Adsorption Behaviors of Straight-Chain Alkanes on a Molybdenite [001]/[100] Surface: A Molecular Dynamics Study
Abstract
:1. Introduction
2. Molecular Dynamics Simulation
2.1. Simulated Detail
2.2. Interaction Energy Calculation
2.3. Square Displacement (MSD) Curves
3. Results and Discussion
3.1. The Adsorption Configuration of SCA on the MS001/MS100
3.2. The Interaction Energy between SCA and the MS001/MS100
3.3. The Diffusion Coefficients of SCA on the MS001/MS100
3.4. The Relative Concentration of SCA on the MS001/MS100
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crozier, R.D. Flotation reagent practice in primary and by-product molybdenite recovery. Min. Mag. 1979, 140, 174–178. [Google Scholar]
- Smit, F.J.; Bhasin, A.K. Relationship of petroleum hydrocarbon characteristics and molybdenite flotation. Int. J. Miner. Process. 1985, 15, 19–40. [Google Scholar]
- He, T.S.; Wan, H.; Song, N.P.; Guo, L. The influence of composition of nonpolar oil on flotation of molybdenite. Miner. Eng. 2011, 24, 1513–1516. [Google Scholar] [CrossRef]
- Kelebek, S. Critical surface tension of wetting and of floatability of molybdenite and sulfur. J. Colloid Interface Sci. 1988, 124, 504–514. [Google Scholar] [CrossRef]
- Castro, S.; Lopez-Valdivieso, A.; Laskowski, J.S. Review of the flotation of molybdenite. Part I: Surface properties and floatability. Int. J. Miner. Process. 2016, 148, 48–58. [Google Scholar] [CrossRef]
- Kainuma, Y.; Uyeda, R. On the Structure of Adsorbed Organic Long-Chain Molecules on the Cleavage Surface of Molybdenite. J. Phys. Soc. Jpn. 1950, 5, 199–200. [Google Scholar] [CrossRef]
- Groszek, A.J. Preferential adsorption of long-chain normal paraffins on MoS2, WS2 and graphite from n-heptane. Nature 1964, 104, 680. [Google Scholar] [CrossRef]
- Zanin, M.; Ametov, I.; Grano, S.; Zhou, L.; Skinner, W. A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit. Int. J. Miner. Process. 2009, 93, 256–266. [Google Scholar] [CrossRef]
- Krishnaswamy, P. Kinetics of the Aqueous Oxidation of Molybdenite and the Role of Crystal Anisotropy on the Electrochemical Mechanisms of the Process. Ph.D. Dissertation, University of California, Berkeley, CA, USA, 1981; pp. 11–12. [Google Scholar]
- Zhou, L. Molybdenite Flotation. Master’s Thesis, Ian Wark Research Institute and University of South Australia, Mawson Lakes, Australia, May 2010; p. 14. [Google Scholar]
- Chander, S.; Fuerstenau, D.W. On the natural floatability of molybdenite. Trans. Am. Inst. Min. Metall. Eng. 1972, 252, 62–69. [Google Scholar]
- Yang, B.Q.; Song, S.X.; Lopez-Valdivieso, A. Effect of Particle Size on the Contact Angle of Molybdenite Powders. Miner. Process. Extr. Metall. Rev. 2014, 35, 208–215. [Google Scholar] [CrossRef]
- Song, S.; Zhang, X.; Yang, B.; Lopez-Mendoza, A. Flotation of molybdenite fines as hydrophobic agglomerate. Sep. Purif. Technol. 2012, 98, 451–455. [Google Scholar] [CrossRef]
- Fu, J.; Chen, K.; Hui, W. Recovering molybdenite from ultrafine waste tailings by oil agglomerate flotation. Miner. Eng. 2012, 39, 133–139. [Google Scholar]
- Yang, Q.; Sharp, K.A. Atomic Charge Parameters for the Finite Difference Poisson Boltzmann Method Using Electronegativity Neutralization. J. Chem. Theory Comput. 2006, 2, 1152–1167. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Pui, S.C.; Reginald, B.H.T. Molecular simulation study of the effect of various additives on salbutamol sulfate crystal habit. Mol. Pharmaceut. 2011, 8, 1910–1918. [Google Scholar]
- Hao, H.; Li, L.; Yuan, Z.; Liu, J. Molecular arrangement of starch, Ca2+ and oleate ions in the siderite-hematite-quartz flotation system. J. Mol. Liq. 2018, 254, 349–356. [Google Scholar]
- Snehasis, C.; Amalendu, C. Molecular dynamics simulations of aqueous NaCl and KCl solutions: Effects of ion concentration on the single-particle, pair, and collective dynamical properties of ions and water molecules. J. Chem. Phys. 2001, 115, 3732–3741. [Google Scholar]
- Li, E.; Du, Z.; Yuan, S.; Cheng, F. Low temperature molecular dynamic simulation of water structure at sylvite crystal surface in saturated solution. Miner. Eng. 2015, 83, 53–58. [Google Scholar] [CrossRef]
Mineral | Crystal Surface | Surface Atoms | Averaged Partial Charges (eV) |
---|---|---|---|
Molybdenite | 100 | S | −0.367 |
Mo | +0.734 | ||
001 | S | −0.396 | |
SCA | H | +0.053 |
Mineral | Crystal Surface | Reagent | Interaction Energy (Kcal·mol−1) | Standard Deviation |
---|---|---|---|---|
Molybdenite | 100 | SCA | −239.6827 | 10.6774 |
001 | −559.5798 | 7.3797 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, H.; Yi, P.; Qu, J.; Bu, X.; Yang, W.; Li, H. Adsorption Behaviors of Straight-Chain Alkanes on a Molybdenite [001]/[100] Surface: A Molecular Dynamics Study. Minerals 2021, 11, 489. https://doi.org/10.3390/min11050489
Wan H, Yi P, Qu J, Bu X, Yang W, Li H. Adsorption Behaviors of Straight-Chain Alkanes on a Molybdenite [001]/[100] Surface: A Molecular Dynamics Study. Minerals. 2021; 11(5):489. https://doi.org/10.3390/min11050489
Chicago/Turabian StyleWan, He, Peng Yi, Juanping Qu, Xianzhong Bu, Wei Yang, and Hui Li. 2021. "Adsorption Behaviors of Straight-Chain Alkanes on a Molybdenite [001]/[100] Surface: A Molecular Dynamics Study" Minerals 11, no. 5: 489. https://doi.org/10.3390/min11050489
APA StyleWan, H., Yi, P., Qu, J., Bu, X., Yang, W., & Li, H. (2021). Adsorption Behaviors of Straight-Chain Alkanes on a Molybdenite [001]/[100] Surface: A Molecular Dynamics Study. Minerals, 11(5), 489. https://doi.org/10.3390/min11050489