Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part I: Undifferentiated Meteorites
Abstract
:1. Introduction
2. Meteorites, Their Classifications, and Composition
3. Carbonaceous Chondrites
4. R Chondrites
5. Enstatite Chondrites
6. Ordinary Chondrites
6.1. H Ordinary Chondrites
6.2. L Ordinary Chondrites
6.3. LL Ordinary Chondrites
6.4. Modal (Phase) Analysis of Ordinary Chondrites
6.5. The 57Fe Hyperfine Parameters in Selected Phases
6.6. Fe2+ Occupancies of the M1 and M2 Sites in Silicate Crystals
6.7. Temperatures of Equilibrium Cation Distribution in Silicate Crystals
6.8. Ordinary Chondrites Classification
6.9. Ordinary Chondrites Terrestrial Weathering and Age
6.10. Ordinary Chondrites Fusion Crust
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Mössbauer Effect and Mössbauer Spectroscopy: A Brief Explanation
References
- Mössbauer, R.L. Kernresonanzfluoreszenz von Gammastrahlung in Ir191. Z. Phys. 1958, 151, 124–143. [Google Scholar] [CrossRef]
- Frauenfelder, H. The Mössbauer Effect, A Review—With a Collection of Reprints; W.A. Benjamin: New York, NY, USA, 1962; pp. 1–356. [Google Scholar]
- Wertheim, G.K. The Mössbauer Effect, Principles and Applications; Academic Press: New York, NY, USA, 1964; pp. 1–116. [Google Scholar]
- Goldanskii, V.I.; Herber, R.H. (Eds.) Chemical Applications of Mössbauer Spectroscopy; Academic Press: New York, NY, USA; London, UK, 1968; pp. 1–701. [Google Scholar]
- Greenwood, N.N.; Gibb, T.C. Mössbauer Spectroscopy; Chapman and Hall: London, UK, 1971; pp. 1–659. ISBN 412-10710-4. [Google Scholar]
- Gibb, T.C. Principles of Mössbauer Spectroscopy; Springer-Science + Business Media B.V.: Berlin, Germany, 1976; pp. 1–254. ISBN 978-0-412-13960-4. [Google Scholar]
- Vertes, A.; Korecz, L.; Burger, K. Mössbauer Spectroscopy; Academia Kiada: Budapest, Hungary, 1979; pp. 1–432. [Google Scholar]
- Gutlich, P.; Bill, E.; Trautwein, A. Mössbauer Spectroscopy and Transition Metal Chemistry. Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–569. ISBN 978-3-540-88427-9. [Google Scholar]
- Sprenkel-Segel, E.L.; Hanna, S.S. Mössbauer analysis of iron in stone meteorites. Geochim. Cosmochim. Acta 1964, 28, 1913–1931. [Google Scholar] [CrossRef]
- Sprenkel-Segel, E.L.; Hanna, S.S. Mössbauer analysis of meteoritic iron minerals. In Mössbauer Effect Methodology; Gruverman, I.J., Ed.; Springer Science + Business Media: New York, NY, USA, 1966; Volume 2, pp. 113–126. ISBN 978-1-4757-1546-0. [Google Scholar]
- Sprenkel-Segel, E.L. Mössbauer investigation of the unequilibrated ordinary chondrites. In Meteorite Research; Millman, P.M., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1969; pp. 93–105. ISBN 978-94-010-3413-5. [Google Scholar]
- Knudsen, J.M. Mössbauer spectroscopy of 57Fe and the evolution of the Solar System. Hyperfine Interact. 1989, 47, 3–31. [Google Scholar] [CrossRef]
- Scorzelli, R.B. Application of the Mössbauer effect to the study of meteorites—A review. Hyperfine Interact. 1991, 66, 249–258. [Google Scholar] [CrossRef]
- Scorzelli, R.B. Meteorites: Messengers from the outer space. J. Braz. Chem. Soc. 2008, 19, 226–231. [Google Scholar] [CrossRef]
- Scorzelli, R.B.; Dos Santos, E. Meteoritic Fe-Ni alloys: A review of 57Fe Mössbauer spectroscopy studies. Geochemistry 2019, 79, 125547. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Chukin, A.V.; Felner, I.; Oshtrakh, M.I. Spinels in meteorites: Observation using Mössbauer spectroscopy. Minerals 2019, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Maksimova, A.A.; Oshtrakh, M.I. Ordinary chondrites: What can we learn using Mössbauer spectroscopy? J. Mol. Struct. 2019, 1186, 104–117. [Google Scholar] [CrossRef]
- Klingelhöfer, G. The miniaturized spectrometer MIMOS II. In Mössbauer Spectroscopy in Materials Science; Miglierini, M., Petridis, D., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1999; pp. 413–426. [Google Scholar]
- Klingelhöfer, G. Mössbauer analysis of the surface of Mars with MIMOS II at Meridiani Planum and Gusev Crater. In Industrial Applications of the Mössbauer Effect; Garcia, M., Marco, J.F., Plazaola, F., Eds.; American Institute of Physics: College Park, MD, USA, 2005; Volume 765, pp. 369–379. [Google Scholar]
- Fleischer, I.; Klingelhöfer, G.; Morris, R.V.; Schröder, C.; Rodionov, D.; De Souza, P.A. In-situ Mössbauer spectroscopy with MIMOS II. Hyperfine Interact. 2012, 207, 97–105. [Google Scholar] [CrossRef]
- Klingelhöfer, G. Extraterrestrial Mössbauer spectroscopy. In The Rudolf Mössbauer Story; Kalvius, M., Kienle, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 293–316. ISBN 978-3-642-17951-8. [Google Scholar]
- Yan, L.; Zhao, J.; Toellner, T.S.; Divan, R.; Xu, S.; Cai, Z.; Boesenberg, J.S.; Friedrich, J.M.; Cramera, S.P.; Alp, E.E. Exploration of synchrotron Mössbauer microscopy with micrometer resolution: Forward and a new backscattering modality on natural samples. J. Synchrotron Rad. 2012, 19, 814–820. [Google Scholar] [CrossRef] [Green Version]
- Mitsui, T. Synchrotron Mössbauer spectroscopy measurement. In Magmas under Pressure: Advances in High-Pressure Experiments on Structure and Properties of Melts; Kono, Y., Sanloup, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 179–210. ISBN 978-0-12-811301-1. [Google Scholar]
- Oshtrakh, M.I.; Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution: Advances in biomedical, pharmaceutical, cosmochemical and nanotechnological research. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 100, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Oshtrakh, M.I.; Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution: Principles and applications. In Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”, Liptovský Ján, Slovakia, 23–27 May 2016; Tuček, J., Miglierini, M., Eds.; AIP Publishing: New York, NY, USA, 2016; Volume 1781, p. 020019. [Google Scholar]
- Oshtrakh, M.I.; Grokhovsky, V.I.; Petrova, E.V.; Larionov, M.Y.; Uymina, K.A.; Semionkin, V.A.; Abramova, N.V. Study of meteorites using Mössbauer spectroscopy with high velocity resolution. In Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2008”, Hlohovec u Breclavi, Czech Republic, 16–20 June 2000; Mashlan, M., Zboril, R., Eds.; Melville: New York, NY, USA; Volume 1070, pp. 131–139.
- Grokhovsky, V.I.; Zhiganova, E.V.; Larionov, M.Y.; Uimina, K.A.; Oshtrakh, M.I. Mössbauer spectroscopy with high velocity resolution in the meteorites study. Phys. Met. Metallogr. 2008, 105, 177–187. [Google Scholar]
- Grokhovsky, V.I.; Oshtrakh, M.I.; Petrova, E.V.; Larionov, M.Y.; Uymina, K.A.; Semionkin, V.A. Mössbauer spectroscopy with high velocity resolution in the study of iron-bearing minerals in meteorites. Eur. J. Mineral. 2009, 21, 51–63. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Grokhovsky, V.I.; Petrova, E.V.; Larionov, M.Y.; Goryunov, M.V.; Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution applied for the study of meteoritic iron-bearing minerals. J. Mol. Struct. 2013, 1044, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Oshtrakh, M.I.; Maksimova, A.A.; Goryunov, M.V.; Yakovlev, G.A.; Petrova, E.V.; Larionov, M.Y.; Grokhovsky, V.I.; Semionkin, V.A. Mössbauer spectroscopy with a high velocity resolution: Advances in the study of meteoritic iron-bearing minerals. In Proceedings of the Workshop on the Modern Analytical Methods Applied to Earth and Planetary Sciences, Sopron, Hungary, 1 November 2014; Gucsik, A., Ed.; The MicroMatLab Kft Hungary: Sopron, Hungary, 2015; pp. 43–86. ISBN 978-963-12-1410-9. [Google Scholar]
- Maksimova, A.A.; Goryunov, M.V.; Oshtrakh, M.I. Applications of Mössbauer spectroscopy in meteoritical and planetary science, Part II: Differentiated meteorites, Moon and Mars. Minerals 2021, 11, 614. [Google Scholar] [CrossRef]
- Wasson, J.T. Meteorites, Classification and Properties; Springer: Berlin/Heidelberg, Germany, 1974; pp. 1–320. [Google Scholar]
- Rubin, A.E. Mineralogy of meteorite groups. Meteorit. Planet. Sci. 1997, 32, 231–247. [Google Scholar] [CrossRef]
- Rubin, A.E.; Ma, C. Meteoritic minerals and their origins. Geochemistry 2017, 77, 325–385. [Google Scholar] [CrossRef]
- Weisberg, M.K.; McCoy, T.J.; Krot, A.N. Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II; Lauretta, D.S., McSween, H.Y., Jr., Eds.; The University of Arizona Press: Tucson, AL, USA, 2006; pp. 19–52. [Google Scholar]
- Van Schmus, W.R.; Wood, J.A. A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 1967, 31, 747–765. [Google Scholar] [CrossRef]
- Herr, W.; Skerra, B. Mössbauer spectroscopy applied to the classification of stone meteorites. In Meteorite Research; Millman, P.M., Ed.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1969; pp. 106–122. ISBN 978-94-010-3413-5. [Google Scholar]
- Hoffman, E.; Seifu, D.; Oliver, F.W. Axtell and Allende: A Mössbauer spectroscopic study. Meteorit. Planet. Sci. 2000, 35, 431–434. [Google Scholar] [CrossRef]
- Ludwig, A.; Zarek, W.; Popiel, E. The investigations of chondritic meteorites by X-ray diffraction and Mössbauer effect methods. Acta Phys. Pol. A 2001, 100, 761–765. [Google Scholar] [CrossRef]
- Bland, P.A.; Berry, F.J.; Jull, A.J.T.; Smith, T.B.; Bevan, A.W.R.; Cadogan, J.M.; Sexton, A.S.; Franchi, L.A.; Pillinger, C.T. 57Fe Mössbauer spectroscopy studies of meteorites: Implications for weathering rates, meteorite flux, and early Solar System processes. Hyperfine Interact. 2002, 142, 481–494. [Google Scholar] [CrossRef]
- Czakó-Nagy, I.; Kubovics, I.; Vértes, A. 57Fe Mössbauer study of meteorite from Kaba, Hungary. J. Radioanal. Nucl. Chem. 2003, 256, 153–154. [Google Scholar] [CrossRef]
- Bland, P.A.; Cressey, G.; Menzies, O.N. Modal mineralogy of carbonaceous chondrites by X-ray diffraction and Mössbauer spectroscopy. Meteorit. Planet. Sci. 2004, 39, 3–16. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Grokhovsky, V.I.; Uymina, K.A.; Semionkin, V.A. Study of hyperfine interactions in carbonaceous chondrite Isheyevo (CH/CB) using Mössbauer spectroscopy with high velocity resolution. Hyperfine Interact. 2007, 177, 73–79. [Google Scholar] [CrossRef]
- Tripathi, R.P.; Dixit, A.; Bhandari, N. Characterization of Mukundpura carbonaceous chondrite. Curr. Sci. 2018, 114, 214–217. [Google Scholar] [CrossRef]
- Dixit, A.; Tripathi, R.P.; Bhandari, N. Glassy magnetic cronstedtite signatures in Mukundpura CM2 chondrite based on magnetic and Mössbauer studies. Meteorit. Planet. Sci. 2019, 54, 2902–2907. [Google Scholar] [CrossRef]
- Kubuki, S.; Iwanuma, J.; Akiyama, K.; Isa, M.; Shirai, N.; Ebihara, M.; Nishida, T. Reclassification of CK chondrites confirmed by elemental analysis and Fe-Mössbauer spectroscopy. Hyperfine Interact. 2012, 208, 75–78. [Google Scholar] [CrossRef]
- McCanta, M.C.; Treiman, A.H.; Dyar, M.D.; Alexander, C.M.O.D.; Rumble, D., III; Essene, E.J. The LaPaz Icefield 04840 meteorite: Mineralogy, metamorphism, and origin of an amphibole- and biotite-bearing R chondrite. Geochim. Cosmochim. Acta 2008, 72, 5757–5780. [Google Scholar] [CrossRef]
- Dunlap, R.A. A Mössbauer effect investigation of the enstatite chondrite from Abee, Canada. Hyperfine Interact. 1997, 110, 209–215. [Google Scholar] [CrossRef]
- Hochleitner, R.; Fehr, K.T.; Simon, G.; Pohl, J.; Schmidbauer, E. Mineralogy and 57Fe Mössbauer spectroscopy of opaque phases in the Neuschwanstein EL6 chondrite. Meteorit. Planet. Sci. 2004, 39, 1643–1648. [Google Scholar] [CrossRef]
- Dodd, R.T. Meteorites: A Petrological-Chemical Synthesis; Cambridge University Press: Cambridge, UK, 1981; pp. 1–368. [Google Scholar]
- Endo, K.; Hirunuma, R.; Shinonaga, T.; Ebihara, M.; Nakahara, H. Mössbauer spectroscopic study of meteorites recovered on Antarctica. Hyperfine Interact. 1994, 91, 557–561. [Google Scholar] [CrossRef]
- Paliwal, B.S.; Tripathi, R.P.; Verma, H.C.; Sharma, S.K. Classification of the Didwana-Rajod meteorite: A Mössbauer spectroscopic study. Meteorit. Planet. Sci. 2000, 35, 639–642. [Google Scholar] [CrossRef]
- Menzies, O.N.; Bland, P.A.; Berry, F.J.; Cressey, G. A Mössbauer spectroscopy and X-ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism. Meteorit. Planet. Sci. 2005, 40, 1023–1042. [Google Scholar] [CrossRef]
- Al-Rawas, A.D.; Gismelseed, A.M.; Yousif, A.A.; Elzain, M.E.; Worthing, M.A.; Al-Kathiri, A.; Gnos, E.; Hofmann, B.A.; Steele, D.A. Studies on al Hadd meteorite. Planet. Space Sci. 2007, 55, 859–863. [Google Scholar] [CrossRef]
- Murad, E. Mössbauer spectroscopy of clays, soils and their mineral constituents. Clay Miner. 2010, 45, 413–430. [Google Scholar] [CrossRef]
- Verma, H.C.; Jee, K.; Tripathi, R.P. Systematics of Mössbauer absorption areas in ordinary chondrites and applications to newly fallen meteorite in Jodhpur, India. Meteorit. Planet. Sci. 2003, 38, 963–967. [Google Scholar] [CrossRef]
- Bogusz, P.; Brzózka, K.; Górka, B.; Szumiata, T.; Wozniak, M.; Gałązka-Friedman, J. Classification of meteorites—Mössbauer comparative studies of three ordinary chondrites measured in different laboratories. Acta Phys. Pol. A 2018, 134, 1070–1075. [Google Scholar] [CrossRef]
- Kruse, O.; Ericsson, T. A Mössbauer investigation of natural troilite from the Agpalilik meteorite. Phys. Chem. Miner. 1988, 15, 509–513. [Google Scholar] [CrossRef]
- Kruse, O. Mössbauer and X-ray study of the effects of vacancy concentration in synthetic hexagonal pyrrhotites. Am. Mineral. 1990, 75, 755–763. [Google Scholar]
- Vincze, I.; Campbell, I.A.; Meyer, A.J. Hyperfine field and magnetic moments in b.c.c. Fe-Co and Fe-Ni. Solid State Commun. 1974, 15, 1495–1499. [Google Scholar] [CrossRef]
- Grandjean, F.; Long, G.J.; Hautot, D.; Whitney, D.L. A Mössbauer spectral study of the Jilin meteorite. Hyperfine Interact. 1998, 116, 105–115. [Google Scholar] [CrossRef]
- Verma, H.C.; Rawat, A.; Paliwal, B.S.; Tripathi, R.P. Mössbauer spectroscopic studies of an oxidized ordinary chondrite fallen at Itawa-Bhopji, India. Hyperfine Interact. 2002, 142, 643–652. [Google Scholar] [CrossRef]
- Loayza, M.L.C.; Cabrejos, J.A.B. Characterization of the Carancas-Puno meteorite by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Mössbauer spectroscopy. Hyperfine Interact. 2011, 203, 17–23. [Google Scholar] [CrossRef]
- Munayco, P.; Munayco, J.; Varela, M.E.; Scorzelli, R.B. The new Peruvian meteorite Carancas: Mössbauer spectroscopy and X-ray diffraction studies. Earth Moon Planets 2013, 110, 1–9. [Google Scholar] [CrossRef]
- Rancourt, D.G.; Scorzelli, R.B. Low-spin γ-Fe-Ni (γLS) proposed as a new mineral in Fe-Ni-bearing meteorites: Epitaxial intergrowth of γLS and tetrataenite as a possible equilibrium state at ~20–40 at% Ni. J. Mag. Mag. Mater. 1995, 150, 30–36. [Google Scholar] [CrossRef]
- Chadwick, J. Comments on the proposal of low-spin γ-Fe-Ni (γLS) in meteorites as a new mineral. J. Mag. Mag. Mater. 1997, 174, 321–323. [Google Scholar] [CrossRef]
- Nakamura, Y.; Shiga, M.; Shikazono, N. Mössbauer study of invar-type iron-nickel alloys. J. Phys. Soc. Jpn. 1964, 19, 1177–1181. [Google Scholar] [CrossRef]
- Baldokhin, Y.V.; Tcherdyntsev, V.V.; Kaloshkin, S.D.; Kochetov, G.A.; Pustov, Y.A. Transformations and fine magnetic structure of mechanically alloyed Fe-Ni alloys. J. Mag. Mag. Mater. 1999, 203, 313–315. [Google Scholar] [CrossRef]
- Valderruten, J.F.; Alcazar, G.A.P.; Greneche, J.M. Study of Fe-Ni alloys produced by mechanical alloying. Phys. B Condens. Matter. 2006, 384, 316–318. [Google Scholar] [CrossRef]
- Rusanov, V.; Gushterov, V.; Nedialkov, P. Mössbauer study of the Pavel and Gumoschnik meteorites, and some meteorwrongs. J. Optoelectr. Adv. Mater. 2007, 9, 406–408. [Google Scholar]
- Sitek, J.; Dekan, J.; Degmová, J.; Sedlačková, K. Phase analysis of Košice meteorite: Preliminary results. In Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2012”, Olomouc, Czech Republic, 11–15 June 2012; Tuček, J., Machala, L., Eds.; Melville: New York, NY, USA, 2012; Volume 1489, pp. 164–168. [Google Scholar]
- Sitek, J.; Dekan, J.; Sedlačková, K. Analysis of Košice meteorite by Mössbauer spectroscopy. J. Electr. Eng. 2016, 67, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Szlachta, K.; Woźniak, M.; Gałązka-Friedman, J. Mössbauer comparative studies of the Sołtmany (L6), Chelyabinsk (LL5) and Grzempach (H5) meteorites. Acta Soc. Metheor. Pol. 2014, 5, 115–120. (In Polish) [Google Scholar]
- Gismelseed, A.M.; Abdallah, S.B.; Al-Rawas, A.D.; Al-Mabsali, F.N.; Widatallah, H.M.; Elzain, M.E.; Yousif, A.A.; Ericsson, T.; Annersten, H. Investigations of Al-Dalang and Al-Hawashat meteorites. Hyperfine Interact. 2016, 237, 14. [Google Scholar] [CrossRef]
- Zhiganova, E.V.; Grokhovsky, V.I.; Oshtrakh, M.I. Study of ordinary chondrites by Mössbauer spectroscopy with high velocity resolution: Identification of M1 and M2 sites in silicate phases. Phys. Status Solidi 2007, 204, 1185–1191. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Determination of quadrupole splitting for 57Fe in M1 and M2 sites of both olivine and pyroxene in ordinary chondrites using Mössbauer spectroscopy with high velocity resolution. Hyperfine Interact. 2007, 177, 65–71. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. A study of ordinary chondrites by Mössbauer spectroscopy with high-velocity resolution. Meteorit. Planet. Sci. 2008, 43, 941–958. [Google Scholar] [CrossRef] [Green Version]
- Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Mössbauer spectroscopy with high velocity resolution in the study of ordinary chondrites. Hyperfine Interact. 2008, 186, 61–69. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Klencsár, Z.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Kuzmann, E.; Homonnay, Z.; Semionkin, V.A. Mössbauer parameters of ordinary chondrites influenced by the fit accuracy of the troilite component: An example of Chelyabinsk LL5 meteorite. Hyperfine Interact. 2016, 237, 33. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Maksimova, A.A.; Klencsár, Z.; Petrova, E.V.; Grokhovsky, V.I.; Kuzmann, E.; Homonnay, Z.; Semionkin, V.A. Study of Chelyabinsk LL5 meteorite fragments with different lithology using Mössbauer spectroscopy with a high velocity resolution. J. Radioanal. Nucl. Chem. 2016, 308, 1103–1111. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Chukin, A.V.; Oshtrakh, M.I. Revealing of the minor iron-bearing phases in the Mössbauer spectra of Chelyabinsk LL5 ordinary chondrite fragment. In Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2016”, Liptovský Ján, Slovakia, 23–27 May 2016; Tuček, J., Miglierini, M., Eds.; AIP Publishing: New York, NY, USA , 2016; Volume 1781, p. 020016. [Google Scholar]
- Maksimova, A.A.; Oshtrakh, M.I.; Grokhovsky, V.I.; Petrova, E.V.; Semionkin, V.A. Mössbauer spectroscopy of H, L and LL ordinary chondrites. Hyperfine Interact. 2016, 237, 134. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Comparison of iron-bearing minerals in ordinary chondrites from H, L and LL groups using Mössbauer spectroscopy with a high velocity resolution. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 172, 65–76. [Google Scholar] [CrossRef]
- Kohout, T.; Haloda, J.; Halodová, P.; Meier, M.M.M.; Maden, C.; Busemann, H.; Laubenstein, M.; Caffee, M.W.; Welten, K.C.; Hopp, J.; et al. Annama H chondrite–mineralogy, physical properties, cosmic ray exposure, and parent body history. Meteorit. Planet. Sci. 2017, 52, 1525–1541. [Google Scholar] [CrossRef]
- Jakubowska, M.; Rzepecka, P.; Duda, P.; Woźniak, M.; Gałązka-Friedman, J. Mössbauer measurements of ordinary chondrites type H confirm their level of weathering determined by scale W. Acta Soc. Metheor. Pol. 2017, 8, 63–72. (In Polish) [Google Scholar]
- Sato, W.; Nakagawa, M.; Shirai, N.; Ebihara, M. Mössbauer spectroscopic study on the composition of Fe-containing minerals in ordinary chondrites, Miller Range 07710 and Yamato 790272. Hyperfine Interact. 2018, 239, 13. [Google Scholar] [CrossRef]
- Gismelssed, A.; Okunlola, O.; Al-Rawas, A.; Yousif, A.; Oyedokun, M.; Adetunji, J.; Widatallah, H.; Elzai, M. Characterization of a newly fallen Nigerian meteorite. Hyperfine Interact. 2020, 241, 22. [Google Scholar] [CrossRef]
- Llorca, J.; Gich, M.; Molins, E. The Villalbeto de la Peña meteorite fall: III. Bulk chemistry, porosity, magnetic properties, 57Fe Mössbauer spectroscopy, and Raman spectroscopy. Meteorit. Planet. Sci. 2007, 42, A177–A182. [Google Scholar] [CrossRef]
- Zucolotto, M.E.; Antonello, L.L.; Varela, M.E.; Scorzelli, R.B.; Ludka, I.P.; Munayco, P.; Dos Santos, E. Lavras do Sul: A New Equilibrated Ordinary L5 Chondrite from Rio Grande do Sul, Brazil. Earth Moon Planets 2012, 108, 139–150. [Google Scholar] [CrossRef]
- Bhandari, N.; Murty, S.V.S.; Shukla, P.N.; Mahajan, R.R.; Shukla, A.D.; Lashkari, G.; Sisodia, M.S.; Tripathi, R.P.; Parthasarathy, G.; Verma, H.C.; et al. Ararki (L5) chondrite: The first meteorite find in Thar Desert of India. Meteorit. Planet. Sci. 2008, 43, 761–770. [Google Scholar] [CrossRef]
- Zucolotto, M.E.; Antonello, L.L.; Varela, M.E.; Scorzelli, R.B.; Munayco, P.; Dos Santos, E.; Ludka, I.P. Varre-Sai: The recent Brazilian fall. Earth Moon Planets 2012, 109, 43–53. [Google Scholar] [CrossRef]
- Al-Rawas, A.D.; Gismelseed, A.M.; Al-Kathiri, A.F.; Elzain, M.E.; Yousif, A.A.; Al-Kathiri, S.B.; Widatallah, H.M.; Abdalla, S.B. Characterization of Maghsail meteorite from Oman by Mössbauer spectroscopy, X-ray diffraction and petrographic microscopy. Hyperfine Interact. 2008, 186, 105–111. [Google Scholar] [CrossRef]
- Gałązka-Friedman, J.; Szlachta, K.; Woźniak, M. Moessbauer studies of Shisr 176 meteorite–preliminary results. Acta Soc. Metheor. Pol. 2013, 4, 39–45. (In Polish) [Google Scholar]
- Gałązka-Friedman, J.; Szlachta, K.; Karwowski, Ł.; Woźniak, M. Mössbauer studies of Soltmany and Shisr 176 meteorites–comparison with other ordinary chondrites. Hyperfine Interact. 2014, 226, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Maksimova, A.A.; Oshtrakh, M.I.; Klencsár, Z.; Petrova, E.V.; Grokhovsky, V.I.; Kuzmann, E.; Homonnay, Z.; Semionkin, V.A. A Comparative study of troilite in bulk ordinary chondrites Farmington L5, Tsarev L5 and Chelyabinsk LL5 using Mössbauer spectroscopy with a high velocity resolution. J. Mol. Struct. 2014, 1073, 196–201. [Google Scholar] [CrossRef]
- Klencsár, Z.; Kuzmann, E.; Vértes, A. User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 1996, 210, 105–118. [Google Scholar] [CrossRef]
- Gałązka-Friedman, J.; Woźniak, M.; Bogusz, P.; Jakubowska, M.; Karwowski, Ł.; Duda, P. Application of Mössbauer spectroscopy for classification of ordinary chondrites–different database and different methods. Hyperfine Interact. 2020, 241, 20. [Google Scholar] [CrossRef] [Green Version]
- Maksimova, A.A.; Kamalov, R.V.; Chukin, A.V.; Felner, I.; Oshtrakh, M.I. An analysis of orthopyroxene from Tsarev L5 meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy. J. Mol. Struct. 2018, 1174, 6–11. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Petrova, E.V.; Chukin, A.V.; Karabanalov, M.S.; Felner, I.; Gritsevich, M.; Oshtrakh, M.I. Characterization of the matrix and fusion crust of the recent meteorite fall Ozerki L6. Meteorit. Planet. Sci. 2020, 55, 231–244. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Petrova, E.V.; Chukin, A.V.; Karabanalov, M.S.; Nogueira, B.A.; Fausto, R.; Yesiltas, M.; Felner, I.; Oshtrakh, M.I. Characterization of Kemer L4 meteorite using Raman spectroscopy, X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118723. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Petrova, E.V.; Chukin, A.V.; Unsalan, O.; Szabó, Á.; Dankházi, Z.; Felner, I.; Zamyatin, D.A.; Kuzmann, E.; Homonnay, Z.; et al. Study of Bursa L6 ordinary chondrite by X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Meteorit. Planet. Sci. 2020, 55, 2780–2793. [Google Scholar] [CrossRef]
- Elewa, N.N.; Cobas, R.; Cadogan, J.M. 57Fe Mössbauer study of the Chainpur meteorite. Hyperfine Interact. 2016, 237, 107. [Google Scholar] [CrossRef]
- Gismelseed, A.M.; Bashir, S.; Worthing, M.A.; Yousif, A.A.; Elzain, M.E.; Al Rawas, A.D.; Widatallah, H.M. Studies and characterizations of the Al Zarnkh meteorite. Meteorit. Planet. Sci. 2005, 40, 255–259. [Google Scholar] [CrossRef]
- Duda, P.; Rzepecka, P.; Jakubowska, M.; Woźniak, M.; Karwowski, Ł.; Gałązka-Friedman, J. Mössbauer studies of iron sulphides present in ordinary chondrites type LL. Acta Soc. Metheor. Pol. 2017, 8, 30–39. (In Polish) [Google Scholar]
- Woźniak, M.; Gałązka-Friedman, J.; Duda, P.; Jakubowska, M.; Rzepecka, P.; Karwowski, Ł. Application of Mössbauer spectroscopy, multidimensional discriminant analysis, and Mahalanobis distance for classification of equilibrated ordinary chondrites. Meteorit. Planet. Sci. 2019, 54, 1828–1839. [Google Scholar] [CrossRef] [Green Version]
- Oshtrakh, M.I.; Maksimova, A.A.; Chukin, A.V.; Petrova, E.V.; Jenniskens, P.; Kuzmann, E.; Grokhovsky, V.I.; Homonnay, Z.; Semionkin, V.A. Variability of Chelyabinsk meteoroid stones studied by Mössbauer spectroscopy and X-ray diffraction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 206–224. [Google Scholar] [CrossRef] [PubMed]
- Maksimova, A.A.; Petrova, E.V.; Chukin, A.V.; Nogueira, B.A.; Fausto, R.; Szabó, Á.; Dankházi, Z.; Felner, I.; Gritsevich, M.; Kohout, T.; et al. Bjurböle L/LL4 ordinary chondrite properties studied by Raman spectroscopy, X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119196. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Characterization of a Chelyabinsk LL5 meteorite fragment using Mössbauer spectroscopy with a high velocity resolution. Hyperfine Interact. 2014, 226, 559–564. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Maksimova, A.A.; Grokhovsky, V.I.; Petrova, E.V.; Semionkin, V.A. The 57Fe hyperfine interactions in the iron-bearing phases in some LL ordinary chondrites. Hyperfine Interact. 2016, 237, 138. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Felner, I.; Chukin, A.V.; Karabanalov, M.S.; Semionkin, V.A. Mössbauer spectroscopy of NWA 6286 and NWA 7857 ordinary chondrites. J. Mol. Struct. 2017, 1140, 122–126. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Chukin, A.V.; Felner, I.; Yakovlev, G.A.; Semionkin, V.A. Characterization of Northwest Africa 6286 and 7857 ordinary chondrites using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 192, 275–284. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Petrova, E.V.; Chukin, A.V.; Oshtrakh, M.I. Fe2+ partitioning between the M1 and M2 sites in silicate crystals in some stony and stony-iron meteorites studied using X-ray diffraction and Mössbauer spectroscopy. J. Mol. Struct. 2020, 1216, 128391. [Google Scholar] [CrossRef]
- Malysheva, T.V. Mössbauer Effect in Geochemistry and Cosmochemistry; Nauka: Moscow, USSR, 1975; pp. 1–116. (In Russian) [Google Scholar]
- Wang, L.; Moon, N.; Zhang, Y.; Dunham, W.R.; Essene, E.J. Fe-Mg order-disorder in orthopyroxenes. Geochim. Cosmochim. Acta 2005, 69, 5777–5788. [Google Scholar] [CrossRef]
- Slater-Reynolds, V.; McSween, H.Y., Jr. Peak metamorphic temperatures in type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry. Meteorit. Planet. Sci. 2005, 40, 745–754. [Google Scholar] [CrossRef]
- Keil, K.; Fredriksson, K. The iron, magnesium, and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites. J. Geophys. Res. 1964, 69, 3487–3515. [Google Scholar] [CrossRef]
- Verma, H.C.; Tripathi, R.P. Anomalous Mössbauer parameters in the second generation regolith Ghubara meteorite. Meteorit. Planet. Sci. 2004, 39, 1755–1759. [Google Scholar] [CrossRef]
- Elewa, N.N.; Cadogan, J.M. An 57Fe Mössbauer study of the ordinary chondrite meteorite Lynch 001. Hyperfine Interact. 2017, 238, 4. [Google Scholar] [CrossRef]
- Ortalli, I.; Pedrazzi, G. Study of the Torino meteorite. Hyperfine Interact. 1990, 57, 2275–2278. [Google Scholar] [CrossRef]
- Zhang, Y.; Stevens, J.G.; Li, Y.; Li, Z. Mössbauer study of the Jilin and Xinyang meteorites. Hyperfine Interact. 1994, 91, 547–550. [Google Scholar] [CrossRef]
- Abdu, Y.A.; Ericsson, T. Mössbauer spectroscopy, X-ray diffraction, and electron microprobe analysis of the New Halfa meteorite. Meteorit. Planet. Sci. 1997, 32, 373–375. [Google Scholar] [CrossRef]
- Lipka, J.; Sitek, J.; Dekan, J.; Degmová, J.; Porubčan, V. Mössbauer study of Slovak meteorites. Hyperfine Interact. 2013, 218, 107–111. [Google Scholar] [CrossRef]
- Cadogan, J.M.; Rebbouh, L.; Mills, J.V.J.; Bland, P.A. An 57Fe Mössbauer study of three Australian L5 ordinary-chondrite meteorites: Dating Kinclaven–001. Hyperfine Interact. 2013, 222 (Suppl. S2), S91–S98. [Google Scholar] [CrossRef]
- Petrova, E.V.; Maksimova, A.A.; Chukin, A.V.; Oshtrakh, M.I. X-ray diffraction and Mössbauer spectroscopy of Gandom Beryan 008 ordinary chondrite. Hyperfine Interact. 2019, 240, 42. [Google Scholar] [CrossRef]
- Bland, P.A.; Sexton, A.S.; Jull, A.J.T.; Bevan, A.W.R.; Berry, F.J.; Thornley, D.M.; Astin, T.R.; Britt, D.T.; Pillinger, C.T. Climate and rock weathering: A study of terrestrial age dated ordinary chondritic meteorites from hot desert regions. Geochim. Cosmochim. Acta 1998, 62, 3169–3184. [Google Scholar] [CrossRef]
- Calogero, S.; Stievano, L.; Benoit, B.H. Mössbauer and thermoluminescence studies of meteorites from Frontier Mountain, Antarctica. J. Geophys. Res. 1999, 104, 30817–30823. [Google Scholar] [CrossRef]
- Munayco, P.; Munayco, J.; Valenzuela, M.; Rochette, P.; Gattacceca, J.; Scorzelli, R.B. 57Fe Mössbauer spectroscopy studies of chondritic meteorites from the Atacama Desert, Chile: Implications for weathering processes. Hyperfine Interact. 2014, 224, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Cadogan, J.M.; Devlin, E.J. 57Fe Mössbauer study of the Nurina-003 ordinary chondrite meteorite. Hyperfine Interact. 2014, 226, 553–558. [Google Scholar] [CrossRef]
- Lipka, J.; Sitek, J.; Dekan, J.; Sedlačková, K. Analyses of Rumanová meteorite. Hyperfine Interact. 2014, 226, 565–569. [Google Scholar] [CrossRef]
- Bland, P.A.; Zolensky, M.E.; Benedix, G.K.; Sephtone, M.A. Weathering of Chondritic Meteorites. In Meteorites and the Early Solar System II; Lauretta, D.S., McSween, H.Y., Jr., Eds.; The University of Arizona Press: Tucson, AL, USA, 2006; pp. 853–867. [Google Scholar]
- Bland, P.A.; Berry, F.J.; Pillinger, C.T. Rapid weathering in Holbrook: An iron-57 Mössbauer spectroscopy study. Meteorit. Planet. Sci. 1998, 33, 127–129. [Google Scholar] [CrossRef]
- Gritsevich, M.I. Determination of parameters of meteor bodies based on flight observational data. Adv. Space Res. 2009, 44, 323–334. [Google Scholar] [CrossRef]
- Genge, M.J.; Grady, M.M. The fusion crusts of stony meteorites: Implications for the atmospheric reprocessing of extraterrestrial materials. Meteorit. Planet. Sci. 1999, 34, 341–356. [Google Scholar] [CrossRef]
- Thaisen, K.G.; Taylor, L.A. Meteorite fusion crust variability. Meteorit. Planet. Sci. 2009, 44, 871–878. [Google Scholar] [CrossRef]
- Maksimova, A.A.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Study of Chelyabinsk LL5 meteorite fragment with light lithology and its fusion crust using Mössbauer spectroscopy with a high velocity resolution. In Proceedings of the International Conference “Mössbauer Spectroscopy in Materials Science 2014”, Hlohovec u Breclavi, Czech Republic, 26–30 May 2014; Tuček, J., Miglierini, M., Eds.; Melville: New York, NY, USA, 2014; Volume 1622, pp. 24–29. [Google Scholar]
- Yudin, I.A.; Kozmanov, Y.D.; Remennikova, I.M. Investigation of minerals in the fusion crust of Saratov meteorite. Meteoritics 1968, 28, 156–157. (In Russian) [Google Scholar]
- Karwowski, Ł.; Brzózka, K.; Przylibski, T.A.; Duda, P.; Górka, B.; Gawronski, M.; Jakubowska, M.; Łuszczek, K. Mössbauer studies of fusion crust of the Sołtmany meteorite. Acta Phys. Pol. A 2018, 134, 1076–1079. [Google Scholar] [CrossRef]
- Oshtrakh, M.I. Applications of Mössbauer spectroscopy in biomedical research. Cell Biochem. Biophys. 2019, 77, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Kuzmann, E.; Homonnay, Z.; Nagy, S.; Nomura, K. Mössbauer spectroscopy. In Handbook of Nuclear Chemistry; Vértes, A., Nagy, S., Klencsár, Z., Lovas, R.G., Rösch, F., Eds.; Springer Science + Business Media B.V.: Berlin, Germany, 2011; Chapter 25; pp. 1379–1446. [Google Scholar]
Silicate Crystals in Ordinary Chondrites | Method of Estimation | |
---|---|---|
XRD | Mössbauer Spectroscopy | |
XFeM1/XFeM2 | AM1/AM2 | |
Olivine | ||
Ochansk H4 | – | 1.38 |
Richardton H5 | – | 1.79 |
Vengerovo H5 | – | 1.34 |
Zvonkov H6 | – | 1.27 |
Mount Tazerzait L5 | – | 1.34 |
Farmington L5 | – | 1.47 |
Kunashak L6 | – | 1.22 |
Mbale L5/6 | – | 1.43 |
Saratov L4 | – | 1.27 |
Tsarev L5-1 | – | 1.29 |
Annama H5 | 1.24 | 1.42 |
Tsarev L5-2 | 1.36 | 1.44 |
Kemer L4 | 1.56 | 1.55 |
Bursa L6 | 1.37 | 1.35 |
Ozerki L6 | 1.42 | 1.48 |
Bjurböle L/LL4 | 1.21 | 1.24 |
Chelyabinsk LL5, No 1 | 1.31 | 1.34 |
Chelyabinsk LL5, No 1a | 1.21 | 1.21 |
Chelyabinsk LL5, No 2 | 1.17 | 1.18 |
Chelyabinsk LL5, No 2a | 1.32 | 1.37 |
Chelyabinsk LL5, No 3 | 1.20 | 1.17 |
NWA 6286 LL6 | 1.23 | 1.19 |
NWA 7857 LL6 | 1.16 | 1.22 |
Orthopyroxene | ||
Ochansk H4 | – | 0.06 |
Richardton H5 | – | 0.10 |
Mount Tazerzait L5 | – | 0.17 |
Farmington L5 | – | 0.15 |
Kunashak L6 | – | 0.20 |
Mbale L5/6 | – | 0.13 |
Saratov L4 | – | 0.10 |
Tsarev L5-1 | – | 0.09 |
Annama H5 | 0.13 | 0.23 |
Tsarev L5-2 | 0.20 | 0.19 |
Kemer L4 | 0.15 | 0.13 |
Bursa L6 | 0.31 | 0.28 |
Ozerki L6 | 0.32 | 0.31 |
Bjurböle L/LL4 | 0.23 | 0.28 |
Chelyabinsk LL5, No 1 | 0.19 | 0.19 |
Chelyabinsk LL5, No 1a | 0.18 | 0.33 |
Chelyabinsk LL5, No 2 | 0.20 | 0.25 |
Chelyabinsk LL5, No 2a | 0.26 | 0.40 |
Chelyabinsk LL5, No 3 | 0.29 | 0.30 |
NWA 6286 LL6 | 0.25 | 0.26 |
NWA 7857 LL6 | 0.33 | 0.34 |
Ca-rich clinopyroxene | ||
Tsarev L5-2 | 1.28 | 1.50 |
Kemer L4 | 3.00 | 3.02 |
Bjurböle L/LL4 | 3.11 | 3.13 |
Chelyabinsk LL5, No 1 | 2.54 | – |
Chelyabinsk LL5, No 1a | 3.78 | 4.78 |
Chelyabinsk LL5, No 2 | 1.78 | 1.90 |
Chelyabinsk LL5, No 2a | 2.54 | 2.31 |
Chelyabinsk LL5, No 3 | 2.43 | 2.33 |
NWA 6286 LL6 | 1.33 | 1.30 |
NWA 7857 LL6 | 2.00 | 2.43 |
Olivine Crystals in Ordinary Chondrites | Method of Estimation | ||||
---|---|---|---|---|---|
XRD | Mössbauer Spectroscopy | ||||
KD | Teq, K | XFa | KD | Teq, K | |
Ochansk H4 | – | – | 0.175 | 1.19 | 641 |
Richardton H5 | – | – | 0.177 | 1.81 | 433 |
Vengerovo H5 | – | – | 0.19 | 1.43 | 698 |
Zvonkov H6 | – | – | 0.19 | 1.35 | 849 |
Mount Tazerzait L5 | – | – | 0.246 | 1.47 | 654 |
Farmington L5 | – | – | 0.238 | 1.65 | 503 |
Kunashak L6 | – | – | 0.23 | 1.30 | 965 |
Mbale L5/6 | – | – | 0.254 | 1.62 | 523 |
Saratov L4 | – | – | 0.24 | 1.36 | 813 |
Tsarev L5-1 | – | – | 0.243 | 1.40 | 744 |
Annama H5 | 1.30 | 966 | 0.186 | 1.53 | 592 |
Tsarev L5-2 | 1.52 | 602 | 0.243 | 1.59 | 542 |
Kemer L4 | 1.77 | 441 | 0.24 | 1.77 | 439 |
Bursa L6 | 1.50 | 623 | 0.252 | 1.50 | 625 |
Ozerki L6 | 1.47 | 553 | 0.26 | 1.69 | 479 |
Bjurböle L/LL4 | 1.46 | 666 | 0.262 | 1.34 | 850 |
Chelyabinsk LL5 No 1 | 1.47 | 658 | 0.279 | 1.49 | 628 |
Chelyabinsk LL5 No 1a | 1.29 | 979 | 0.279 | 1.30 | 964 |
Chelyabinsk LL5 No 2 | 1.24 | 1179 | 0.279 | 1.25 | 1115 |
Chelyabinsk LL5 No 2a | 1.48 | 645 | 0.279 | 1.55 | 573 |
Chelyabinsk LL5 No 3 | 1.29 | 1002 | 0.279 | 1.25 | 1144 |
NWA 6286 LL6 | 1.34 | 862 | 0.299 | 1.28 | 1006 |
NWA 7857 LL6 | 1.24 | 1180 | 0.294 | 1.34 | 855 |
Orthopyroxene Crystals in Ordinary Chondrites | Method of Estimation | ||||
---|---|---|---|---|---|
XRD | Mössbauer Spectroscopy | ||||
KD | Teq, K | XFs | KD | Teq, K | |
Ochansk H4 | – | – | 0.156 | 0.04 | 621 |
Richardton H5 | – | – | 0.147 | 0.08 | 753 |
Mount Tazerzait L5 | – | – | 0.208 | 0.12 | 879 |
Farmington L5 | – | – | 0.205 | 0.10 | 823 |
Kunashak L6 | – | – | 0.20 | 0.14 | 933 |
Mbale L5/6 | – | – | 0.218 | 0.09 | 776 |
Saratov L4 | – | – | 0.19 | 0.07 | 727 |
Tsarev L5-1 | – | – | 0.20 | 0.06 | 677 |
Annama H5 | 0.07 | 720 | 0.166 | 0.18 | 1035 |
Tsarev L5-2 | 0.13 | 907 | 0.20 | 0.14 | 932 |
Kemer L4 | 0.10 | 806 | 0.19 | 0.09 | 787 |
Bursa L6 | 0.21 | 1138 | 0.214 | 0.21 | 1122 |
Ozerki L6 | 0.24 | 1213 | 0.21 | 0.24 | 1202 |
Bjurböle L/LL4 | 0.148 | 958 | 0.207 | 0.21 | 1136 |
Chelyabinsk LL5 No 1 | 0.12 | 878 | 0.228 | 0.13 | 905 |
Chelyabinsk LL5 No 1a | 0.14 | 942 | 0.228 | 0.25 | 1233 |
Chelyabinsk LL5 No 2 | 0.13 | 908 | 0.228 | 0.17 | 1025 |
Chelyabinsk LL5 No 2a | 0.18 | 1051 | 0.228 | 0.31 | 1416 |
Chelyabinsk LL5 No 3 | 0.20 | 1107 | 0.228 | 0.22 | 1147 |
NWA 6286 LL6 | 0.17 | 1010 | 0.239 | 0.18 | 1052 |
NWA 7857 LL6 | 0.22 | 1169 | 0.242 | 0.25 | 1248 |
Silicate Crystals in Ordinary Chondrites | Method of Estimation | ||||||
---|---|---|---|---|---|---|---|
XRD | Mössbauer Spectroscopy | ||||||
XFeM1/XFeM2 | KD | TFC, K | AM1/AM2 | XFa/XFs | KD | TFC, K | |
Ozerki L6 | |||||||
Olivine | 1.19 | 1.25 | 1113 | 1.22 | 0.26 | 1.31 | 927 |
Orthopyroxene | 0.22 | 0.16 | 978 | 0.21 | 0.21 | 0.15 | 962 |
Kemer L4 | |||||||
Olivine | 1.47 | 1.66 | 498 | 1.53 | 0.24 | 1.75 | 451 |
Orthopyroxene | 0.19 | 0.13 | 901 | 0.14 | 0.19 | 0.09 | 803 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimova, A.A.; Oshtrakh, M.I. Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part I: Undifferentiated Meteorites. Minerals 2021, 11, 612. https://doi.org/10.3390/min11060612
Maksimova AA, Oshtrakh MI. Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part I: Undifferentiated Meteorites. Minerals. 2021; 11(6):612. https://doi.org/10.3390/min11060612
Chicago/Turabian StyleMaksimova, Alevtina A., and Michael I. Oshtrakh. 2021. "Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part I: Undifferentiated Meteorites" Minerals 11, no. 6: 612. https://doi.org/10.3390/min11060612
APA StyleMaksimova, A. A., & Oshtrakh, M. I. (2021). Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part I: Undifferentiated Meteorites. Minerals, 11(6), 612. https://doi.org/10.3390/min11060612