 |
Zr | 28 | 5.0 | 11.0 | 44 | 35 | 32 | 13 | 23 | 9.4 |
Nb | 4.3 | 1.6 | 1.5 | 1.78 | 13.9 | 8.4 | 3.11 | 8.69 | 2.2 |
Cs | 0.5 | 0.46 | 0.50 | 0.6 | 1.4 | 0.5 | 1.5 | 5.7 | 6.3 |
Ba | 371 | 170 | 315 | 236 | 1457 | 961 | 624 | 525 | 426 |
La | 18.7 | 2.44 | 4.66 | 3.45 | 74.5 | 15.3 | 3.13 | 22.7 | 5.9 |
Ce | 44.0 | 8.25 | 11.0 | 8.60 | 156.2 | 29.7 | 7.91 | 44.9 | 14.4 |
Pr | 6.00 | 1.63 | 1.59 | 1.41 | 17.19 | 3.34 | 1.19 | 5.54 | 1.99 |
Nd | 26.0 | 9.23 | 7.27 | 6.68 | 64.1 | 12.4 | 5.37 | 21.7 | 9.43 |
Sm | 6.10 | 3.55 | 2.05 | 2.25 | 11.07 | 2.37 | 1.55 | 4.19 | 2.62 |
Eu | 1.91 | 1.31 | 0.71 | 0.80 | 2.58 | 0.52 | 0.30 | 1.10 | 0.93 |
Gd | 6.22 | 4.99 | 2.06 | 3.20 | 8.55 | 2.04 | 1.74 | 3.68 | 3.09 |
Tb | 1.01 | 0.96 | 0.35 | 0.56 | 1.11 | 0.31 | 0.31 | 0.50 | 0.52 |
Dy | 6.01 | 6.72 | 2.22 | 3.75 | 6.54 | 2.02 | 1.94 | 2.84 | 3.25 |
Ho | 1.26 | 1.45 | 0.46 | 0.80 | 1.27 | 0.43 | 0.41 | 0.53 | 0.61 |
Er | 3.54 | 4.41 | 1.32 | 2.50 | 3.50 | 1.26 | 1.24 | 1.48 | 1.85 |
Tm | 0.47 | 0.68 | 0.21 | 0.38 | 0.52 | 0.20 | 0.18 | 0.21 | 0.27 |
Yb | 3.01 | 4.34 | 1.12 | 2.43 | 3.18 | 1.22 | 1.31 | 1.26 | 1.58 |
Lu | 0.45 | 0.67 | 0.18 | 0.37 | 0.48 | 0.19 | 0.21 | 0.19 | 0.21 |
Hf | 0.96 | 0.56 | 0.53 | 0.58 | 1.22 | 1.38 | 0.48 | 0.70 | 0.44 |
Ta | 0.28 | 0.29 | 0.14 | 0.13 | 0.83 | 0.67 | 0.25 | 0.51 | 0.15 |
Pb | 3.6 | N.d. | 3.4 | N.d. | 29.3 | 23.3 | 5.3 | 10.8 | 3.6 |
Th | 2.67 | 0.11 | 0.63 | 0.55 | 14.7 | 2.81 | 0.49 | 4.19 | 0.92 |
U | 0.57 | 0.04 | 0.15 | 0.16 | 1.55 | 0.55 | 0.17 | 2.88 | 0.56 |
Volcano | Meteo | Kultuk | Karerny | Shirokiy | |||
---|---|---|---|---|---|---|---|
Age, Ma | 18.1 | 17.7 | 17.6 | 18 | 13 | 13 | 13 |
Sample | 687/2 | 684/1 | 683/4 | Klt-12 | Klt-9 | 15-04 | SL16-1 |
SiO2, wt% | 49.62 | 47.99 | 47.78 | 48.26 | 48.26 | 44.77 | 44.38 |
TiO2 | 2.28 | 2.40 | 2.67 | 2.24 | 1.95 | 2.73 | 2.72 |
Al2O3 | 14.10 | 14.90 | 14.9 | 14.71 | 15.15 | 13.39 | 13.38 |
Fe2O3 | 2.52 | 2.37 | 3.2 | 2.96 | 3.59 | 2.23 | 2.92 |
FeO | 8.85 | 9.24 | 8.72 | 7.46 | 7.95 | 9.42 | 9.29 |
MnO | 0.16 | 0.15 | 0.15 | 0.13 | 0.14 | 0.17 | 0.18 |
MgO | 7.85 | 7.88 | 8.1 | 8.20 | 8.06 | 10.44 | 9.72 |
CaO | 8.13 | 7.98 | 7.98 | 7.62 | 8.00 | 9.86 | 9.53 |
Na2O | 2.94 | 3.22 | 3.6 | 2.94 | 3.26 | 2.98 | 2.95 |
K2O | 1.40 | 1.48 | 1.85 | 1.69 | 1.09 | 1.72 | 1.63 |
P2O5 | 0.43 | 0.50 | 0.56 | 0.58 | 0.34 | 0.66 | 0.59 |
H2O– | 0.22 | 0.82 | 0.6 | 0.72 | 0.51 | 0.21 | 0.16 |
H2O+ | 1.87 | 1.40 | 0.9 | 2.49 | 1.67 | 1.80 | 2.71 |
Total | 100.37 | 100.33 | 101.01 | 100.00 | 99.97 | 100.38 | 100.16 |
Sc, ppm | 21.4 | 22.0 | 18.7 | 24.3 | 29.2 | 14.5 | 19.4 |
V | N.d. | N.d. | N.d. | 173 | 197 | 218 | 251 |
Cr | N.d. | N.d. | N.d. | 281 | 201 | 251 | 222 |
Co | N.d. | N.d. | N.d. | 44 | 48 | 51 | 56 |
Ni | N.d. | N.d. | N.d. | 127 | 125 | 196 | 172 |
Cu | 51 | 39 | 55 | 41 | 58 | 45 | 59 |
Zn | 126 | 147 | 126 | 119 | 111 | 126 | 133 |
Ga | N.d. | N.d. | N.d. | 21.5 | 20.5 | 20.0 | 21.2 |
Rb | 17 | 19 | 24 | 15 | 11 | 35 | 29 |
Sr | 2015 | 620 | 745 | 1301 | 447 | 1129 | 764 |
Y | 22.2 | 24.1 | 23.6 | 20.5 | 21.0 | 22.5 | 21.0 |
Zr | 198 | 231 | 246 | 188 | 166 | 202 | 224 |
Nb | 27.45 | 38.54 | 40.71 | 32.37 | 21.26 | 55.24 | 45.42 |
Cs | N.d. | N.d. | 0.42 | 0.28 | 0.13 | 0.36 | 0.20 |
Ba | 402 | 322 | 427 | 281 | 213 | 432 | 388 |
La | 19.8 | 24.1 | 31.3 | 23.7 | 16.0 | 35.1 | 32.0 |
Ce | 45.0 | 50.3 | 65.7 | 51.3 | 34.9 | 76.1 | 69.0 |
Pr | 5.28 | 6.05 | 8.20 | 6.65 | 4.65 | 8.92 | 8.34 |
Nd | 25.95 | 29.16 | 34.18 | 28.36 | 20.42 | 36.18 | 33.92 |
Sm | 5.66 | 6.48 | 7.72 | 6.57 | 4.99 | 7.82 | 7.09 |
Eu | 1.86 | 2.04 | 2.29 | 2.14 | 1.72 | 2.47 | 2.36 |
Gd | 5.46 | 6.11 | 6.67 | 5.77 | 4.98 | 7.14 | 6.49 |
Tb | 0.79 | 0.87 | 0.95 | 0.86 | 0.75 | 1.00 | 0.96 |
Dy | 4.28 | 4.43 | 5.20 | 4.33 | 4.22 | 5.24 | 4.58 |
Ho | 0.75 | 0.80 | 0.94 | 0.81 | 0.82 | 0.85 | 0.80 |
Er | 2.07 | 2.06 | 2.23 | 2.03 | 2.10 | 2.17 | 1.91 |
Tm | N.d. | N.d. | 0.33 | 0.27 | 0.29 | 0.28 | 0.25 |
Yb | 1.59 | 1.66 | 1.78 | 1.50 | 1.73 | 1.49 | 1.46 |
Lu | 0.25 | 0.25 | 0.26 | 0.20 | 0.23 | 0.21 | 0.20 |
Hf | 4.33 | 4.93 | 5.90 | 4.73 | 4.36 | 5.06 | 5.12 |
Ta | 1.59 | 2.34 | 2.81 | 1.93 | 1.36 | 3.89 | 2.92 |
Pb | 2.5 | 2.7 | 4.6 | 5.4 | 3.6 | 2.1 | 1.9 |
Th | 1.97 | 2.39 | 3.41 | 2.06 | 1.81 | 4.54 | 3.27 |
U | 0.26 | 0.73 | 0.95 | 0.74 | 0.50 | 1.63 | 0.82 |
87Sr/86Sr | 0.704676 | 0.704362 | 0.704279 | 0.704493 | 0.704523 | N.d. | N.d. |
±2σ | 0.000009 | 0.000010 | 0.000013 | 0.000013 | 0.000016 | ||
143Nd/144Nd | 0.512683 | 0.512705 | 0.512711 | N.d. | N.d. | N.d. | N.d. |
±2σ | 0.000009 | 0.000017 | 0.000010 | ||||
206Pb/204Pb | 17.6474 | 17.8789 | 17.8163 | 17.7734 | 17.7096 | 18.1204 | 18.1591 |
±2σ | 0.0020 | 0.0013 | 0.0022 | 0.0034 | 0.0020 | 0.0025 | 0.0030 |
207Pb/204Pb | 15.4674 | 15.5014 | 15.4849 | 15.4736 | 15.4787 | 15.5111 | 15.5212 |
±2σ | 0.0019 | 0.0012 | 0.0020 | 0.0030 | 0.0019 | 0.0022 | 0.0025 |
208Pb/204Pb | 37.8221 | 38.0072 | 37.9359 | 37.8037 | 37.9245 | 38.1196 | 38.1885 |
±2σ | 0.0046 | 0.0030 | 0.0048 | 0.0075 | 0.0042 | 0.0055 | 0.0065 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasskazov, S.; Chuvashova, I.; Yasnygina, T.; Saranina, E.; Gerasimov, N.; Ailow, Y.; Sun, Y.-M. Tectonic Generation of Pseudotachylytes and Volcanic Rocks: Deep-Seated Magma Sources of Crust-Mantle Transition in the Baikal Rift System, Southern Siberia. Minerals 2021, 11, 487. https://doi.org/10.3390/min11050487
Rasskazov S, Chuvashova I, Yasnygina T, Saranina E, Gerasimov N, Ailow Y, Sun Y-M. Tectonic Generation of Pseudotachylytes and Volcanic Rocks: Deep-Seated Magma Sources of Crust-Mantle Transition in the Baikal Rift System, Southern Siberia. Minerals. 2021; 11(5):487. https://doi.org/10.3390/min11050487
Chicago/Turabian StyleRasskazov, Sergei, Irina Chuvashova, Tatyana Yasnygina, Elena Saranina, Nikolay Gerasimov, Youseph Ailow, and Yi-Min Sun. 2021. "Tectonic Generation of Pseudotachylytes and Volcanic Rocks: Deep-Seated Magma Sources of Crust-Mantle Transition in the Baikal Rift System, Southern Siberia" Minerals 11, no. 5: 487. https://doi.org/10.3390/min11050487
APA StyleRasskazov, S., Chuvashova, I., Yasnygina, T., Saranina, E., Gerasimov, N., Ailow, Y., & Sun, Y. -M. (2021). Tectonic Generation of Pseudotachylytes and Volcanic Rocks: Deep-Seated Magma Sources of Crust-Mantle Transition in the Baikal Rift System, Southern Siberia. Minerals, 11(5), 487. https://doi.org/10.3390/min11050487