Mineral Identification Based on Deep Learning That Combines Image and Mohs Hardness
Abstract
:1. Introduction
2. Data
3. Architecture of the Neural Network
4. Test Results and Discussion
4.1. Our Test Results
4.2. Comparison with Other Methods
4.3. Application of the Model on Smartphones
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Misra, K. Understanding Mineral Deposits; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Porwal, A.; Carranza, E.; Hale, M. Artificial neural networks for mineral-potential mapping: A case study from Aravalli Province, Western India. Nat. Resour. Res. 2003, 12, 155–171. [Google Scholar] [CrossRef]
- Karimpouli, S.; Tahmasebi, P.; Saenger, E.H. Coal cleat/fracture segmentation using convolutional neural networks. Nat. Resour. Res. 2020, 29, 1675–1685. [Google Scholar] [CrossRef]
- Juliani, C.; Ellefmo, S.L. Prospectivity Mapping of Mineral Deposits in Northern Norway Using Radial Basis Function Neural Networks. Minerals 2019, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Li, H.; Wu, K.; Chen, F.; Hu, Z. Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: A case study from southern Jiangxi province, china. Minerals 2020, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- El Haddad, J.; de Lima Filho, E.S.; Vanier, F.; Harhira, A.; Padioleau, C.; Sabsabi, M.; Wilkie, G.; Blouin, A. Multiphase mineral identification and quantification by laser-induced breakdown spectroscopy. Miner. Eng. 2019, 134, 281–290. [Google Scholar] [CrossRef]
- Aligholi, S.; Lashkaripour, G.R.; Khajavi, R.; Razmara, M. Automatic mineral identification using color tracking. Pattern Recognit. 2017, 65, 164–174. [Google Scholar] [CrossRef]
- Izadi, H.; Sadri, J.; Bayati, M. An intelligent system for mineral identification in thin sections based on a cascade approach. Comput. Geosci. 2017, 99, 37–49. [Google Scholar] [CrossRef]
- Młynarczuk, M.; Górszczyk, A.; Ślipek, B. The application of pattern recognition in the automatic classification of microscopic rock images. Comput. Geosci. 2013, 60, 126–133. [Google Scholar] [CrossRef]
- Ślipek, B.; Młynarczuk, M. Application of pattern recognition methods to automatic identification of microscopic images of rocks registered under different polarization and lighting conditions. Geol. Geophys. Environ. 2013, 39, 373. [Google Scholar] [CrossRef] [Green Version]
- Aligholi, S.; Khajavi, R.; Razmara, M. Automated mineral identification algorithm using optical properties of crystals. Comput. Geosci. 2015, 85, 175–183. [Google Scholar] [CrossRef]
- Harris, D.; Pan, G. Mineral favorability mapping: A comparison of artificial neural networks, logistic regression, and discriminant analysis. Nat. Resour. Res. 1999, 8, 93–109. [Google Scholar] [CrossRef]
- Thompson, S.; Fueten, F.; Bockus, D. Mineral identification using artificial neural networks and the rotating polarizer stage. Comput. Geosci. 2001, 27, 1081–1089. [Google Scholar] [CrossRef]
- Ishikawa, S.T.; Gulick, V.C. An automated mineral classifier using Raman spectra. Comput. Geosci. 2013, 54, 259–268. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Han, S.; Ren, Q.; Shi, J. Intelligent Identification for Rock-Mineral Microscopic Images Using Ensemble Machine Learning Algorithms. Sensors 2019, 18, 3914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baykan, N.A.; Yılmaz, N. A mineral classification system with multiple artificial neural network using k-fold cross validation. Math. Comput. Appl. 2011, 16, 22–30. [Google Scholar] [CrossRef]
- Solar, M.; Perez, P.; Watkins, F. Neural Recognition of Minerals. In Proceedings of Artificial Intelligence in Theory and Practice; Springer: Boston, MA, USA, 2008; pp. 433–437. [Google Scholar]
- Liu, C.; Li, M.; Zhang, Y.; Han, S.; Zhu, Y. An Enhanced Rock Mineral Recognition Method Integrating a Deep Learning Model and Clustering Algorithm. Minerals 2019, 9, 516. [Google Scholar] [CrossRef] [Green Version]
- IMAGO. Available online: https://www.imago.live/ (accessed on 15 April 2021).
- KORE GEOSYSTEMS. Available online: https://www.koregeosystems.com/ (accessed on 15 April 2021).
- Wang, J.; Wang, Z.; Zhang, D.; Yan, J. Combining Knowledge with Deep Convolutional Neural Networks for Short Text Classification. In Proceedings of the International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 2915–2921. [Google Scholar]
- Hai, J.; Tan, H.; Chen, J.; Wu, M.; Qiao, K.; Xu, J.; Zeng, L.; Gao, F.; Shi, D.; Yan, B. Multi-level features combined end-to-end learning for automated pathological grading of breast cancer on digital mammograms. Comput. Med. Imaging Graph. 2019, 71, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Wenk, H.R.; Bulakh, A. Minerals: Their Constitution and Origin; Cambridge University Press: New York, NY, USA, 2016. [Google Scholar]
- Mohs Hardness Scale, A Rapid Hardness Test for Field and Classroom Use. Available online: https://geology.com/minerals/mohs-hardness-scale.shtml (accessed on 15 April 2021).
- A Mineral Database. Available online: https://www.mindat.org/ (accessed on 15 April 2021).
- Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning (ICML-19), Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Tharwat, A. Classification assessment methods. Appl. Comput. Inform. 2018, 17, 168–192. [Google Scholar] [CrossRef]
- Howie, R.A. The Ore Minerals and Their Intergrowths, 2nd ed.; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- National Infrastructure for Science and Technology-National Infrastructure of Mineral, Rock and Fossil Specimen Resources. Available online: http://www.nimrf.cugb.edu.cn/en/english (accessed on 15 April 2021).
#No. | Mineral | Mohs Hardness Range | Number of Samples |
---|---|---|---|
1 | agate | 6.5–7.0 | 3225 |
2 | albite | 6.0–6.5 | 1775 |
3 | almandine | 7.0–7.5 | 2018 |
4 | anglesite | 2.5–3.0 | 1797 |
5 | azurite | 3.5–4.0 | 7924 |
6 | beryl | 7.5–8.0 | 8957 |
7 | cassiterite | 6.0–7.0 | 3205 |
8 | chalcopyrite | 3.5–4.0 | 3253 |
9 | cinnabar | 2.0–2.5 | 1605 |
10 | copper | 3.0–3.0 | 5288 |
11 | demantoid | 6.5–7.0 | 755 |
12 | diopside | 5.5–6.5 | 1586 |
13 | elbaite | 7.5 | 5439 |
14 | epidote | 6.0–7.0 | 3720 |
15 | fluorite | 4.0 | 26,336 |
16 | galena | 3.5–4.0 | 6188 |
17 | gold | 2.5–3.0 | 4545 |
18 | halite | 2.0–2.5 | 756 |
19 | hematite | 5.0–6.0 | 5728 |
20 | magnetite | 5.5–6.5 | 2445 |
21 | malachite | 3.5–4.0 | 6796 |
22 | marcasite | 6.0–6.5 | 1608 |
23 | opal | 5.5–6.5 | 3197 |
24 | orpiment | 1.5–2.0 | 720 |
25 | pyrite | 6.0–6.5 | 8769 |
26 | quartz | 7.0 | 34,883 |
27 | rhodochrosite | 3.5–4.0 | 4276 |
28 | ruby | 9.0 | 820 |
29 | sapphire | 9.0 | 996 |
30 | schorl | 7.0 | 2099 |
31 | sphalerite | 3.5–4.0 | 6354 |
32 | stibnite | 2.0 | 2475 |
33 | sulphur | 1.5–2.5 | 1890 |
34 | topaz | 8.0 | 3577 |
35 | torbernite | 2.0–2.5 | 1100 |
36 | wulfenite | 2.5–3.0 | 7583 |
Total | 183,688 |
Method | Top-1 Accuracy (%) | Top-5 Accuracy (%) |
---|---|---|
hardness only | 44.8 | 91 |
image only | 78.3 | 95.5 |
image & hardness | 90.6 | 99.6 |
Image Type | Studies | Performance | |
---|---|---|---|
Number of Identified Minerals | Accuracy (%) | ||
Raman spectroscopy | [14] | 6 | 83.0 |
microscope | [15] | 4 | 90.9 |
[16] | 5 | 93.9 | |
photo | [17] | 6 | 91.0 |
[18] | 12 | 74.2 | |
photo & hardness | Our method | 36 | 90.6 |
Mineral | Number of Samples | Number of Correctly Identified Samples Using Image Only | Number of Correctly Identified Samples Using Image & Hardness |
---|---|---|---|
agate | 5 | 5 | 5 |
almandine | 6 | 4 | 4 |
azurite | 2 | 1 | 2 |
beryl | 1 | 1 | 1 |
chalcopyrite | 2 | 1 | 2 |
cinnabar | 1 | 1 | 1 |
copper | 2 | 2 | 2 |
fluorite | 11 | 8 | 10 |
galena | 3 | 2 | 3 |
halite | 1 | 1 | 1 |
hematite | 8 | 1 | 5 |
malachite | 6 | 5 | 5 |
opal | 1 | 1 | 1 |
orpiment | 3 | 1 | 3 |
pyrite | 6 | 5 | 6 |
quartz | 4 | 4 | 4 |
sphalerite | 1 | 0 | 0 |
stibnite | 8 | 7 | 8 |
sulphur | 2 | 2 | 2 |
total | 73 | 52 | 65 |
Accuracy | \ | 71.2% | 89% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, X.; Xiao, Y.; Ji, X.; Wang, G. Mineral Identification Based on Deep Learning That Combines Image and Mohs Hardness. Minerals 2021, 11, 506. https://doi.org/10.3390/min11050506
Zeng X, Xiao Y, Ji X, Wang G. Mineral Identification Based on Deep Learning That Combines Image and Mohs Hardness. Minerals. 2021; 11(5):506. https://doi.org/10.3390/min11050506
Chicago/Turabian StyleZeng, Xiang, Yancong Xiao, Xiaohui Ji, and Gongwen Wang. 2021. "Mineral Identification Based on Deep Learning That Combines Image and Mohs Hardness" Minerals 11, no. 5: 506. https://doi.org/10.3390/min11050506
APA StyleZeng, X., Xiao, Y., Ji, X., & Wang, G. (2021). Mineral Identification Based on Deep Learning That Combines Image and Mohs Hardness. Minerals, 11(5), 506. https://doi.org/10.3390/min11050506