Application of Fluid Inclusions to Petroleum Basin Recognition—A Case Study from Poland
Abstract
:1. Introduction
2. Geological and Lithological Setting
3. Materials and Methods
3.1. Sampling
3.2. Analytical Methods
4. Results
4.1. Description of Rocks
4.2. Diagenetic History
4.3. Fluid Inclusion Petrography
4.4. Results of Fluorescence Studies
4.5. Results of Microthermometric Studies
4.6. Results of Bitumen Analyses
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peryt, T.M.; Dyjaczyński, K. An Isolated Carbonate Bank in the Zechstein Main Dolomite Basin in Western Poland. J. Pet. Geol. 1991, 14, 445–458. [Google Scholar] [CrossRef]
- Weil, W.; Radecki, S.; Karnkowski, P.; Jastrzębski, M. Search for Oil and Gas in 1993 and Future Trends. Nafta Gaz 1994, 50, 227–230. [Google Scholar]
- Górski, M.; Trela, M. Barnówko-Mostno–Buszewo (BMB)—The Greatest Oil Field in Poland: Geometry and Reservoir Description Based on 3D Survey. Prz. Geol. 1997, 45, 685–692, (In Polish with English Summary). [Google Scholar]
- Depowska, A.; (Polskie Górnictwo i Gazownictwo, Warsaw, Poland). Personal communication, 1992.
- Mamczur, S.; Radecki, S.; Wojtkowiak, Z. On the Biggest Barnówko-Mostno-Buszewo (BMB) Oil Field in Poland. Prz. Geol. 1997, 45, 582–588, (In Polish with English Summary). [Google Scholar]
- Pikulski, L. Sedimentation and Lithofacial Development of the Main Dolomite Deposits (Ca2) in the W Region of the Barnówko-Mostno-Buszewo (BMB) Field, West Poland. Prz. Geol. 1998, 46, 426–435. [Google Scholar]
- Karnkowski, P. Development of the Exploration in the Zechstein Deposits on the Polish Lowlands in the years 1945–2000. Prz. Geol. 2000, 48, 423–428, (In Polish with English Summary). [Google Scholar]
- Pikulski, L.; Wolnowski, T. Geological Analysis of the Main Dolomite Formation (Ca2) in Western Poland. American Association of Petroleum Geologists Search and Discovery Article. In Proceedings of the AAPG/EAGE International Research Conference, El Paso, TX, USA, 1–5 October 2000; p. 53. [Google Scholar]
- Dyjaczyński, K.; Mamczur, S.; Dziadkiewicz, M. From Rybaki to LMG. 45 Years of Oil Production in Polish Lowlands. In Proceedings of the Konferencja Naukowo-Techniczna, Piła, Poland, 1–2 June 2006; pp. 59–76. (In Polish). [Google Scholar]
- Dyjaczyński, K.; Kwolek, K.; Mikołajewski, Z.; Peryt, T.M.; Słowakiewicz, M. Microplatforms of the Main Dolomite (Ca2) in Western Poland in the Aspect of Hydrocarbon Prospection. In Proceedings of the 6th Annual Conference of SEPM-CES SEDIMENT, Kraków, Poland, 24–25 June 2009; pp. 14–15. [Google Scholar]
- Czekański, E.; Kwolek, K.; Mikołajewski, Z. Hydrocarbon Deposits in the Zechstein Main Dolomite (Ca2) at the Gorzów Block (in Polish with English Abstract). Prz. Geol. 2010, 58, 695–703. [Google Scholar]
- Słowakiewicz, M.; Mikołajewski, Z. Upper Permian Main Dolomite Microbial Carbonates as Potential Source Rocks for Hydrocarbons (W Poland). Mar. Pet. Geol. 2011, 28, 1572–1591. [Google Scholar] [CrossRef]
- Kotarba, M.J.; Więcław, D.; Kowalski, A. Composition, Genesis and Environment of Oil Generation in the Main Dolomite Deposits in the Western Part of the Foresudetic Area. Prz. Geol. 2000, 48, 436–442. [Google Scholar]
- Kotarba, M.J.; Wagner, R. Generation Potential of the Zechstein Main Dolomite (Ca2) Carbonates in the Gorzów Wielkopolski-Międzychód-Lubiatów Area: Geological and Geochemical Approach to Microbial-algal Source Rock. Prz. Geol. 2007, 55, 1025–1036. [Google Scholar]
- Dąbrowska–Żurawik, E.; Kotarba, M.J.; Piela, J.; Żołnierczuk, T. On the Results of Isotopic Studies of Hydrocarbons in the Foresudetic Area. Prz. Geol. 1993, 4, 721–724. [Google Scholar]
- Biernat, H.; Kulik, S.; Noga, H.; Protas, A. STOP 2. Geology and Resource Potential of the Lower Zechstein. In LXXX Zjazd Naukowy PTG, Szczecin 11–14 września 2010 r. Conference Materials; Karnkowski, P., Piotrowski, A., Eds.; Wydawnictwa Geologiczne: Szczecin, Poland, 2010; pp. 60–65. [Google Scholar]
- Wagner, R.; (Polish Geological Institute, Warsaw, Poland). Personal communication, 2000.
- Jarmołowicz-Szulc, K. Characteristic Features of Vein Fillings in the Southeastern Part of the Polish Carpathians (Calcite, Quartz, Bitumens). Prz. Geol. 2001, 49, 492–785. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course 1994, 31, 199. [Google Scholar]
- Brown, P.E. Flincor: A Microcomputer Program for the Reduction and Investigation of Fluid Inclusion Data. Am. Mineral. 1989, 7, 1390–1393. [Google Scholar]
- Bakker, R.J. Package FLUIDS 1. Computer Programs for Analysis of Fluid Inclusion Data and for Modeling Bulk Fluid Properties. Chem. Geol. 2003, 194, 3–23. [Google Scholar] [CrossRef]
- Bakker, R.J.; Brown, P.E. Computer Modeling in Fluid Inclusion Research. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Mineralogical Association of Canada: Vancouver, BC, Canada, 2003; Volume 32, pp. 185–203. [Google Scholar]
- Matyasik, I.; (Gas and Oil Institute, Cracow, Poland). Personal communication, 2018.
- Matyasik, I. Petroleum System of the Silesia and Dukla Units in the Jasło-Krosno-Sanok Region. Nafta Gaz 2009, 3, 201–206. [Google Scholar]
- Radke, M.; Welte, D.H.; Willsch, D. Maturity Parameters Based on Aromatic Hydrocarbons: Influence of the Organic Matter Type. Org. Geochem. 1986, 10, 51–63. [Google Scholar] [CrossRef]
- Thompson, K.F.M. Fractionated Aromatic Petroleum and the Generation of Gas-condensates. Org. Geochem. 1987, 11, 573–590. [Google Scholar] [CrossRef]
- Peryt, T.M.; Piątkowski, T.S. Neomorphic Processes in Oncolitic Deposits of the Zechstein Carbonate in the Peri-Baltic Syneclize. Kwart. Geol. 1977, 21, 257–265, (In Polish with English Summary). [Google Scholar]
- Gąsiewicz, A.; Wichrowska, M.; Darłak, B. Sedimentation and diagenesis toward reservoir conditions of the Main Dolomite (Ca2) deposits in the Polish Zechstein basin. In: Analysis of sedimentary basins in the Polish Lowlands. Narkiewicz M. (ed.). Prace Państw Inst. Geol. 1998, 165, 195–206. [Google Scholar]
- Sylwestrzak, J. Lithology of sediments and effects of diagenetic processes. Upper Permian–Zechstein. In: Diagenesis of the Upper Permian and Mesozoic sediments of the Kujawy area. Maliszewska A (ed.). Prace Państw Inst. Geol. 1999, 167, 9–21. [Google Scholar]
- Jarmołowicz-Szulc, K.; Jasionowski, M. Fluid Inclusion and Isotopic Characterization of Diagenetic Minerals in the SG-1 Borehole, W Poland. In ECROFI-XX 20th Biennial Conferences: ECROFI. Fluid and Melt Inclusions, Using Bubbles to Decode the Earth, Granada, Spain, 21–27 September 2009. Programme and Abstracts; Cambridge University Press: Cambridge, UK, 2009; pp. 121–122. [Google Scholar]
- Jarmołowicz-Szulc, K.; Kuberska, M.; Kozłowska, A.; Matyasik, I. A petrographical, mineralogical and geochemical study of the Main Dolomite in Mo-1 borehole. Prz. Geol. 2020, 67, 161–163. [Google Scholar] [CrossRef]
- Jarmołowicz-Szulc, K. Estimation of Oil Characteristics: Results Based on Fluorescence Phenomenon and Fluid Inclusion Synthesis and Analysis. Int. J. Curr. Adv. Res. 2017, 6, 2014–2021. [Google Scholar]
- Dudok, I.V.; Jarmołowicz-Szulc, K. Hydrocarbon Inclusions in Vein Quartz (the “Marmarosh Diamonds”) from the Krosno and Dukla Zones of the Ukrainian Carpathians. Geol. Q. 2000, 44, 415–424. [Google Scholar]
- Munz, I.A. Petroleum Inclusions in Sedimentary Basins: Systematics, Analytical Methods and Applications. Lithos 2001, 55, 195–212. [Google Scholar] [CrossRef]
- Jarmołowicz-Szulc, K. Studies on the Filling of the Pore Space in the Rotliegendes Sedimentary Rocks, SW Poland: Fluid Inclusions, Luminescence, Isotopes. In Proceedings of the PACROFI VII., Program and Abstracts, Las Vegas, NV, USA, 1–4 June 1998; p. 36. [Google Scholar]
- Jarmołowicz-Szulc, K. Fluid Inclusion Analysis in Minerals in the Sedimentary Rocks in Polan-an Overview and Remarks. Biul. Państw Inst. Geol. 2015, 464, 25–41, (In Polish with English Summary). [Google Scholar] [CrossRef]
- Jarmołowicz-Szulc, K. Hydrocarbon Inclusions in Cements of Sedimentary Rocks and in Vein Minerals–Characteristics and Significance. Biul Państw Inst. Geol. 2016, 466, 87–102, (In Polish with English Summary). [Google Scholar] [CrossRef]
- Karnkowski, P.H. Permian Basin as a Main Exploration Target in Poland. Prz. Geol. 2007, 55, 1003–1015. [Google Scholar]
- Goldstein, R.H. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos 2001, 55, 159–193. [Google Scholar] [CrossRef]
- George, S.C.; Ruble, T.E.; Dutkiewicz, A.; Eadington, P.J. Assessing the Maturity of Oil Trapped in Fluid Inclusions Using Molecular Geochemistry Data and Visually-determined Fluorescence Colors. J. Appl. Geochem. 2001, 16, 451–473. [Google Scholar] [CrossRef]
- Ping, H.; Chen, H.; George, S.C. Quantitatively Predicting the Thermal Maturity of Paleo-oil Trapped in Fluid Inclusions Based on Fluorescent and Molecular Geochemical Data of Oil Inclusions in the Dongying Depression, Bohai Bay Basin. AAPG Bull. 2020, 104, 1751–1791. [Google Scholar] [CrossRef]
- Jarmołowicz-Szulc, K. Selected Elements of Petrologic Research in Main Dolomite from the BMB Deposit. Prz. Geol. 2019, 67, 161–163. [Google Scholar]
- Nandakumar, V.; Jayanthi, J.L. Hydrocarbon Fluid Inclusions, API Gravity of Oil, Signature Fluorescence Emissions and Emission Ratios: An Example from Mumbai Offshore, India. Energy Fuels 2016, 30, 3776–3782. [Google Scholar] [CrossRef]
- Jarmołowicz-Szulc, K.L. Using Hydrocarbon and Aqueous Inclusions to Trace Fluids in Different Geological Environments in Poland-A Review. Geol. Q. 2021. In Review. [Google Scholar]
- Li, B.; Mai, B. The Application of Fluorescence Spectrum of Organic Inclusions to Studying Evolution and Migration of Petroleum. In Proceedings of the Fourth Biennial Pan-American Conference on Research on Fluid Inclusions, PACROFI IV, Program and Abstracts, Lake Arrowhead, CL, USA, 22–24 May 1992; p. 53. [Google Scholar]
- Roedder, E. Fluid Inclusions. In Reviews in Mineralogy; Mineralogical Society of America: Blacksburg, VA, USA, 1984; Volume 12, p. 646. [Google Scholar]
- Shepherd, T.J.; Rankin, A.H.; Alderton, D.H. A Practical Guide to FI Studies; Blackie: New York, NY, USA, 1985; 430p. [Google Scholar]
- Bodnar, R.J. Interpretation of Data from Aqueous-electrolyte Fluid Inclusion. In Fluid Inclusions: Analysis and Interpretation. Short Course; Samson, I., Anderson, A., Marshall, D., Eds.; Mineralogical Association of Canada: Vancouver, BC, Canada, 2003; Volume 32, pp. 81–101. [Google Scholar]
- Kosakowski, P.; Krajewski, M. Hydrocarbon Potential of the Zechstein Main Dolomite in the Western Part of the Wielkopolska Platform, SW Poland: New Sedimentological and Geochemical Data. Mar. Petrol. Geol. 2013, 49, 99–120. [Google Scholar] [CrossRef]
Mineral | Well | Fluorescence Color | Shape and Distribution of Inclusions | Character of Inclusions | Homogenization (Th) (°C) | Estimation of Q Parameter * | Estimation of Gravity (°API) * |
---|---|---|---|---|---|---|---|
Dolomite | B 16 | White–blue | Slightly elongated, linear arrangement according to crystal directions | Primary | 126–135 | 0.2–0.1 | Light oil, paraffin, mature 41–42 |
Dolomite | B 16 | White–blue/yellow | |||||
Anhydrite | B 16 | White–blue | Geometric, two-phase | Primary | 107–123 | 0.2 | Light oil, paraffin, mature Over 41 |
Fluorite | B 13 | White–blue | Fine FI, linear arrangement or clouds around fissures | Pseudo-secondary | Over 41 | Light oil, paraffin, mature 0.2 | |
Calcite | B 9 | White–blue | Slightly elongated, FI, sporadic groups | Secondary | 115–130 | Over 41 | Light oil, paraffin, mature 0.2 |
Well | Mineral | Th (°C) | Tm (°C) | Weight % NaCl Equivalent | Mole Fraction NaCl | Fluid Density (g/cm3) |
---|---|---|---|---|---|---|
B 12 | Calcite | 138 | −19.7 | 22.15 | 0.081 | 1.09 |
B 12 | Calcite | 136 | −19.7 | 22.15 | 0.081 | 1.09 |
B 12 | Calcite | 142 | −19.7 | 22.15 | 0.081 | 1.08 |
B 12 | Calcite | 110 | −4.6 | 7.25 | 0.024 | 0.99 |
B 12 | Calcite | 112 | −4.0 | 6.37 | 0.021 | 0.99 |
B 12 | Calcite | 113 | −4.0 | 6.37 | 0.021 | 0.99 |
B 11 | Calcite (fan-like) | 91.6 | −13.5 | 17.33 | 0.061 | 1.08 |
B 11 | Calcite (fan-like) | 93 | −19.0 | 18.71 | 0.079 | 1.13 |
B 11 | Calcite (mosaic) | 93 | −6.5 | 9.84 | 0.033 | 1.02 |
B 9 | Calcite | 92 | −17.0 | 9.84 | 0.072 | 1.02 |
B 9 | Calcite | 101 | −14.0 | 17.78 | 0.062 | 1.08 |
B 9 | Calcite | 114 | −6.8 | 10.23 | 0.034 | 1.01 |
B 9 | Calcite | 114 | −4.3 | 6.82 | 0.022 | 0.99 |
Ba 7 | Dolomite | 92.5 | −7.8 | 11.46 | 0.038 | 1.03 |
Ba 7 | Dolomite | 97.6 | −7.8 | 11.46 | 0.038 | 1.02 |
Ba 7 | Dolomite | 92.5 | −11.4 | 15.37 | 0.053 | 1.06 |
Ba 7 | Dolomite | 97.6 | −11.4 | 15.37 | 0.053 | 1.06 |
B 13 | Anhydrite | 106 | −17.9 | 20.87 | 0.075 | 1.11 |
B 13 | Anhydrite | 132 | −17.9 | 20.87 | 0.075 | 1.08 |
B 13 | Quartz | 115 | −8.7 | 12.52 | 0.042 | 1.02 |
B 13 | Quartz | 112 | −8.7 | 12.52 | 0.042 | 1.02 |
B 13 | Quartz | 120 | −8.7 | 12.52 | 0.042 | 1.02 |
B 10 | Quartz | 103 | −19.4 | 21.94 | 0.080 | 1.12 |
B 10 | Quartz | 110 | −19.4 | 21.94 | 0.080 | 1.12 |
Well | TOC 1 [% m/m] | ESO [ppm] | Group Content of Bitumen [% m/m] | ESO TOC | HC TOC | HC HZ | |||
---|---|---|---|---|---|---|---|---|---|
Hydrocarbons HC | Heterocompounds HZ | ||||||||
Saturated | Aromatic | Resins | Asphaltenes | ||||||
B9 | 1.74 | 8997 | 71.0 | 18.5 | 7.8 | 2.7 | 517.1 | 462.8 | 8.5 |
Ba7 | 0.50 | 3090 | 72.2 | 18.5 | 6.1 | 3.2 | 618.0 | 560.5 | 9.8 |
Ba7 | 0.60 | 1875 | 72.3 | 17.6 | 6.1 | 4.0 | 312.5 | 280.9 | 8.9 |
Well | Pr/Ph | Pr/n-C17 | Ph/n-C18 | Sterane C27[%] | Sterane C28[%] | Sterane C29[%] | S/(S+R) C29αα ster | ββ/(αα+ββ) C29 ster | MPI-1 | R(MPI-1) [%] | MDR | R(MDR) [%] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
B 9 | 0.20 | 1.35 | 1.34 | 15 | 29 | 56 | 0.41 | 0.52 | 1.21 | 1.13 | 2.96 | 0.73 |
Ba7 | 0.31 | 0.78 | 1.34 | n.d. | n.d. | n.d. | 0.43 | 0.43 | 1.40 | 1.24 | 3.19 | 0.74 |
Ba7 | 0.35 | 0.90 | 1.38 | n.d. | n.d. | n.d. | 0.46 | 0.46 | 1.10 | 1.06 | 3.59 | 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarmołowicz-Szulc, K. Application of Fluid Inclusions to Petroleum Basin Recognition—A Case Study from Poland. Minerals 2021, 11, 500. https://doi.org/10.3390/min11050500
Jarmołowicz-Szulc K. Application of Fluid Inclusions to Petroleum Basin Recognition—A Case Study from Poland. Minerals. 2021; 11(5):500. https://doi.org/10.3390/min11050500
Chicago/Turabian StyleJarmołowicz-Szulc, Katarzyna. 2021. "Application of Fluid Inclusions to Petroleum Basin Recognition—A Case Study from Poland" Minerals 11, no. 5: 500. https://doi.org/10.3390/min11050500
APA StyleJarmołowicz-Szulc, K. (2021). Application of Fluid Inclusions to Petroleum Basin Recognition—A Case Study from Poland. Minerals, 11(5), 500. https://doi.org/10.3390/min11050500