Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part II: Differentiated Meteorites, Moon, and Mars
Abstract
:1. Introduction
2. Differentiated Stony Meteorites
2.1. Primitive Achondrites
2.2. Achondrites (Stony Meteorites Except HED and Martian Meteorites)
2.3. Achondrites (HED)
2.4. Achondrites (Lunar and Martian Meteorites)
3. Stony-Iron Meteorites
3.1. Pallasites
3.2. Mesosiderites
4. Iron Meteorites
5. Lunar and Martian Matter
5.1. Lunar Soils and Rocks
5.2. Martian Surface
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maksimova, A.A.; Oshtrakh, M.I. Applications of Mössbauer spectroscopy in meteoritical and planetary science, Part I: Undifferentiated meteorites. Minerals 2021, 11, 612. [Google Scholar] [CrossRef]
- Weisberg, M.K.; McCoy, T.J.; Krot, A.N. Systematics and evaluation of meteorite classification. In Meteorites and the Early Solar System II.; Lauretta, D.S., McSween, H.Y., Jr., Eds.; The University of Arizona Press: Tucson, AZ, USA, 2006; pp. 19–52. [Google Scholar]
- Mittlefehldt, D.W. Asteroid (4) vesta: I. The howardite-eucrite-diogenite (HED) clan of meteorites. Chem. Erde 2015, 75, 155–183. [Google Scholar] [CrossRef]
- Rubin, A.E. Mineralogy of meteorite groups. Meteorit. Planet. Sci. 1997, 32, 231–247. [Google Scholar] [CrossRef]
- Rubin, A.E.; Ma, C. Meteoritic minerals and their origins. Chem. Erde 2017, 77, 325–385. [Google Scholar] [CrossRef]
- Burns, R.G.; Martinez, S.L. Mössbauer spectra of olivine-rich achondrites: Evidence of preterrestrial redox reactions. In Proceedings of the 21st Lunar and Planetary Science Conference, Houston, TX, USA, 12–16 March 1990; Lunar and Planetary Institute: Houston, TX, USA, 1991; Volume 21, pp. 331–340. [Google Scholar]
- Gismelseed, A.M.; Abdu, Y.A.; Shaddad, M.H.; Verma, H.C.; Jenniskens, P. Fe-bearing phases in a ureilite fragment from the asteroid 2008 TC3 (=Almahata Sitta meteorites): A combined Mössbauer spectroscopy and X-ray diffraction study. Meteorit. Planet. Sci. 2014, 49, 1485–1493. [Google Scholar] [CrossRef]
- Maliszewski, A.; Szlachta, K.; Gałązka-Friedman, J.; Bakun-Czubarow, N. Mössbauer studies of Polish enstatite meteorite—Zakłodzie. Hyperfine Interact. 2008, 186, 121–125. [Google Scholar] [CrossRef]
- Dunlap, R.A. A Mössbauer effect investigation of the enstatite chondrite from Abee, Canada. Hyperfine Interact. 1997, 110, 209–215. [Google Scholar] [CrossRef]
- Kruse, O. Mössbauer and X-ray study of the effects of vacancy concentration in synthetic hexagonal pyrrhotites. Am. Mineral. 1990, 75, 755–763. [Google Scholar]
- Abdu, Y.A.; Azevedo, I.S.; Stewart, S.J.; López, A.; Varela, M.E.; Kurat, G.; Scorzelli, R.B. Mössbauer study of glasses in meteorites: The D’Orbigny angrite and Cachari eucrite. Hyperfine Interact. 2005, 166, 543–547. [Google Scholar] [CrossRef]
- Abdu, Y.A.; Scorzelli, R.B.; Varela, M.E.; Kurat, G.; Azevedo, I.S.; Stewart, S.J.; Hawthorne, F.C. Druse clinopyroxene in D’Orbigny angritic meteorite studied by single-crystal X-ray diffraction, electron microprobe analysis, and Mössbauer spectroscopy. Meteorit. Planet. Sci. 2009, 44, 581–587. [Google Scholar] [CrossRef]
- Vieira, V.W.A.; Knudsen, J.M.; Roy-Poulsen, N.O.; Campsie, J. Mössbauer spectroscopy of pyroxenes from two meteorites (achondrites). Phys. Scr. 1983, 27, 437–444. [Google Scholar] [CrossRef]
- Zbik, M.; Yakovlev, O.I.; Polosin, A.V. The melting crust of the Stannern eucrite. Geochem. Int. 1989, 26, 108–115. [Google Scholar]
- Costa, T.V.V.; Vieira, V.W.; de Araújo, M.A.B. Low temperature Mössbauer spectra of the Ibitira meteorite (achondrite). Phys. Scr. 1989, 40, 702–704. [Google Scholar] [CrossRef]
- Solberg, T.C.; Burns, R.G. Iron Mössbauer spectral study of weathered Antarctic and SNC meteorites. In Proceedings of the 19th Lunar and Planetary Science Conference, Houston, TX, USA, 14–18 March 1988; Lunar and Planetary Institute: Houston, TX, USA, 1989; Volume 19, pp. 313–322. [Google Scholar]
- Costa, T.V.V.; Vieira, V.W.; de Araújo, M.A.B. Analysis of impact-induced Fe2+ disorder in the pyroxene of the Ibitira meteorite. Hyperfine Interact. 1991, 67, 463–466. [Google Scholar] [CrossRef]
- Gismelseed, A.M.; Khangi, F.; Ibrahim, A.; Yousif, A.A.; Worthing, M.A.; Rais, A.; Elzain, M.E.; Brooks, C.K.; Sutherland, H.H. Studies on AI Kidirate and Kapoeta meteorites. Hyperfine Interact. 1994, 91, 551–555. [Google Scholar] [CrossRef]
- Tripathi, R.P.; Sharma, S.K.; Shrivastava, K.L.; Verma, H.C. Mössbauer spectroscopic studies of the Piplia Kalan (eucrite) and Lohawat (howardite) meteorites. Meteorit. Planet. Sci. 2000, 35, 201–204. [Google Scholar] [CrossRef]
- Bhatia, B.; Patel, K.R.; Tripathi, R.P.; Layek, S.; Verma, H.C. Implication of Mössbauer spectra on the mixing model of eucrites and diogenites (resulting in howardites). Curr. Sci. 2015, 109, 331–337. [Google Scholar]
- Verma, H.C.; Tewari, V.C.; Paliwal, B.S.; Tripathi, R.P. Preferential occupation of pyroxene sites by iron in diogenite meteorites. Hyperfine Interact. 2008, 186, 181–186. [Google Scholar] [CrossRef]
- Chandra, U.; Parthasarathy, G.; Chandra Shekar, N.V.; Sahu, P.C. X-ray diffraction, Mössbauer spectroscopic and electrical resistivity studies on Lohawat meteorite under high-pressure up to 9 GPa. Chem. Erde 2013, 73, 197–203. [Google Scholar] [CrossRef]
- Chandra, U.; Pandey, K.K.; Parthasarathy, G.; Sharma, S.M. High-pressure investigations on Piplia Kalan eucrite meteorite using in-situ X-ray diffraction and 57Fe Mössbauer spectroscopic technique up to 16 GPa. Geosci. Front. 2016, 7, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Abdu, Y.A.; Hawthorne, F.C. Mössbauer spectroscopy of pyroxene in the light-dark structure of the Kapoeta meteorite: Implications for thermal history of the Kapoeta parent body. J. Phys. Conf. Ser. 2017, 869, 012096. [Google Scholar] [CrossRef] [Green Version]
- Maksimova, A.A.; Unsalan, O.; Chukin, A.V.; Karabanalov, M.S.; Jenniskens, P.; Felner, I.; Semionkin, V.A.; Oshtrakh, M.I. The interior and the fusion crust in Sariçiçek howardite: Study using X-ray diffraction, magnetization measurements and Mössbauer spectroscopy. Spectrochim. Acta Part A Molec. Biomolec. Spectrosc. 2020, 228, 117819. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.W.A.; Costa, T.V.V.; Jensen, H.G.; Knudsen, J.M.; Olsen, M.; Vistisen, L. Oxidation state of iron in SNC meteorites as studied by Mössbauer spectroscopy. Phys. Scr. 1986, 33, 180–186. [Google Scholar] [CrossRef]
- Vistisen, L.; Petersen, D.; Madsen, M.B. Mössbauer spectroscopy showing large-scale inhomogeneity in the presumed Martian meteorite Zagami. Phys. Scr. 1992, 46, 94–96. [Google Scholar] [CrossRef]
- Dyar, D.M. Ferric iron in SNC meteorites as determined by Mössbauer spectroscopy: Implications for Martian landers and Martian oxygen fugacity. Meteorit. Planet. Sci. 2003, 38, 1733–1752. [Google Scholar] [CrossRef]
- Dyar, M.D.; Treiman, A.H.; Pieters, C.M.; Hiroi, T.; Lane, M.D.; O’Connor, V. MIL 03346, the most oxidized Martian meteorite: A first look at spectroscopy, petrography, and mineral chemistry. J. Geophys. Res. 2005, 110, E09005. [Google Scholar]
- Treiman, A.H.; Dyar, M.D.; McCanta, M.; Noble, S.K.; Pieters, C.M. Martian dunite NWA 2737: Petrographic constraints on geological history, shock events, and olivine color. J. Geophys. Res. 2007, 112, E04002. [Google Scholar] [CrossRef] [Green Version]
- Pieters, C.M.; Klima, R.L.; Hiroi, T.; Dyar, M.D.; Lane, M.D.; Treiman, A.H.; Noble, S.K.; Sunshine, J.M.; Bishop, J.L. Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine. J. Geophys. Res. 2008, 113, E06004. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Maksimova, A.A.; Chukin, A.V.; Petrova, E.V.; Jenniskens, P.; Kuzmann, E.; Grokhovsky, V.I.; Homonnay, Z.; Semionkin, V.A. Variability of Chelyabinsk meteoroid stones studied by Mössbauer spectroscopy and X-ray diffraction. Spectrochim. Acta Part A Molec. Biomolec. Spectrosc. 2019, 219, 206–224. [Google Scholar] [CrossRef]
- Quintiliani, M.; Andreozzi, G.B.; Skogby, H. Synthesis and Mössbauer characterization of Fe1+xCr2-xO4 (0 ≤ x ≤ 2/3) spinel single crystals. Period. Mineral. 2011, 80, 39–55. [Google Scholar]
- Lenaz, D.; Andreozzi, G.B.; Bidyananda, M.; Princivalle, F. Oxidation degree of chromite from Indian ophiolites: A crystal chemical and 57Fe Mössbauer study. Period. Mineral. 2014, 83, 241–255. [Google Scholar]
- Gunnlaugsson, H.P.; Koch, C.B.; Bharuth-Ram, K.; Dietrich, M.; Helgason, Ö.; Madsen, M.B.; Mantovan, R.; Naidoo, D.; Steinthorsson, S.; Vistisen, L.; et al. Disordered chromite in the Martian meteorite Allan Hills 84001. Hyperfine Interact. 2008, 186, 9–14. [Google Scholar] [CrossRef]
- Dyar, M.D.; Glotch, T.D.; Lane, M.D.; Wopenka, B.; Tucker, J.M.; Seaman, S.J.; Marchand, G.J.; Klima, R.; Hiroi, T.; Bishop, J.L.; et al. Spectroscopy of Yamato 984028. Polar Sci. 2011, 4, 530–549. [Google Scholar] [CrossRef] [Green Version]
- Domeneghetti, M.C.; Fioretti, A.M.; Cámara, F.; McCammon, C.; Alvaro, M. Thermal history of nakhlites: A comparison between MIL 03346 and its terrestrial analogue Theo’s flow. Geochim. Cosmochim. Acta 2013, 121, 571–581. [Google Scholar] [CrossRef]
- Patrusheva, D.G.; Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. 57Fe hyperfine interactions in M1 and M2 sites of olivine from Omolon meteorite: Study using Mössbauer spectroscopy. Hyperfine Interact. 2010, 197, 295–300. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Chukin, A.V.; Shtoltz, A.K.; Semionkin, V.A. Study of olivines from Omolon and Seymchan meteorites using X-ray diffraction and Mössbauer spectroscopy with a high velocity resolution. In Proceedings of the International Conference Mössbauer Spectroscopy in Materials Science 2012, Olomouc, Czech Republic, 11–15 June 2012; Tuček, J., Machala, L., Eds.; AIP Conference Proceedings: Melville, NY, USA, 2012; Volume 1489, pp. 154–163. [Google Scholar]
- Oshtrakh, M.I.; Petrova, E.V.; Grokhovsky, V.I.; Semionkin, V.A. Variations in quadrupole splitting of the 57Fe in the M1 and M2 sites of meteoritic olivines with different origin. Hyperfine Interact. 2013, 222, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Gutlich, P.; Bill, E.; Trautwein, A. Mössbauer Spectroscopy and Transition Metal Chemistry. Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK; New York, NY, USA, 2011; pp. 1–569. ISBN 978-3-540-88427-9. [Google Scholar]
- Dos Santos, E.; Gattacceca, J.; Rochette, P.; Scorzelli, R.B.; Fillion, G. Magnetic hysteresis properties and 57Fe Mössbauer spectroscopy of iron and stony-iron meteorites: Implications for mineralogy and thermal history. Phys. Earth Planet. Inter. 2015, 242, 50–64. [Google Scholar] [CrossRef]
- Blukis, R.; Rüffer, R.; Chumakov, A.I.; Harrison, R.J. A high spatial resolution synchrotron Mössbauer study of the Tazewell IIICD and Esquel pallasite meteorites. Meteorit. Planet. Sci. 2017, 52, 925–936. [Google Scholar] [CrossRef] [Green Version]
- Nichols, C.I.O.; Bryson, J.F.J.; Blukis, R.; Herrero-Albillos, J.; Kronast, F.; Rüffer, R.; Chumakov, A.I.; Harrison, R.J. Variations in the magnetic properties of meteoritic cloudy zone. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008798. [Google Scholar] [CrossRef] [Green Version]
- Oshtrakh, M.I.; Maksimova, A.A.; Goryunov, M.V.; Petrova, E.V.; Felner, I.; Chukin, A.V.; Grokhovsky, V.I. Study of metallic Fe-Ni-Co alloy and stony part isolated from Seymchan meteorite using X-ray diffraction, magnetization measurement and Mössbauer spectroscopy. J. Mol. Struct. 2018, 1174, 112–121. [Google Scholar] [CrossRef]
- Lafleur, L.D.; Goodman, C.D.; King, E.A. Mössbauer investigation of shocked and unshocked iron meteorites and fayalite. Science 1968, 162, 1268–1270. [Google Scholar] [CrossRef]
- Petersen, J.F.; Aydin, M.; Knudsen, J.M. Mössbauer spectroscopy of an ordered phase (superstructure) of FeNi in an iron meteorite. Phys. Lett. A 1977, 62, 192–194. [Google Scholar] [CrossRef]
- Albertsen, J.F.; Jensen, J.B.; Knudsen, J.M. Structure of taenite in two iron meteorites. Nature 1978, 273, 453–454. [Google Scholar] [CrossRef]
- Albertsen, J.F.; Aydin, M.; Knudsen, J.M. Mössbauer effect studies of taenite lamellae of an iron meteorite Cape York (III. A). Phys. Scr. 1978, 17, 467–472. [Google Scholar] [CrossRef]
- Danon, J.; Scorzelli, R.; Azevedo, I.S.; Curvello, W.; Albertsen, J.F.; Knudsen, J.M. Iron-nickel 50-50 superstructure in the Santa Catharina meteorite. Nature 1979, 277, 283–284. [Google Scholar] [CrossRef]
- Danon, J.; Scorzelli, R.; Azevedo, I.S.; Laugier, J.; Chamberod, A. Santa Catharina meteorite and phase composition of irradiated Fe-Ni invar alloys. Nature 1980, 284, 237–238. [Google Scholar] [CrossRef]
- Albertsen, J.F.; Knudsen, J.M.; Roy-Poulsen, N.O.; Vistisen, L. Meteorites and thermodynamic equilibrium in f.c.c. iron-nickel alloys (25–50% Ni). Phys. Scr. 1980, 22, 171–175. [Google Scholar] [CrossRef]
- Danon, J.; Scorzelli, R.; Azevedo, I.S. Mössbauer studies of the Fe-Ni ordered phase (superstructure L10) in meteorites. J. Phys. Colloq. 1980, 41, C1-363–364. [Google Scholar] [CrossRef]
- Albertsen, J.F. Tetragonal lattice of tetrataenite (ordered Fe-Ni, 50–50) from 4 meteorites. Phys. Scr. 1981, 23, 301–306. [Google Scholar] [CrossRef]
- Jago, R.A.; Clark, P.E.; Rossiter, P.L. The Santa Catharina meteorite and the equilibrium state of Fe-Ni alloys. Phys. Status Solidi A 1982, 74, 247–254. [Google Scholar] [CrossRef]
- Larsen, L.; Roy-Poulsen, H.; Roy-Poulsen, N.O.; Vistisen, L.; Knudsen, J.M. Order-disorder transitions in iron-nickel (50–50%) alloys from iron meteorites as studied by Mössbauer spectroscopy. Phys. Rev. Lett. 1982, 48, 1054–1056. [Google Scholar] [CrossRef]
- Albertsen, J.F.; Nielsen, H.P.; Buchwald, V.F. On the fine structure of meteoritical taenite/tetrataenite and its interpretation. Phys. Scr. 1983, 27, 314–320. [Google Scholar] [CrossRef]
- Christiansen, A.; Laisen, L.; Roy-Poulsen, H.; Roy-Poulsen, N.O.; Vistisen, L. Iron-nickel alloys in a taenite lamella from the iron meteorite Cape York as measured by conversion electron Mössbauer spectroscopy. Phys. Scr. 1984, 29, 94–96. [Google Scholar] [CrossRef]
- Scorzelli, R.B.; Danon, J. Mössbauer spectroscopy and X-ray diffraction studies of Fe-Ni order-disorder processes in a 35% Ni meteorite (Santa Catharina). Phys. Scr. 1985, 32, 143–148. [Google Scholar] [CrossRef]
- Scorzelli, R.B.; Danon, J.; Da Silva, E.G. Solid state transformations in Fe-Ni alloys from meteorites in powder form. Hyperfine Interact. 1986, 28, 979–983. [Google Scholar] [CrossRef]
- Roy-Poulsen, H.; Knudsen, J.M.; Larsen, L.; Roy-Poulsen, N.O.; Vistisen, L. A study of Ni-rich iron meteorites. Hyperfine Interact. 1986, 29, 1089–1092. [Google Scholar] [CrossRef]
- Scorzelli, R.; Azevedo, I.S.; Danon, J.; Meyers, M.A. Mössbauer study of shock-induced effects in the ordered alloy Fe50Ni50 in meteorites. J. Phys. F: Metal Phys. 1987, 17, 1993–1997. [Google Scholar] [CrossRef]
- Aramu, F.; Brovetto, P.; Delunas, A.; Maxia, V.; Murgia, M. Study by Mössbauer spectroscopy of an iron meteorite. II Nuovo Cim. 1990, 12D, 1021–1024. [Google Scholar] [CrossRef]
- De Grave, E.; Vandenberghe, R.E.; De Bakker, P.M.A.; Van Alboom, A.; Vochten, R.; Van Tassel, R. Temperature dependence of the Mössbauer parameters of the Fe-Ni phases in the Santa Catharina meteorite. Hyperfine Interact. 1992, 70, 1009–1012. [Google Scholar] [CrossRef]
- De Grave, E.; Pollard, R.J.; Vandenberghe, R.E.; De Bakker, P.M.A. The effect of high external magnetic fields on the hyperfine interactions in the Fe-Ni phases of the Santa Catharina meteorite. Hyperfine Interact. 1994, 94, 2349–2353. [Google Scholar] [CrossRef]
- Ouseph, P.J.; Groskreutz, H.E.; Johnson, A.A. Mössbauer spectra for iron bearing phases in the meteorite Toluca. Meteoritics 1979, 14, 97–108. [Google Scholar] [CrossRef]
- Scorzelli, R.B.; Pereira, R.A.; Perez, C.A.C.; Fernandes, A.A.R. Phase composition and structure of Fe-Ni alloys in a unique Antarctic meteorite Yamato 791694. Hyperfine Interact. 1994, 94, 2343–2347. [Google Scholar] [CrossRef]
- Böttger, C.; Campbell, S.J.; Wu, E.; Smith, R.G. Mössbauer and X-ray studies of an iron meteorite sample. Hyperfine Interact. 1994, 91, 563–569. [Google Scholar] [CrossRef]
- Rancourt, D.G.; Lagarec, K.; Densmore, A.; Dunlap, R.A.; Goldstein, J.I.; Reisener, R.I.; Scorzelli, R.B. Experimental proof of the distinct electronic structure of a new meteoritic Fe-Ni alloy phase. J. Magn. Magn. Mater. 1999, 191, L255–L260. [Google Scholar] [CrossRef]
- Rancourt, D.G.; Scorzelli, R.B. Low-spin γ-Fe-Ni (γLS) proposed as a new mineral in Fe-Ni-bearing meteorites: Epitaxial intergrowth of γLS and tetrataenite as a possible equilibrium state at ~20–40 at% Ni. J. Mag. Mag. Mater. 1995, 150, 30–36. [Google Scholar] [CrossRef]
- Paduani, C.; Pérez, C.A.S.; Ardisson, J.D. A Mössbauer effect study of the Soledade meteorite. Braz. J. Phys. 2005, 35, 667–669. [Google Scholar] [CrossRef] [Green Version]
- Cabanillas, E.D.; Palacios, T.A. An hexahedrite meteorite from the Campo del Cielo Fall. Planet. Space Sci. 2006, 54, 303–309. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Milder, O.B.; Grokhovsky, V.I.; Semionkin, V.A. Hyperfine interactions in iron meteorites: Comparative study by Mössbauer spectroscopy. Hyperfine Interact. 2004, 158, 365–370. [Google Scholar] [CrossRef]
- Grokhovsky, V.I.; Oshtrakh, M.I.; Milder, O.B.; Semionkin, V.A. Mössbauer study of iron meteorites and their corrosion products. Bull. Russ. Acad. Sci. Phys. 2005, 69, 1710–1716. [Google Scholar]
- Grokhovsky, V.I.; Oshtrakh, M.I.; Milder, O.B.; Semionkin, V.A. Mössbauer spectroscopy of iron meteorite Dronino and products of its corrosion. Hyperfine Interact. 2005, 166, 671–677. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Grokhovsky, V.I.; Abramova, N.V.; Semionkin, V.A.; Milder, O.B. Iron-nickel alloy from iron meteorite Chinga studied using Mössbauer spectroscopy with high velocity resolution. Hyperfine Interact. 2009, 190, 135–142. [Google Scholar] [CrossRef]
- Torres, L.M.F.; Alcazar, G.A.P. Structural and magnetic characterization of the “GASPAR” meteorite from Betéitiva, Boyacá, Colombia. Hyperfine Interact. 2014, 224, 289–298. [Google Scholar] [CrossRef]
- Badjukov, D.D.; Rusakov, V.S.; Kupin, Y.G. Shock Wave-induced interaction between meteoritic iron and silicates. Petrology 2012, 20, 347–355. [Google Scholar] [CrossRef]
- Cesnek, M.; Štefánik, M.; Kmječ, T.; Miglierini, M. Iron meteorite fragment studied by atomic and nuclear analytical methods. In Proceedings of the International Conference Mössbauer Spectroscopy in Materials Science 2016, Liptovský Ján, Slovakia, 23–27 May 2016; Tuček, J., Miglierini, M., Eds.; AIP Conference Proceedings, AIP Publishing: Melville, NY, USA, 2016; Volume 1781, p. 020015. [Google Scholar]
- Oshtrakh, M.I.; Goryunov, M.V.; Grokhovsky, V.I.; Chukin, A.V.; Shtolz, A.K.; Semionkin, V.A. Study of visually different areas in the Chinga iron meteorite fragment using Mössbauer spectroscopy with a high velocity resolution. Hyperfine Interact. 2013, 219, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Goryunov, M.V.; Oshtrakh, M.I.; Chukin, A.V.; Grokhovsky, V.I.; Semionkin, V.A. Comparative study of Aliskerovo, Anyujskij, Sikhote-Alin and Sterlitamak iron meteorites using Mössbauer spectroscopy. Hyperfine Interact. 2016, 237, 15. [Google Scholar] [CrossRef]
- Goryunov, M.V.; Yakovlev, G.A.; Chukin, A.V.; Grokhovsky, V.I.; Semionkin, V.A.; Oshtrakh, M.I. Iron meteorites and their weathering products: Mössbauer spectroscopy with a high velocity resolution of the iron-bearing minerals. Eur. J. Mineral. 2016, 28, 601–610. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Yakovlev, G.A.; Grokhovsky, V.I.; Semionkin, V.A. Re-examination of Dronino iron meteorite and its weathering products using Mössbauer spectroscopy with a high velocity resolution. Hyperfine Interact. 2016, 237, 42. [Google Scholar] [CrossRef]
- Yakovlev, G.A.; Chukin, A.V.; Grokhovsky, V.I.; Semionkin, V.A.; Oshtrakh, M.I. Study of Dronino iron meteorite weathering in clay sand using Mössbauer spectroscopy. Croat. Chem. Acta 2016, 89, 117–124. [Google Scholar] [CrossRef]
- Stefanik, M.; Cesnek, M.; Sklenka, L.; Kmjec, T.; Miglierini, M. Neutron activation analysis of meteorites at the VR-1 training reactor. Rad. Phys. Chem. 2020, 171, 108675. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Fitzgerald, C.B.; Douvalis, A.P.; Sanders, I.S. Ferromagnetism of a graphite nodule from the Canyon Diablo meteorite. Nature 2002, 420, 156–159. [Google Scholar] [CrossRef]
- Kruse, O.; Ericsson, T. A Mössbauer investigation of natural troilite from the Agpalilik meteorite. Phys. Chem. Minerals 1988, 15, 509–513. [Google Scholar] [CrossRef]
- Čuda, J.; Kohout, T.; Tuček, J.; Haloda, J.; Filip, J.; Prucek, R.; Zboril, R. Low-temperature magnetic transition in troilite: A simple marker for highly stoichiometric FeS systems. J. Geophys. Res. 2011, 116, B11205. [Google Scholar]
- Čuda, J.; Kohout, T.; Tuček, J.; Filip, J.; Malina, O.; Krizek, M.; Zboril, R. In-field 57Fe Mössbauer spectroscopy below spin-flop transition in powdered troilite (FeS) mineral. In Proceedings of the International Conference Mössbauer Spectroscopy in Materials Science 2014, Hlohovec u Břeclavi, Czech Republic, 26–30 May 2014; Tuček, J., Miglierini, M., Eds.; AIP Conference Proceedings: Melville, NY, USA, 2014; Volume 1622, pp. 8–11. [Google Scholar]
- Čuda, J.; Kohout, T.; Tuček, J.; Filip, J.; Medrík, I.; Mashlan, M.; Zboril, R. Mössbauer study and magnetic measurement of troilite extract from Natan iron meteorite. In Mössbauer Spectroscopy, Proceedings of the International Conference Mössbauer Spectroscopy in Materials Science 2012, Olomouc, Czech Republic, 11–15 June 2012; Tuček, J., Machala, L., Eds.; AIP Conference Proceedings: Melville, NY, USA, 2012; Volume 1489, pp. 145–153. [Google Scholar]
- Oshtrakh, M.I.; Klencsár, Z.; Petrova, E.V.; Grokhovsky, V.I.; Chukin, A.V.; Shtoltz, A.K.; Maksimova, A.A.; Felner, I.; Kuzmann, E.; Homonnay, Z.; et al. Iron sulfide (troilite) inclusion extracted from Sikhote-Alin iron meteorite: Composition, structure and magnetic properties. Mat. Chem. Phys. 2016, 174, 100–111. [Google Scholar] [CrossRef]
- Wojnarowska, A.; Dziel, T.; Gałązka-Friedman, J.; Karwowski, Ł. New mineralogical phases identified by Mössbauer measurements in Morasko meteorite. Hyperfine Interact. 2008, 186, 167–171. [Google Scholar] [CrossRef]
- Klencsár, Z.; Kuzmann, E.; Homonnay, Z.; Vértes, A.; Simopoulos, A.; Devlin, E.; Kallias, G. Interplay between magnetic order and the vibrational state of Fe in FeCr2S4. J. Phys. Chem. Solids 2003, 64, 325–331. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Larionov, M.Y.; Grokhovsky, V.I.; Semionkin, V.A. Study of iron meteorite Sikhote-Alin and extracted iron-nickel phosphides using Mössbauer spectroscopy with high velocity resolution. Hyperfine Interact. 2008, 186, 53–59. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Larionov, M.Y.; Grokhovsky, V.I.; Semionkin, V.A. Temperature dependent high velocity resolution Mössbauer spectroscopic study of iron nickel phosphide microcrystals (rhabdites) extracted from Sikhote-Alin iron meteorite. J. Alloys Comp. 2011, 509, 1781–1784. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Larionov, M.Y.; Grokhovsky, V.I.; Semionkin, V.A. An analysis of Fe and Ni distribution in M1, M2 and M3 sites of iron nickel phosphides extracted from Sikhote-Alin Meteorite using Mössbauer spectroscopy with a high velocity resolution. J. Mol. Struct. 2011, 993, 38–42. [Google Scholar] [CrossRef]
- Oshtrakh, M.I.; Larionov, M.Y.; Grokhovsky, V.I.; Semionkin, V.A. Study of rhabdite (iron nickel phosphide) microcrystals extracted from Sikhote-Alin iron meteorite by magnetization measurements and Mössbauer spectroscopy. Mat. Chem. Phys. 2011, 130, 373–380. [Google Scholar] [CrossRef]
- Dos Santos, E.; Scorzelli, R.B.; Varela, M.E.; Munayco, P. Fe2+-Mg order–disorder study in orthopyroxenes from São João Nepomuceno (IVA) iron meteorite. Hyperfine Interact. 2014, 224, 251–256. [Google Scholar] [CrossRef]
- Dos Santos, E.; Scorzelli, R.B.; Varela, M.E. Cation distribution in orthopyroxenes from São João Nepomuceno iron meteorite inferred from 57Fe Mössbauer spectroscopy: Implications for thermal history and origin of IVA parent body. Meteorit. Planet. Sci. 2018, 53, 2249–2258. [Google Scholar] [CrossRef]
- Hafner, S.S. Mössbauer spectroscopy in lunar geology and mineralogy. In Mössbauer Spectroscopy; Gonser, U., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1975; pp. 167–199. [Google Scholar]
- Herzenberg, C.L.; Riley, D.L. Mössbauer spectrometry of lunar samples. Science 1970, 167, 683–686. [Google Scholar] [CrossRef]
- Herzenberg, C.L.; Riley, D.L. Analysis of first returned lunar samples by Mössbauer spectrometry. In Proceedings of the Apollo 11 Lunar Science Conference, Houston, TX, USA, 5–8 January 1970; Levinson, A.A., Ed.; Pergamon Press: New York, NY, USA, 1970; Volume 3, (Suppl. 1), pp. 2221–2241. [Google Scholar]
- Herzenberg, C.L.; Riley, D.L. Mössbauer spectrometry of lunar samples from the Apollo 11 mission. In Mössbauer Effect Methodology, Proceedings of the Sixth Symposium on Mössbauer Effect Methodology, New York, NY, USA, 25 January 1970; Gruverman, I.J., Ed.; Plenum Press: New York, NY, USA; London, UK, 1971; Volume 6, pp. 177–191. [Google Scholar]
- Herzenberg, C.L.; Riley, D.L. Analysis of returned lunar samples by techniques based on Mössbauer spectrometry. Phys. Earth Planet. Inter. 1971, 4, 204–214. [Google Scholar] [CrossRef]
- Herzenberg, C.L.; Riley, D.L. Mössbauer instrumental analysis of Apollo 12 lunar rock and soil samples. In Proceedings of the Second Lunar Science Conference, Houston, TX, USA, 11–14 January 1971; Levinson, A.A., Ed.; Massachusetts Institute of Technology Press: Cambridge, UK, 1971; Volume 3, (Suppl. 2), pp. 2103–2123. [Google Scholar]
- Huffman, G.P.; Dunmyre, G.R.; Fisher, R.M.; Wasilewski, P.J.; Nagata, T. Mössbauer and supplementary studies of Apollo 11 lunar samples. In Proceedings of the Sixth Symposium on Mössbauer Effect Methodology, New York, NY, USA, 25 January 1970; Gruverman, I.J., Ed.; Plenum Press: New York, NY, USA; London, UK, 1971; Volume 6, pp. 209–224. [Google Scholar]
- Huffman, G.P.; Schwerer, F.C.; Fisher, R.M. Iron distribution and metallic-ferrous ratios for Apollo lunar samples: Mössbauer and magnetic analyses. In Proceedings of the Fifth Lunar Science Conference, Houston, TX, USA, 18-22 March 1974; Gose, W.A., Ed.; Pergamon Press: New York, NY, USA, 1974; Volume 3, (Suppl. 5), pp. 2779–2794. [Google Scholar]
- Gay, P.; Bancroft, G.M.; Bown, M.G. Diffraction and Mössbauer studies of minerals from lunar soils and rocks. Science 1970, 167, 626–628. [Google Scholar] [CrossRef] [PubMed]
- Muir, A.H., Jr.; Housley, R.M.; Grant, R.W.; Abdel-Gawad, M.; Blander, M. Mössbauer spectroscopy of Moon samples. Science 1970, 167, 688–690. [Google Scholar] [CrossRef] [PubMed]
- Gay, P.; Bancroft, G.M.; Bown, M.G. Diffraction and Mössbauer studies of minerals from lunar soils and rocks. In Proceedings of the Apollo 11 Lunar Science Conference, Houston, TX, USA, 5–8 January 1970; Levinson, A.A., Ed.; Pergamon Press: New York, NY, USA, 1970; Volume 1, (Suppl. 1), pp. 481–497. [Google Scholar]
- Greenwood, N.N.; How, A.T. Mössbauer studies of Apollo 11 lunar samples. In Proceedings of the Apollo 11 Lunar Science Conference, Houston, TX, USA, 5–8 January 1970; Levinson, A.A., Ed.; Pergamon Press: New York, NY, USA, 1970; Volume 3, (Suppl. 1), pp. 2163–2169. [Google Scholar]
- Muir, A.H., Jr.; Housley, R.M.; Grant, R.W.; Abdel-Gawad, M.; Blander, M. Mössbauer investigation of Apollo 11 lunar samples. In Proceedings of the Sixth Symposium on Mössbauer Effect Methodology, New York, NY, USA, 25 January 1970; Gruverman, I.J., Ed.; Plenum Press: New York, NY, USA; London, UK, 1971; Volume 6, pp. 163–176. [Google Scholar]
- Hafner, S.S.; Janik, B.; Virgo, D. State and location of iron in Apollo 11 samples. In Proceedings of the Sixth Symposium on Mössbauer Effect Methodology, New York, NY, USA, 25 January 1970; Gruverman, I.J., Ed.; Plenum Press: New York, NY, USA; London, UK, 1971; Volume 6, pp. 193–207. [Google Scholar]
- Hafner, S.S.; Virgo, D.; Warburton, D. Oxidation state of iron in plagioclase from lunar basalts. Earth Planet. Sci. Lett. 1971, 12, 159–166. [Google Scholar] [CrossRef]
- Gibb, T.C.; Greatrex, R.; Greenwood, N.N.; Battey, M.H. Mössbauer studies of Apollo 14 lunar samples. In Proceedings of the Third Lunar Science Conference, Houston, TX, USA, 10–13 January 1972; Levinson, A.A., Ed.; Massachusetts Institute of Technology Press: Cambridge, UK, 1972; Volume 3, (Suppl. 3), pp. 2479–2493. [Google Scholar]
- Virgo, D.; Hafner, S.S. Temperature-dependent Mg, Fe distribution in a lunar olivine. Earth Planet. Sci. Lett. 1972, 14, 305–312. [Google Scholar] [CrossRef]
- Huffman, G.P.; Dunmyre, G.R. Superparamagnetic clusters of Fe2+ spins in lunar olivine: Dissolution by high-temperature annealing. In Proceedings of the Sixth Lunar Science Conference, Houston, TX, USA, 17–12 March 1975; Merrill, R.B., Ed.; Pergamon Press: New York, NY, USA, 1975; Volume 1, (Suppl. 6), pp. 757–772. [Google Scholar]
- Morris, R.V.; Klingelhöfer, G.; Korotev, R.L.; Shelfer, T.D. Mössbauer mineralogy on the moon: The lunar regolith. Hyperfine Interact. 1998, 117, 405–432. [Google Scholar] [CrossRef]
- Wentworth, S.J.; Keller, L.P.; McKay, D.S.; Morris, R.V. Space weathering on the moon: Patina on Apollo 17 samples 75075 and 76015. Meteorit. Planet. Sci. 1999, 34, 593–603. [Google Scholar] [CrossRef]
- Malysheva, T.V. Mössbauer spectroscopy of lunar regolith returned by the automatic station Luna 16. In Proceedings of the Third Lunar Science Conference, Houston, TX, USA, 10–13 January 1972; Levinson, A.A., Ed.; Massachusetts Institute of Technology Press: Cambridge, UK, 1972; Volume 1, (Suppl. 3), pp. 105–114. [Google Scholar]
- Gibb, T.C.; Greatrex, R.; Greenwood, N.N. Mössbauer studies of Luna 16 and 20 lunar soils. Phil. Trans. R. Soc. Lond. A 1977, 284, 157–165. [Google Scholar]
- Gibb, T.C.; Greatrex, R.; Greenwood, N.N. An assessment of results obtained from Mössbauer spectra of lunar samples. Phil. Trans. R. Soc. Lond. A 1977, 285, 235–240. [Google Scholar]
- Malysheva, T.V. To the problem about the origin of lunar maria and continents (Mössbauer investigations). In Proceedings of the Soviet-American Conference on Cosmochemistry of the Moon and Planets, Moscow, USSR, 4–8 June 1974; Pomeroy, J.H., Hubbard, N.J., Eds.; National Aeronautics and Space Administration, Scientific and Technical Information Office: Washington, WA, USA, 1977; Pt. 1, pp. 243–251. [Google Scholar]
- Eglinton, G.; Gowar, A.P.; Jull, A.J.T.; Pillinger, C.T.; Agrell, S.O.; Agrell, J.E.; Long, J.V.P.; Bowie, S.H.U.; Simpson, P.R.; Beckinsale, R.D.; et al. The analysis of various size, visually selected and density and magnetically separated fractions of Luna-16 and -20 samples. In Proceedings of the Soviet-American Conference on Cosmochemistry of the Moon and Planets, Moscow, USSR, 4–8 June 1974; Pomeroy, J.H., Hubbard, N.J., Eds.; National Aeronautics and Space Administration, Scientific and Technical Information Office: Washington, WA, USA, 1977; Pt. 2, pp. 703–727. [Google Scholar]
- Zemčik, T.; Raclavsky, K. Mössbauer spectroscopy of iron in the Luna 20 regolith. In Proceedings of the Soviet-American Conference on Cosmochemistry of the Moon and Planets, Moscow, USSR, 4–8 June 1974; Pomeroy, J.H., Hubbard, N.J., Eds.; National Aeronautics and Space Administration, Scientific and Technical Information Office: Washington, WA, USA, 1977; Pt. 2, pp. 729–734. [Google Scholar]
- Malysheva, T.V.; Polyakova, N.P.; Mishin, N.E. Mössbauer Spectroscopic Study of Lunar Soil Collected by the Luna 24 Automatic Probe. Geokhimiia (Moscow) 1978, 6, 835–841. (In Russian) [Google Scholar]
- Zemčik, T.; Cimbálniková, A. Variability of silicate glasses from the lunar regolith. Hyperfine Interact. 1986, 29, 1105–1107. [Google Scholar] [CrossRef]
- Khramov, D.A.; Zemčik, T.; Cimbálniková, A. Distribution of Iron in Lunar Olivines from Data of Mössbauer Spectroscopy. Geokhimiia (Moscow) 1989, 8, 1164–1169. (In Russian) [Google Scholar]
- Varnek, V.A.; Mazalov, L.N.; Dikov, Y.P.; Ivanov, A.V. New Data on the Forms of Iron Found in the Luna-16 Regolith, Obtained Using Mössbauer Spectroscopy. Geokhimiia (Moscow) 1989, 8, 1170–1175. (In Russian) [Google Scholar]
- Malysheva, T.V. Study of lunar regolith from the Moon highland region by Mössbauer spectroscopy. In Soil from the Highland Region of the Moon; Barsukov, V.L., Surkov, Y.A., Eds.; Publishing House Nauka: Moscow, USSR, 1979; pp. 665–673. (In Russian) [Google Scholar]
- Zemčik, T.; Raclavsky, K. Comparison of non-magnetic parts of the Mössbauer spectra of regolith from Luna-16 and Luna-20. In Soil from the Highland Region of the Moon; Barsukov, V.L., Surkov, Y.A., Eds.; Publishing House Nauka: Moscow, USSR, 1979; pp. 674–677. (In Russian) [Google Scholar]
- Malysheva, T.V. NGR spectroscopy of regolith samples from Mare Crisium. In Lunar Soil from Mare Crisium; Barsukov, V.L., Ed.; Publishing House Nauka: Moscow, USSR, 1980; pp. 300–308. (In Russian) [Google Scholar]
- Klingelhöfer, G. The miniaturized spectrometer MIMOS II. In Mössbauer Spectroscopy in Materials Science; Miglierini, M., Petridis, D., Eds.; Kluwer Academic Publishers: Berlin, Germany, 1999; pp. 413–426. [Google Scholar]
- Fleischer, I.; Klingelhöfer, G.; Morris, R.V.; Schröder, C.; Rodionov, D.; De Souza, P.A. In-situ Mössbauer spectroscopy with MIMOS II. Hyperfine Interact. 2012, 207, 97–105. [Google Scholar] [CrossRef]
- Klingelhöfer, G. Extraterrestrial Mössbauer spectroscopy. In The Rudolf Mössbauer Story; Kalvius, M., Kienle, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 293–316. ISBN 978-3-642-17951-8. [Google Scholar]
- Morris, R.V.; Klingelhöfer, G.; Bernhardt, B.; Schröder, C.; Rodionov, D.S.; de Souza, P.A., Jr.; Yen, A.; Gellert, R.; Evlanov, E.N.; Foh, J.; et al. Mineralogy at gusev crater from the Mössbauer spectrometer on the spirit rover. Science 2004, 305, 833–836. [Google Scholar] [CrossRef]
- Klingelhöfer, G.; Morris, R.V.; Bernhardt, B.; Schröder, C.; Rodionov, D.S.; de Souza, P.A., Jr.; Yen, A.; Gellert, R.; Evlanov, E.N.; Zubkov, B.; et al. Jarosite and hematite at Meridiani Planum from opportunity’s Mössbauer spectrometer. Science 2004, 306, 1740–1745. [Google Scholar] [CrossRef]
- Klingelhöfer, G. Mössbauer analysis of the surface of Mars with MIMOS II at Meridiani Planum and Gusev Crater. In Industrial Applications of the Mössbauer Effect; Garcia, M., Marco, J.F., Plazaola, F., Eds.; AIP Conference Proceedings, American Institute of Physics: College Park, MD, USA, 2005; Volume 765, pp. 369–379. [Google Scholar]
- Klingelhöfer, G.; De Grave, E.; Morris, R.V.; Van Alboom, A.; De Resende, V.G.; De Souza, P.A., Jr.; Rodionov, D.; Schröder, C.; Ming, D.W.; Yen, A. Mössbauer spectroscopy on mars: Goethite in the Columbia Hills at Gusev crater. Hyperfine Interact. 2005, 166, 549–554. [Google Scholar] [CrossRef]
- Klingelhöfer, G.; Morris, R.V.; De Souza, P.A., Jr.; Rodionov, D.; Schröder, C. Two earth years of Mössbauer studies of the surface of Mars with MIMOS II. Hyperfine Interact. 2006, 170, 169–177. [Google Scholar] [CrossRef]
- Morris, R.V.; Klingelhöfer, G.; Schröder, C.; Rodionov, D.S.; Yen, A.; Ming, D.W.; De Souza, P.A., Jr.; Wdowiak, T.; Fleischer, I.; Gellert, R.; et al. Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 2006, 111, E12S15. [Google Scholar] [CrossRef] [Green Version]
- Schröder, C.; Klingelhöfer, G.; Morris, R.V.; Rodionov, D.S.; Fleischer, I.; Blumers, M. Extraterrestrial Mössbauer spectroscopy: More than 3 years of Mars exploration and developments for future missions. Hyperfine Interact. 2008, 182, 149–156. [Google Scholar] [CrossRef]
- Morris, R.V.; Klingelhöfer, G.; Schröder, C.; Fleischer, I.; Ming, D.W.; Yen, A.S.; Gellert, R.; Arvidson, R.E.; Rodionov, D.S.; Crumpler, L.S.; et al. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mössbauer instrument on the Spirit Mars Exploration Rover. J. Geophys. Res. 2008, 113, E12S42. [Google Scholar] [CrossRef]
- Morris, R.V.; Schröder, C.; Klingelhöfer, G.; Agresti, D.G. Mössbauer spectroscopy at Gusev Crater and Meridiani Planum. Iron mineralogy, oxidation state, and alteration on Mars. In Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces; Bishop, J.L., Bell, J.F., III, Moersch, J.E., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 538–554. [Google Scholar]
- Agresti, D.G.; Fleischer, I.; Klingelhöfer, G.; Morris, R.V. On simfitting MER Mössbauer data to characterize Martian hematite. J. Phys. Conf. Ser. 2010, 217, 012063. [Google Scholar] [CrossRef]
- Fleischer, I.; Agresti, D.G.; Klingelhöfer, G.; Morris, R.V. Distinct hematite populations from simultaneous fitting of Mössbauer spectra from Meridiani Planum, Mars. J. Geophys. Res. 2010, 115, E00F06. [Google Scholar] [CrossRef] [Green Version]
- Schröder, C.; Rodionov, D.S.; McCoy, T.J.; Jolliff, B.L.; Gellert, R.; Nittler, L.R.; Farrand, W.H.; Johnson, J.R.; Ruff, S.W.; Ashley, J.W.; et al. Meteorites on mars observed with the Mars exploration rovers. J. Geophys. Res. 2008, 113, E06S22. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, I.; Brückner, J.; Schröder, C.; Farrand, W.; Tréguier, E.; Morris, R.V.; Klingelhöfer, G.; Herkenhoff, K.; Mittlefehldt, D.; Ashley, J.; et al. Mineralogy and chemistry of cobbles at Meridiani Planum, mars, investigated by the mars exploration rover opportunity. J. Geophys. Res. 2010, 115, E00F05. [Google Scholar] [CrossRef] [Green Version]
- Zipfel, J.; Schröder, C.; Jolliff, B.L.; Gellert, R.; Herkenhoff, K.E.; Rieder, R.; Anderson, R.; Bell, J.F., III; Brückner, J.; Crisp, J.A.; et al. Bounce rock—A shergottite-like basalt encountered at Meridiani Planum, Mars. Meteorit. Planet. Sci. 2011, 46, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Agresti, D.G. Temperature dependence of the quadrupole splitting of olivine and pyroxene from the Plains of Gusev crater on Mars. Hyperfine Interact. 2012, 208, 117–121. [Google Scholar] [CrossRef]
- Van Cromphaut, C.; De Resende, V.G.; De Grave, E.; Vandenberghe, R.E. Mössbauer study of Meridiani Planum, the first iron-nickel meteorite found on the surface of Mars by the MER opportunity. Meteorit. Planet. Sci. 2007, 42, 2119–2123. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimova, A.A.; Goryunov, M.V.; Oshtrakh, M.I. Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part II: Differentiated Meteorites, Moon, and Mars. Minerals 2021, 11, 614. https://doi.org/10.3390/min11060614
Maksimova AA, Goryunov MV, Oshtrakh MI. Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part II: Differentiated Meteorites, Moon, and Mars. Minerals. 2021; 11(6):614. https://doi.org/10.3390/min11060614
Chicago/Turabian StyleMaksimova, Alevtina A., Michael V. Goryunov, and Michael I. Oshtrakh. 2021. "Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part II: Differentiated Meteorites, Moon, and Mars" Minerals 11, no. 6: 614. https://doi.org/10.3390/min11060614
APA StyleMaksimova, A. A., Goryunov, M. V., & Oshtrakh, M. I. (2021). Applications of Mössbauer Spectroscopy in Meteoritical and Planetary Science, Part II: Differentiated Meteorites, Moon, and Mars. Minerals, 11(6), 614. https://doi.org/10.3390/min11060614