A Novel Calcium Oxalate/Sepiolite Composite for Highly Selective Adsorption of Pb(II) from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Calcium Oxalate/Sepiolite
2.3. Characterization of the Materials
2.4. Batch Adsorption Experiment
3. Results and Discussion
3.1. Characterization of Adsorbents
3.2. Effect of the Initial Concentration and Contact Time
3.3. Adsorption Isotherms and Kinetics
3.4. Effects of Initial pH
3.5. Effects of Adsorbent Dosage
3.6. Adsorption Efficiency of SMN-3 for Various Ions
3.7. Safety Evaluation of Adsorption Residue
3.8. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.A.; Ahmad Zaini, M.A.; Surajudeen, A.; Aliyu, E.N.U.; Omeiza, A.U. Surface modification of low–cost bentonite adsor-bents—A review. Part. Sci. Technol. 2018, 37, 538–549. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.; Wang, P. Rational design of nanomaterials for water treatment. Nanoscale 2015, 7, 17167–17194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavakoli, O.; Goodarzi, V.; Saeb, M.R.; Mahmoodi, N.M.; Borja, R. Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger. J. Hazard. Mater. 2017, 334, 256–266. [Google Scholar] [CrossRef]
- Khadem, S.S.M.; Mashhadzadeh, A.H.; Habibzadeh, S.; Munir, M.T.; Lima, E.C.; Saeb, M.R. A theoretical probe into the effects of material and operational variables on water purification with zeolite membranes. Microporous Mesoporous Mater. 2021, 320, 111070. [Google Scholar] [CrossRef]
- Sharma, P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresour. Technol. 2021, 328, 124835. [Google Scholar] [CrossRef]
- Wang, Z.K. Low-cost hydrogel adsorbent enhanced by trihydroxy melamine and β-cyclodextrin for the removal of Pb(II) and Ni(II) in water. J. Hazard. Mater. 2021, 411, 125029. [Google Scholar] [CrossRef] [PubMed]
- Ghani, N.; Jami, M.S.; Alam, M.Z. The role of nanoadsorbents and nanocomposite adsorbents in the removal of heavy metals from wastewater, A review and prospect. Pollution 2021, 7, 153–179. [Google Scholar]
- Mullineaux, S.; McKinley, J.; Marks, N.; Scantlebury, D.; Doherty, R. Heavy metal (PTE) ecotoxicology, data review: Traditional vs. a compositional approach. Sci. Total. Environ. 2021, 769, 145246. [Google Scholar] [CrossRef]
- Fang, D.; Zhang, R.; Deng, W.; Li, J. Highly efficient removal of Cu(II), Zn(II), Ni(II) and Fe(II) from electroplating wastewater using sulphide from sulphidogenic bioreactor effluent. Environ. Technol. 2012, 33, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Samanta, A.N.; Ray, S. Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation. Desalination 2011, 266, 213–217. [Google Scholar] [CrossRef]
- Dong, W.K.; Lu, Y.; Wang, W.; Zhang, M.; Jing, Y.; Wang, A. A sustainable approach to fabricate new 1D and 2D nanomaterials from natural abundant palygorskite clay for antibacterial and adsorption. Chem. Eng. J. 2020, 382, 122984. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Bakry, B.M.; Adlii, A.; Yakout, S.M.; El-Zaidy, M.E. Facile conversion of kaolinite into clay nanotubes (KNTs) of en-hanced adsorption properties for toxic heavy metals (Zn2+, Cd2+, Pb2+, and Cr6+) from water. J. Hazard. Mater. 2019, 374, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Tang, A.; Yan, P.; Wang, J.; Wang, Q.; Wen, X.; Cui, Y. Palygorskite–template amorphous carbon nanotubes as a superior ad-sorbent for removal of dyes from aqueous solutions. J. Colloid Interface Sci. 2019, 537, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Yan, Z.; Zhao, Q.; Yang, H. Novel 2D Nanosheets with Potential Applications in Heavy Metal Purification: A Review. Adv. Mater. Interfaces 2018, 5. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Darder, M.; Alcântara, A.C.; Wicklein, B.; Aranda, P. Recent Advances on Fibrous Clay–Based Nanocomposites. Adv. Polym. Sci. 2014, 267, 39–86. [Google Scholar]
- Wang, Q.; Tang, A.; Zhong, L.; Wen, X.; Yan, P.; Wang, J. Amino-modified γ-Fe2O3/sepiolite composite with rod-like morphology for magnetic separation removal of Congo red dye from aqueous solution. Powder Technol. 2018, 339, 872–881. [Google Scholar] [CrossRef]
- Wang, Q.; Cui, Y.; Huang, R.; Zhong, L.; Yan, P.; Zhang, S.; Zhao, Q.; Jiang, D.; Tang, A.; Yang, H. A heterogeneous Fenton reaction system of N–doped TiO2 anchored on sepio-lite activates peroxymonosulfate under visible light irradiation. Chem. Eng. J. 2020, 383, 123142. [Google Scholar] [CrossRef]
- Largo, F.; Haounati, R.; Akhouairi, S.; Ouachtak, H.; El Haouti, R.; El Guerdaoui, A.; Hafid, N.; Santos, D.M.; Akbal, F.; Kuleyin, A.; et al. Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: Experimental and molecular dynamic simulation studies. J. Mol. Liq. 2020, 318, 114247. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, L.; Hursthouse, A.; Song, N.; Ren, B. Sepiolite-Based Adsorbents for the Removal of Potentially Toxic Elements from Water: A Strategic Review for the Case of Environmental Contamination in Hunan, China. Int. J. Environ. Res. Public Health 2018, 15, 1653. [Google Scholar] [CrossRef]
- Zang, J.H.; Yan, Z.; Ouyang, J.; Yang, H.; Chen, D. Highly dispersed sepiolite–based organic modified nanofibers for enhanced ad-sorption of Congo red. Appl. Clay Sci. 2018, 157, 76–85. [Google Scholar] [CrossRef]
- Zhang, S.; Zhong, L.; Wang, J.; Tang, A.; Yang, H. Porous carbon-based MgAlF5·1.5H2O composites derived from carbon-coated clay presenting super high adsorption capacity for Congo Red. Chem. Eng. J. 2021, 406, 126784. [Google Scholar] [CrossRef]
- Liang, X.; Xu, Y.; Wang, L.; Sun, Y.; Lin, D.; Sun, Y.; Qin, X.; Wan, Q. Sorption of Pb2+ on mercapto functionalized sepiolite. Chemosphere 2013, 90, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Fayazi, M.; Afzali, D.; Ghanei-Motlagh, R.; Iraji, A. Synthesis of novel sepiolite–iron oxide–manganese dioxide nanocomposite and application for lead(II) removal from aqueous solutions. Environ. Sci. Pollut. Res. 2019, 26, 18893–18903. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Wang, C.; Ling, Y.; Li, R. Adsorption kinetics and thermodynamics of Congo red from aqueous solutions onto organic sepiolite. Environ. Pollut. Control 2013, 35, 52–56. [Google Scholar]
- Zheng, Y.A.; Xie, Y.T.; Wang, A.Q. Adsorption of Pb2+onto Chitosan–Grafted–Poly (Acrylic Acid)/Acid)/Sepiolite Composite. Chin. J. Environ. Sci. 2009, 30, 2575–2579. [Google Scholar]
- Zhou, Q.; Huang, J.; Zhang, X.; Gao, Y. Assembling polypyrrole coated sepiolite fiber as efficient particle adsorbent for chromium (VI) removal with the feature of convenient recycling. Appl. Clay Sci. 2018, 166, 307–317. [Google Scholar] [CrossRef]
- Zhou, F.; Yan, C.; Zhang, Y.; Tan, J.; Wang, H.; Zhou, S.; Pu, S. Purification and defibering of a Chinese sepiolite. Appl. Clay Sci. 2016, 124–125, 119–126. [Google Scholar] [CrossRef]
- Zeng, Q.; Huang, Y.; Huang, L.; Li, S.; Hu, L.; Xiong, D.; Zhong, H.; He, Z. A novel composite of SiO2 decorated with nano ferrous oxalate (SDNF) for efficient and highly selective removal of Pb2+ from aqueous solutions. J. Hazard. Mater. 2020, 391, 122193. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, D.; Jin, F.; Shi, J.; Fan, X.; Tsang, D.C.; Alessi, D.S. Effect of production temperature on lead removal mechanisms by rice straw biochars. Sci. Total. Environ. 2019, 655, 751–758. [Google Scholar] [CrossRef]
- Yao, Q.Z.; Yu, S.H.; Zhao, T.L.; Qian, F.J.; Li, H.; Zhou, G.T.; Fu, S.Q. Enhanced Potential Toxic Metal Removal Using a Novel Hierar-chical SiO2–Mg(OH)2 Nanocomposite Derived from Sepiolite. Minerals 2019, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Sani, H.A.; Ahmad, M.B.; Saleh, T.A. Synthesis of zinc oxide/talc nanocomposite for enhanced lead adsorption from aqueous solu-tions. RSC Adv. 2016, 6, 108819–108827. [Google Scholar] [CrossRef]
- De Lima, J.A.; Camilo, F.F.; Faez, R.; Cruz, S.A. A new approch to sepiolite dispersion by treatment with ionic liquids. Appl. Clay Sci. 2017, 143, 234–240. [Google Scholar] [CrossRef]
- Zheng, S.; Xia, S.; Han, S.; Yao, F.; Zhao, H.; Huang, M. β-Cyclodextrin-loaded minerals as novel sorbents for enhanced adsorption of Cd2+ and Pb2+ from aqueous solutions. Sci. Total. Environ. 2019, 693, 133676. [Google Scholar] [CrossRef] [PubMed]
- Alkan, M.; Demirbaş, Ö.; Çelikçapa, S.; Doğan, M. Sorption of acid red 57 from aqueous solution onto sepiolite. J. Hazard. Mater. 2004, 116, 135–145. [Google Scholar] [CrossRef]
- Turhan, Y.; Turan, P.; Doǧan, M.; Alkan, M.; Namli, H.; Demirbaş, Ö.; Doğan, M.; Namlı, H. Characterization and Adsorption Properties of Chemically Modified Sepiolite. Ind. Eng. Chem. Res. 2008, 47, 1883–1895. [Google Scholar] [CrossRef]
- Jia, S.Q. Characterization and properties of sepiolite/polyurethane nanocomposites. Mater. Sci. Eng. A 2007, 445–446, 725–730. [Google Scholar]
- Tekbaş, M.; Bektaş, N.; Yatmaz, H.C. Adsorption studies of aqueous basic dye solutions using sepiolite. Desalination 2009, 249, 205–211. [Google Scholar] [CrossRef]
- Xu, C.; Shi, S.; Wang, X.; Zhou, H.; Wang, L.; Zhu, L.; Zhang, G.; Xu, D. Electrospun SiO2–MgO hybrid fibers for heavy metal removal, Characteriza-tion and adsorption study of Pb(II) and Cu(II). J. Hazard. Mater. 2020, 381, 120974. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Y.; Chen, H.; Niu, B.; Zhang, W.; Wu, D. Synergistic mediation of polysulfide immobilization and conversion by a cata-lytic and dual–adsorptive system for high performance lithium–sulfur batteries. Chem. Eng. J. 2021, 406, 126802. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, Y.; Fu, J.; Yuan, L.; Li, Z.; Liu, C.; Zhao, D.; Wang, X. A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 567, 278–287. [Google Scholar] [CrossRef]
- Lima, E.C.; Sher, F.; Guleria, A.; Saeb, M.R.; Anastopoulos, I.; Tran, H.N.; Hosseini-Bandegharaei, A. Is one performing the treatment data of adsorption kinetics correctly? J. Environ. Chem. Eng. 2021, 9, 104813. [Google Scholar] [CrossRef]
- Dudu, T.E.; Sahiner, M.; Alpaslan, D.; Demirci, S.; Aktas, N. Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by-poly(acrylonitril-co-acrylamidopropyl-trimethyl ammoniumchloride)-based hydrogels. J. Environ. Manag. 2015, 161, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Benhouria, A.; Islam, M.A.; Zaghouane-Boudiaf, H.; Boutahala, M.; Hameed, B.H. Calcium alginate–bentonite–activated carbon composite beads as highly effective adsorbent for meth-ylene blue. Chem. Eng. J. 2015, 270, 621–630. [Google Scholar] [CrossRef]
- Ge, H.; Hua, T.; Chen, X. Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. J. Hazard. Mater. 2016, 308, 225–232. [Google Scholar] [CrossRef]
- Lyu, F.; Yu, H.; Hou, T.; Yan, L.; Zhang, X.; Du, B. Efficient and fast removal of Pb2+ and Cd2+ from an aqueous solution using a chi-tosan/Mg–Al–layered double hydroxide nanocomposite. J. Colloid Interface Sci. 2019, 539, 184–193. [Google Scholar] [CrossRef]
Material | Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) |
---|---|---|---|
Sepiolite | 159.92 | 0.351 | 1.134 |
SMN-1 | 203.53 | 0.409 | 1.133 |
SMN-2 | 185.14 | 0.387 | 1.130 |
SMN-3 | 234.14 | 0.390 | 1.165 |
SMN-4 | 181.28 | 0.393 | 1.139 |
SMN-6 | 191.05 | 0.451 | 1.143 |
SMN-9 | 192.61 | 0.402 | 1.168 |
Isotherm Models | |||||||
---|---|---|---|---|---|---|---|
Langmuir Isotherm | Freundlich Isotherm | ||||||
T(K) | qe, exp (mg·g−1) | b (L·mg−1) | qm (mg·g−1) | R2 | KF (mg·g−1)(L·mg)1/n | 1·n−1 | R2 |
298 | 504.07 | 0.053 | 505.05 | 0.9447 | 56.99 | 2.27 | 0.4335 |
Adsorption Kinetics | |||||||
pseudo-first-order | pseudo-second-order | ||||||
Co(mg·L−1) | qe, exp (mg·g−1) | qe, cal (mg·g−1) | k1 (min−1) | R2 | qe, cal (mg·g−1) | k2 (g·(min·mL)−1) | R2 |
100 | 166.89 | 166.98 | 0.03005 | 0.9857 | 192.27 | 1.796 × 10−4 | 0.9545 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Zhang, S.; Liu, J.; Hu, J.; Tang, A. A Novel Calcium Oxalate/Sepiolite Composite for Highly Selective Adsorption of Pb(II) from Aqueous Solutions. Minerals 2021, 11, 552. https://doi.org/10.3390/min11060552
Xie H, Zhang S, Liu J, Hu J, Tang A. A Novel Calcium Oxalate/Sepiolite Composite for Highly Selective Adsorption of Pb(II) from Aqueous Solutions. Minerals. 2021; 11(6):552. https://doi.org/10.3390/min11060552
Chicago/Turabian StyleXie, Hui, Shilin Zhang, Jingyan Liu, Jinqing Hu, and Aidong Tang. 2021. "A Novel Calcium Oxalate/Sepiolite Composite for Highly Selective Adsorption of Pb(II) from Aqueous Solutions" Minerals 11, no. 6: 552. https://doi.org/10.3390/min11060552
APA StyleXie, H., Zhang, S., Liu, J., Hu, J., & Tang, A. (2021). A Novel Calcium Oxalate/Sepiolite Composite for Highly Selective Adsorption of Pb(II) from Aqueous Solutions. Minerals, 11(6), 552. https://doi.org/10.3390/min11060552