Assessment of Sulfate Sources under Cold Conditions as a Geochemical Proxy for the Origin of Sulfates in the Circumpolar Dunes on Mars
Abstract
:1. Introduction
2. Environmental Settings of Terrestrial Analogs
2.1. Analog 1—South Fork of Wright Valley, Antarctica
2.2. Analog 2—White Sands, New Mexico
3. Methods
3.1. Field Sample Collection in South Fork of Wright Valley, Antarctica
3.2. Laboratory Methods for Antarctic Sediments
3.3. Field Observations in White Sands, New Mexico
4. Results
4.1. South Fork of Wright Valley, Antarctica
4.2. White Sands, New Mexico
5. Discussion
5.1. Sulfate Sources in Antarctica
5.1.1. Previous Studies on Antarctic Sulfates
5.1.2. Assessment of Chemical Weathering—New Isotope Data
5.1.3. Alteration of Isotopic Signatures by Microbial Processes
5.1.4. Additional Alteration Processes—Oxygen Isotope Exchange
5.1.5. Summary of Sulfate Sources in Antarctica
5.2. Possible Formation Mechanisms for Sulfate in the Martian North Polar Region
5.2.1. Evaluation of Aqueous Sulfate Sources
5.2.2. Modern Water Ice and Dune Crests
5.2.3. Past Groundwater Rise and Interdunes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horgan, B.H.; Bell, J.F., III; Dobrea, E.Z.N.; Cloutis, E.A.; Bailey, D.T.; Craig, M.A.; Roach, L.H.; Mustard, J.F. Distribution of hydrated minerals in the north polar region of Mars. J. Geophys. Res. 2009, 114, E01005. [Google Scholar] [CrossRef] [Green Version]
- Massé, M.; Bourgeois, O.; Mouélic, S.L.; Verpoorter, C.; Deit, L.L. Wide distribution and glacial origin of polar gypsum on Mars. Earth Planet. Sci. Lett. 2012, 317–318, 44–55. [Google Scholar] [CrossRef]
- Massé, M.; Bourgeois, O.; Mouélic, S.L.; Verpoorter, C.; Deit, L.L.; Bibring, J.P. Martian polar and circum-polar sulfate-bearing deposits: Sublimation tills derived from the North Polar cap. Icarus 2010, 209, 434–451. [Google Scholar] [CrossRef] [Green Version]
- Niles, P.B.; Michalski, J. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. Nature 2009, 2, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Fishbaugh, K.E.; Poulet, F.; Chevrier, V.; Langevin, Y.; Bibring, J.-P. On the origin of gypsum in the Mars north polar region. J. Geophys. Res. 2007, 112, E07002. [Google Scholar] [CrossRef] [Green Version]
- Szynkiewicz, A.; Olichwer, T.; Tarka, R. Delineation of groundwater provenance in Arctic environment using isotopic composition of water and sulfate. J. Hydrol. 2020, 580, 124232. [Google Scholar] [CrossRef]
- Bao, H.; Merchant, D.R. Quantifying sulfate components and their variations in soils of the McMurdo Dry Valleys, Antarctica. J. Geophys. Res. 2006, 111, D16301. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Socki, R.A.; Bish, D.L.; Harvey, R.P.; Bao, H.; Niles, P.B.; Cavicchioli, R.; Tonui, E. Lost cold Antarctic deserts inferred from unusual sulfate formation and isotope signatures. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Diaz, M.A.; Li, J.; Michalski, G.; Darrah, T.H.; Adams, B.J.; Wall, D.H.; Hogg, I.D.; Fierer, N.; Welch, S.A.; Gardner, C.B.; et al. Stable isotopes of nitrate, sulfate, and carbonate in soils from the Transantarctic Mountains, Antarctica: A record of atmospheric deposition and chemical weathering. Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef]
- McLennan, S.M. Geochemistry of sedimentary processes on Mars. In Sedimentary Geology of Mars; Society for Sedimentary Geology Special Publication: Tulsa, OK, USA, 2012; pp. 119–138. [Google Scholar]
- Berner, E.K.; Berner, R.A. Global Environment: Water, Air, and Geochemical Cycles; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Szynkiewicz, A.; Goff, F.; Vaniman, D.T.; Pribil, M.J. Sulfur cycle in the Valles Caldera volcanic complex, New Mexico—Letter 1. Sulfate sources in aqueous system, and implications for S isotope record in Gale Crater on Mars. Earth Planet. Sci. Lett. 2019, 506, 540–551. [Google Scholar] [CrossRef]
- Szynkiewicz, A.; Goff, F.; Faiia, A.; Vaniman, D.T. Sulfur cycle in the Valles Caldera volcanic complex, New Mexico—Letter 2. Aqueous sulfur budget and implications for hydrological transport on early Mars. Earth Planet. Sci. Lett. 2019, 506, 552–562. [Google Scholar] [CrossRef]
- Faure, G.; Mensing, T.M. The Transantarctic Mountains: Rocks, Ice, Meteorites and Water; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Gibson, E.K.; Wentworth, S.J.; McKay, D.S. Chemical Weathering and Diagenesis of a Cold Desert Soil from Wright Valley, Antarctica: An Analog of Martian Weathering Processes. J. Geophys. Res. 1983, 88, A912–A928. [Google Scholar] [CrossRef]
- Smith, G.J. Evaporite salts from the dry valleys of Victoria Land, Antarctica. N. Z. J. Geol. Geophys. 1965, 8, 381–382. [Google Scholar] [CrossRef]
- Bishop, J.L.; Englert, P.A.J.; Patel, S.; Tirsch, D.; Roy, A.J.; Koeberl, C.; Böttger, U.; Hanke, F.; Jaumann, R. Mineralogical analyses of surface sediments in the Antarctic Dry Valleys: Coordinated analyses of Raman spectra, reflectance spectra and elemental abundances. Phil. Trans. R. Soc. A 2014, 372, 20140198. [Google Scholar] [CrossRef] [PubMed]
- Marchant, D.R.; Denton, G.H.; Swisher, C.C., III. Miocene-Pliocene-Pleistocene glacial history of Arena Valley, Quartermain Mountains, Antarctica. Geogr. Ann. 1993, 75A, 269–302. [Google Scholar] [CrossRef]
- Marchant, D.R.; Denton, G.H.; Sugden, D.E.; Swisher, C.C., III. Miocene glacial stratigraphy and landscape evoloution of the Western Asgard Range, Antarctica. Geogr. Ann. 1993, 75A, 303–330. [Google Scholar] [CrossRef]
- Sugden, D.E.; Denton, G.H.; Marchant, D.R. Landscape evolution of the Dry Valleys, Transantarctic Mountains: Tectonic implications. J. Geophys. Res. 1995, 100, 9949–9967. [Google Scholar] [CrossRef]
- Graf, H.F.; Feichter, J.; Langmann, B. Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution. J. Geophys. Res. 1997, 102, 10727–10738. [Google Scholar] [CrossRef] [Green Version]
- Langford, R.P. The Holocene history of the White Sands dune field and influences on eolian deflation and playa lakes. Quatern. Intern. 2003, 104, 31–39. [Google Scholar] [CrossRef]
- Allen, B.D. Ice age lakes in New Mexico. N. M. Mus. Nat. Hist. Sci. Bull. 2005, 28, 107–114. [Google Scholar]
- Szynkiewicz, A.; Moore, C.H.; Glamoclija, M.; Pratt, L.M. Sulfur isotope signatures in gypsiferous sediments of the Estancia and Tularosa Basins as paleoindicators of sulfate sources, hydrologic cycle and bacterial activity. Geochim. Cosmochim. Acta 2009, 73, 6162–6186. [Google Scholar] [CrossRef]
- Szynkiewicz, A.; Ewing, R.C.; Moore, C.H.; Glamoclija, M.; Bustos, D.; Pratt, L.M. Origin of terrestrial gypsum dunes—implications for Martian gypsum-rich dunes of Olympia Undae. Geomorphology 2010, 121, 69–83. [Google Scholar] [CrossRef]
- Schenk, C.J.; Fryberger, S.G. Early diagenesis of eolian dune and interdune sands at White Sands, New Mexico. Sediment. Geol. 1988, 55, 109–120. [Google Scholar] [CrossRef]
- Fenton, L.K.; Bishop, J.L.; King, S.; Lafuente, B.; Horgan, B.; Bustos, D.; Sarrazin, P. Sedimentary differentiation of aeolian grains at the White Sands National Monument, New Mexico, USA. Aeolian Res. 2017, 26, 117–136. [Google Scholar] [CrossRef]
- Wentworth, S.J.; Gibson, E.K.; Velbel, M.A.; McKay, D.S. Antarctic Dry Valleys and indigenous weathering in Mars meteorites: Implications for water and life on Mars. Icarus 2005, 174, 383–395. [Google Scholar] [CrossRef]
- Mayer, B.; Krouse, H.R. Procedures for sulfur isotope abundance studies. In Handbook of Stable Isotope Analytical Techniques; de Groot, P.A., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Harris, H.J.H. Hydrology and hydrogeochemistry of the South Fork, Wright Valley, Southern Victoria Land, Antarctica. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1981. [Google Scholar]
- Mikucki, J.A.; Pearson, A.; Johnston, D.T.; Turchyn, A.V.; Farquahar, J.; Schrag, D.P.; Anbar, A.D.; Priscu, J.C.; Lee, P.A. A contemporary microbially maintained subglacial ferrous “Ocean”. Science 2009, 324, 397–400. [Google Scholar] [CrossRef] [Green Version]
- McArdle, N.C.; Liss, P.S. Isotopes and atmospheric sulphur. Atmos. Environ. 1995, 29, 2553–2556. [Google Scholar] [CrossRef]
- Calhoun, J.A.; Bates, T.S.; Charlson, R.J. Sulfur isotope measurements of submicrometer sulfate aerosol particles over the Pacific Ocean. Geophys. Res. Lett. 1991, 18, 1877–1880. [Google Scholar] [CrossRef]
- Legrand, M.; Saigne, C.F. Feniet-Saigne Methane sulfonic acid in south polar snow layers: A record of strong El Nino. Geophys. Res. Lett. 1991, 18, 187–190. [Google Scholar] [CrossRef]
- Patris, N.; Delmas, R.J.; Jouzel, J. Isotopic signatures of sulfur in shallow Antarctic ice cores. J. Geophys. Res. 2000, 105, 7071–7078. [Google Scholar] [CrossRef]
- Ohno, H.; Igarashi, M.; Hondoh, T. Characteristics of salt inclusions in polar ice from Dome Fuji, East Antarctica. Geophys. Res. Lett. 2006, 33, L08501. [Google Scholar] [CrossRef] [Green Version]
- Krouse, H.R.; Grinenko, V.A. Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment; John Willey & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Clark, K.I.; Fritz, P. Environmental Isotopes in Hydrogeology; Lewis Publishers: New York, NY, USA, 1997; p. 328. [Google Scholar]
- Hagen, E.H. Geochemical studies of Neogene till in the Transantarctic Mountains; Evidence for an extraterrestrial component. MSc Thesis, Department of Geology and Mineralogy, The Ohio State University, Columbus, OH, USA, 1988. [Google Scholar]
- Bishop, J.L.; Lougear, A.; Newton, J.; Doran, P.T.; Froeschl, H.; Trautwein, A.X.; Körner, W.; Koeberl, C. Mineralogical and geochemical analyses of Antarctic sediments: A reflectance and Mössbauer spectroscopy study with applications for remote sensing on Mars. Geochim. Cosmochim. Acta 2001, 65, 2875–2897. [Google Scholar] [CrossRef]
- Bishop, J.L.; Anglen, B.L.; Pratt, L.M.; Edwards, H.G.M.; Des Marais, D.J.; Doran, P.T. A spectroscopy and isotope study of sediments from the Antarctic Dry Valleys as analogs for potential paleolakes on Mars. Int. J. Astrobiol. 2003, 2, 273–287. [Google Scholar] [CrossRef]
- Saxtno, M.A.; Samarkin, V.A.; Schutte, C.A.; Bowles, M.W.; Madigan, M.T.; Cadieux, S.B.; Pratt, L.M.; Joye, S.B. Biogeochemical and 16S rRNA gene sequence evidence supports a novel mode of anaerobic mathanotrophy in permanently ice-covered Lake Fryxell, Antarctica. Limnol. Oceanogr. 2016, 61, S119–S130. [Google Scholar] [CrossRef] [Green Version]
- Toner, J.D.; Catling, D.C.; Sletten, R.S. The geochemistry of Don Juan Pond: Evidence for a deep groundwater flow system in Wright Valley, Antarctica. Earth Planet. Sci. Lett. 2017, 474, 190–197. [Google Scholar] [CrossRef]
- Lyons, W.B.; Mikucki, J.A.; German, L.A.; Welch, K.A.; Welch, S.; Gardner, C.B.; Tulaczyk, S.M.; Pettit, E.C.; Kowalski, J.; Dachwald, B. The geochemistry of englacial brine from Taylor Glacier, Antarctica. J. Geophys. Res. Biogeosci. 2019, 124, 633–648. [Google Scholar] [CrossRef]
- Lloyd, R.M. Oxygen isotope behavior in the sulfate-water system. J. Geophys. Res. 1968, 73, 6099–6110. [Google Scholar] [CrossRef]
- Chiba, H.; Sakai, H. Oxygen isotope exchange rate between dissolved sulfate and water at hydrothermal temperature. Geochim. Cosmochim. Acta 1985, 49, 993–1000. [Google Scholar] [CrossRef]
- Lyons, W.B.; Welch, K.; Snyder, G.; Olesik, J.; Graham, E.Y.; Marion, G.M.; Poreda, R.J. Halogen geochemistry of the McMurdo dry valley lakes, Antarctica: Clues to the origin of solutes and lake evolution. Geochim. Cosmochim. Acta 2005, 69, 305–323. [Google Scholar] [CrossRef]
- Carr, M.H.; Head, J.W. Geologic history of Mars. Earth Planet. Sci. Lett. 2010, 294, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, F.; Michalski, J.; Berger, G.; McLennan, S.M.; Scaillet, B. Geochemical reservoirs and timing of sulfur cycling on Mars. Space Sci. Rev. 2013, 174, 251–300. [Google Scholar] [CrossRef] [Green Version]
- Ojha, L.; Karunatillake, S.; Iacovino, K. Atmospheric injection of sulfur from the Medusae Fossae forming events. Planet. Space Sci. 2019, 179, 104734. [Google Scholar] [CrossRef]
- Dehouck, E.; Chevrier, V.; Gaudin, A.; Mangold, N.; Mathé, P.E.; Rochette, P. Evaluating the role of sulfide-weathering in the formation of sulfates or carbonates on Mars. Geochim. Cosmochim. Acta 2012, 90, 47–63. [Google Scholar] [CrossRef]
- Rampe, E.B.; Ming, D.W.; Blake, D.F.; Bristow, T.F.; Chipera, S.J.; Grotzinger, J.P.; Morris, R.V.; Morrison, S.M.; Vaniman, D.T.; Yen, A.S.; et al. Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth Planet. Sci. Lett. 2017, 471, 172–185. [Google Scholar] [CrossRef]
- Murchie, S.L.; Mustard, J.F.; Ehlmann, B.L.; Milliken, R.E.; Bishop, J.L.; McKeown, N.K.; Noe Dobrea, E.Z.; Seelos, F.P.; Buczkowski, D.L.; Wiseman, S.M.; et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. 2009, 114, E00D06. [Google Scholar] [CrossRef]
- Murchie, S.L.; Bibring, J.P.; Arvidson, R.E.; Bishop, J.L.; Carter, J.; Ehlmann, B.L.; Langevin, Y.; Mustard, J.F.; Poulet, F.; Riu, L.; et al. Visible to short-wave Infrared spectral analyses of Mars from orbit using CRISM and OMEGA. In Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces; Bishop, J.L., Moersch, J.E., Bell, J.F., III, Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 453–483. [Google Scholar]
- Ehlmann, B.L.; Edwards, C.S. Mineralogy of the Martian Surface. Annu. Rev. Earth Planet. Sci. 2014, 42, 291–315. [Google Scholar] [CrossRef] [Green Version]
- Arvidson, R.E. Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice. J. Geophys. Res. Planets 2016, 121, 1602–1626. [Google Scholar] [CrossRef]
- Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; et al. Mineralogy of a Mudstone at Gale Crater, Yellowknife Bay, Mars. Science 2014, 343. [Google Scholar] [CrossRef]
- Lorand, J.-P.; Chevrier, V.; Sautter, V. Sulfide mineralogy and redox conditions in some shergottites. Meteorit. Planet. Sci. 2005, 40, 1257–1272. [Google Scholar] [CrossRef]
- Lorand, J.-P.; Labidi, J.; Rollion-Bard, C.; Thomassot, E.; Bellucci, J.J.; Whitehouse, M.; Nemchin, A.; Humayun, M.; Farquhar, J.; Hewins, R.H.; et al. The sulfur budget and sulfur isotopic composition of Martian regolith breccia NWA 7533. Meteorit. Planet. Sci. 2020, 55, 2097–2116. [Google Scholar] [CrossRef]
- Meyer, C. The Martian Meteorite Compendium 2017. Available online: http://curator.jsc.nasa.gov/antmet/mmc/index.cfm (accessed on 2 February 2021).
- Chevrier, V.; Lorand, J.-P.; Sautter, V. Sulfide petrology of four nakhlites: Northwest Africa 817, Northwest Africa 998, Nakhla, and Governador Valadares. Meteor. Planet. Sci. 2011, 46, 769–784. [Google Scholar] [CrossRef]
- Clark, B.C.; Van Hart, D.C. The salts of Mars. Icarus 1981, 45, 370–378. [Google Scholar] [CrossRef]
- Gellert, R.; Yen, A.S. Elemental Analyses of Mars from Rovers Using the Alpha-Particle X-Ray Spectrometer. In Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces; Bishop, J.L., Bell, J.F., III, Moersch, J.E., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 555–572. [Google Scholar]
- Ojha, L.; Lewis, K.; Karunatillake, S.; Schmidt, M. The Medusae Fossae formation as the single largest source of dust on Mars. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, J.A.; Schmidt, M.E.; Gellert, R.; Campbell, J.L.; King, P.L.; Flemming, R.L.; Ming, D.W.; Clark, B.C.; Pradler, I.; VanBommel, S.J.V.; et al. A global Mars dust composition refined by the Alpha-Particle X-Ray Spectrometer in Gale Crater. Geophys. Res. Lett. 2016, 43, 67–75. [Google Scholar] [CrossRef]
- Roach, L.H.; Mustard, J.F.; Murchie, S.; Langevin, Y.; Bibring, J.-P.; Bishop, J.; Bridges, N.; Brown, A.; Byrne, S.; Ehlmann, B.L.; et al. CRISM spectral signatures of the North polar gypsum dunes. In Proceedings of the Lunar Planetary Science Conference XXXVIII, League City, TX, USA, 12–16 March 2007. [Google Scholar]
- Szumila, I.; Bishop, J.L.; Fenton, L.K.; Brown, A.J. Composition and morphology of gypsum dunes in Olympia Undae on Mars. In Proceedings of the 44th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2013. [Google Scholar]
- Smith, D.E.; Zuber, M.T.; Neumann, G.A. Seasonal variations of snow depth on Mars. Science 2001, 294, 2141–2146. [Google Scholar] [CrossRef] [Green Version]
- Byrne, S.; Zuber, M.T.; Neumann, G.A. Interannual and seasona behavior of martian residual ice-cap albedo. Planet. Space Sci. 2008, 56, 194–211. [Google Scholar] [CrossRef]
- Patel, S.; Bishop, J.L.; Englert, P.; Gibson, E.K. Coordinating chemical and mineralogical analyses of Antarctic Dry Valley sediments as potential analogs for Mars. In Proceedings of the 46th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2015. [Google Scholar]
- Burton, Z.F.M.; Bishop, J.L.; Englert, P.; Koeberl, C.; Gibson, E.K. Chemically active horizon in a soil pit from an intermittent pond site in the Dry Valleys Region, Antarctica and implications for soil processes on Mars. In Proceedings of the 49th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2018. [Google Scholar]
- Byrne, S.; Murray, B. North polar stratigraphy and the paleo-erg of Mars. J. Geophys. Res. 2002, 107, 5044. [Google Scholar] [CrossRef] [Green Version]
- Edgett, K.; Williams, R.; Malin, M.; Cantor, B.; Thomas, P. Mars landscape evolution: Influence of stratigraphy on geomorphology in the north polar region. Geomorphology 2003, 52, 289–297. [Google Scholar] [CrossRef]
- Fishbaugh, K.E.; Head, J.W., III. Origin and characteristics of the Mars north polar basal unit and implications for polar geologic history. Icarus 2005, 174, 444–474. [Google Scholar] [CrossRef]
- Tanaka, K. Geology and insolation-driven climatic history of Amazonian north polar materials on Mars. Nature 2005, 437, 991–994. [Google Scholar] [CrossRef]
- Tanaka, K.; Rodriguez, J.A.P.; Skinner, A., Jr.; Bourke, M.C.; Fortezzo, C.M.; Herkenhoff, K.E.; Kolb, E.J.; Okubo, C.H. North polar region of Mars: Advances in stratigraphy, structure, and erosional modification. Icarus 2008, 196, 318–358. [Google Scholar] [CrossRef]
- Kocurek, G.; Ewing, R.C. Source-to-sink: An Earth/Mars cmparison of boundary conditions for eolian dune systems. SEPM Spec. Publ. 2012, 102, 151–268. [Google Scholar]
- Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E. Groundwater chemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard. J. Hydrol. 2002, 296, 208–223. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Alpers, C.N. Geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits. Part A. Processes, Methods and Health Issues; Plumlee, G.S., Logsdon, M.J., Eds.; Society of Economic Geology: Littleton, CO, USA, 1999; Volume 6A, pp. 133–160. [Google Scholar]
Sample ID | Location | Depth | Sample Character | Acid-Soluble SO42− | Cr-Reducible Sulfide | |||
---|---|---|---|---|---|---|---|---|
wt% S | δ34S (‰) | δ18O (‰) | wt% S | δ34S (‰) | ||||
JB1100 | VXE-6 pond, near site 42 | 0–1 cm | tan soil | 0.057 | +16.7 | −8.7 | <0.01 | +1.0 |
JB1101 | VXE-6 pond, near site 42 | 1–4 cm | tan soil | 0.011 | +16.4 | −8.4 | <0.01 | b.d. |
JB1102 | VXE-6 pond, near site 42 | 4–7 cm | reddish soil | 0.286 | +15.8 | −7.2 | b.d. | b.d. |
JB1103 | VXE-6 pond, near site 42 | 8–10 cm | beige sediment | 0.900 | +16.6 | −8.9 | <0.01 | +3.3 |
JB1104 | VXE-6 pond, near site 42 | 12–15 cm | beige sediment | 0.562 | +16.2 | −7.4 | b.d. | b.d. |
JB1105 | VXE-6 pond, near site 42 | 20–24 cm | beige sediment | 0.070 | +15.9 | −7.9 | <0.01 | +2.6 |
JB1108 | dried pond near site 52 | 2–4 cm | - | 0.854 | +23.4 | −5.6 | <0.01 | −0.2 |
JB1109 | dried pond near site 52 | 4–8 cm | - | 0.664 | +17.8 | −6.6 | <0.01 | +0.1 |
JB1111 | outer edge of pond near site 38 | 0–1 cm | reddish soil | 0.885 | +17.7 | −6.1 | <0.01 | −0.6 |
JB1125 | center of DJP, near site 2074 | 0–10 cm | - | 0.273 | +31.5 | −5.4 | b.d. | b.d. |
JB1129 | southern part of DJP, near site 33 | 0–1 cm | - | 0.020 | +32.5 | −5.3 | <0.01 | +3.3 |
JB1130 | southern part of DJP, near site 33 | 3–4 cm | - | 0.173 | +31.9 | −5.5 | <0.01 | +1.1 |
JB1131 | southern part of DJP, near site 33 | 8–10 cm | - | 1.000 | +32.0 | −5.9 | <0.01 | +1.1 |
JB1132 | southern part of DJP, near site 33 | 12–14 cm | - | 0.170 | +32.0 | −4.2 | <0.01 | +3.0 |
JB1133 | southern part of DJP, near site 33 | 16–20 cm | - | b.d. | b.d. | b.d. | <0.01 | +0.9 |
JB1135 | 300 m west of DJP, near site 39 | 2–5 cm | - | 0.125 | 27.1 | −6.3 | <0.01 | −0.5 |
JB1139 | dried pond near site 21 | 0–1 cm | reddish brown soil | 0.144 | 17.2 | −7.8 | b.d. | b.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szynkiewicz, A.; Bishop, J.L. Assessment of Sulfate Sources under Cold Conditions as a Geochemical Proxy for the Origin of Sulfates in the Circumpolar Dunes on Mars. Minerals 2021, 11, 507. https://doi.org/10.3390/min11050507
Szynkiewicz A, Bishop JL. Assessment of Sulfate Sources under Cold Conditions as a Geochemical Proxy for the Origin of Sulfates in the Circumpolar Dunes on Mars. Minerals. 2021; 11(5):507. https://doi.org/10.3390/min11050507
Chicago/Turabian StyleSzynkiewicz, Anna, and Janice L. Bishop. 2021. "Assessment of Sulfate Sources under Cold Conditions as a Geochemical Proxy for the Origin of Sulfates in the Circumpolar Dunes on Mars" Minerals 11, no. 5: 507. https://doi.org/10.3390/min11050507
APA StyleSzynkiewicz, A., & Bishop, J. L. (2021). Assessment of Sulfate Sources under Cold Conditions as a Geochemical Proxy for the Origin of Sulfates in the Circumpolar Dunes on Mars. Minerals, 11(5), 507. https://doi.org/10.3390/min11050507